Acta Universitatis Carolinae. Mathematica et Physica

Václav Flaška; Tomáš Kepka
Commutative zeropotent semigroups

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 47 (2006), No. 1, 3--14
Persistent URL: http://dml.cz/dmlcz/142751

Terms of use:

© Univerzita Karlova v Praze, 2006

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

Commutative Zeropotent Semigroups

VÁCLAV FLAŠKA AND TOMÁŠ KEPKA
Praha

Received 27. September 2005

Various examples of commutative semigroups $S(+)$ such that $S+S=S$ and $2 x+y=2 x$ are collected.
Jsou sesbírány rozmanité příklady komutativních pologrup $S(+)$ takových, že $S+S=S$ a $2 x+y=2 x$.

1. Introduction

Throughout the paper, the word "semigroup" will always mean a commutative semigroup. Unless specified explicitly, the associative and commutative binary operation of a semigroup will be denoted additively, i.e., by the symbol + .

Let S be a semigroup. An element $w \in S$ is called an absorbing element of S if $w+x=w$ for every $x=S$. There exists at most one absorbing element in S and, if it exists, it will be denoted by the symbol o_{S} (or only o). This fact will also be expressed by $o \in S$.

If A, B are subsets of S, then $A+B=\{a+b ; a \in A, b \in B\}$. A non-empty subset I of S is an ideal if $I+S \subseteq I$.

Lemma 1.1.

(i) A one-element subset $\{w\}$ of S is an ideal iff $w=o_{s}$.
(ii) If I is an ideal of S, then the relation $(I \times I) \cup \mathrm{id}_{S}$ is a congruence of S.
(iii) If $o \in S$ and r is a congruence of S, then the set $\{a ;(a, o) \in r\}$ is an ideal of S.

[^0]Lemma 1.2. The following conditions are equivalent for a semigroup S :
(i) $|S+S|=1$.
(ii) $o \in S$ and $S+S=o$.
(iii) $x+y=u+v$ for all $x, y, u, v \in S$.
(iv) $x+y=x+z$ for all $x, y, z \in S$

A semigroup S satisfying the equivalent conditions of the foregoing lemma will be called a za-semigroup.

Lemma 1.3. The following conditions are equivalent for a semigroup S :
(i) $o \in S$ and $2 x=o$ for every $x \in S$.
(ii) $2 x+y=2 x$ for all $x, y \in S$

A semigroup S satisfying the equivalent conditions of the foregoing lemma will be called zeropotent (or a zp-semigroup).

Lemma 1.4. Every za-semigroup is zp-semigroup.
A zp-semigroup will be called zs-semigroup if $S=S+S$.

2. The ordering t_{s}

In this section, let S be a semigroup such that $o \in S$; we put $R=S \backslash\{o\}$.
For every $a \in S$, let $\left(\operatorname{Ann}_{S}(a)=\right) \quad \operatorname{Ann}(a)=\{x \in S ; a+x=o\}$ and $\left(\operatorname{Anh}_{S}(a)=\right) \operatorname{Anh}(a)=\{x \in S ; a+x+S=o\}$. Further, $\operatorname{Ann}(S)=\bigcap \operatorname{Ann}(a)$, $a \in S$.

Lemma 2.1.
(i) For every $a \in S$, both $\operatorname{Ann}(a)$ and $\operatorname{Anh}(a)$ are ideals of S
(ii) $\operatorname{Ann}(S)=\{x \in S ; S+x=o\}$.
(iii) $\operatorname{Ann}(a) \subseteq \operatorname{Anh}(a)=\{x \in S ; a+x \in \operatorname{Ann}(S)\}$.

Now, define a relation $\dashv\left(=\dashv_{s}\right)$ on S by $a \dashv b$ iff $\operatorname{Ann}(a) \subseteq \operatorname{Ann}(b)$.

Lemma 2.2.

(i) \dashv is reflexive and transitive (i.e., \dashv is quasiordering).
(ii) $a \dashv b$ implies $a+x \dashv b+x$ for every $x \in S$ (i.e., \dashv is compatible).
(iii) $x \nmid o$ for every $x \in S$
(iv) $a \in \operatorname{Ann}(S)$ iff $\operatorname{Ann}(a)=S$.

Furthermore, define relations $\pi\left(=\pi_{s}\right)$ and $\varrho\left(=\varrho_{s}\right)$ on S by $(a, b) \in \pi$ iff $\operatorname{Ann}(a)=\operatorname{Ann}(b)$ and $(c, d) \in \varrho$ iff $\operatorname{Anh}(c)=\operatorname{Anh}(d)$.

Lemma 2.3.

(i) Both $\pi=\operatorname{Ker}(-1)$ and r are congruences of S and $\pi \subseteq \varrho$.
(ii) $\varrho / \pi=\pi_{T}, T=S / \pi$.

Lemma 2.4. The following conditions are equivalent:
(i) \dagger is antisymmetric.
(ii) † is an ordering
(iii) $\pi=\mathrm{id}_{s}$.

If these equivalent conditions are satisfied, then S will be called separable. The semigroup S will be called semiseparable iff $\operatorname{Ann}(S)=0$.

Lemma 2.5.

(i) $T=S / \pi$ is separable iff $\pi=\varrho$.
(ii) If S is semiseparable, then T is separable.
(iii) If S is separable, then S is semiseparable.

Lemma 2.6. The following conditions are equivalent:
(i) If $a, b, c \in R$ are such that $a+b \neq o, a+c, b+c$, then $a+b+c$.
(ii) If $a, b, c \in R$ are such that $a+b \neq o$ and $\operatorname{Ann}(a) \cup \operatorname{Ann}(b) \subseteq \operatorname{Ann}(c)$, then $\operatorname{Ann}(a+b) \subseteq \operatorname{Ann}(c)$.

A semigroup satisfying the equivalent conditions of foregoing lemma will be called upwards-regular.

Lemma 2.7. Assume that S is separable. Then the following conditions are equivalent:
(i) S is upwards-regular.
(ii) If $a, b \in R$ are such that $a+b \neq 0$, then $a+b=\sup (a, b)$ in $(S,-1)($ and $(R,-1)$).

Lemma 2.8. The following conditions are equivalent:
(i) If $a, b, c \in R$ are such that $a+b \neq o, b+c \neq o, c+a \neq o$, then $a+b+c \neq o$.
(ii) If $a, b \in R$ are such that $a+b \neq o$, then $\operatorname{Ann}(a) \cup \operatorname{Ann}(b)=\operatorname{Ann}(a+b)$.

If the equivalent conditions of foregoing lemma are satisfied, then S will be called strongly upwards-regular.

Lemma 2.9. If S is strongly upwards-regular, then S is upwards-regular.
In the sequel, let $\left(\tau_{S}=\right) \tau=\{(a, b) \in S \times S ; a+b \neq o\}$ and $\left(\sigma_{S}=\right)$ $\sigma=\{(a, b) \in S \times S ; a+b=o\}=(S \times S) \backslash \tau$. Finally, define a relation $\left(v_{s}=\right)$ v on S by $(a, b) \in v$ iff $c \dashv a$ and $c \dashv b$ for at least one $c \in S$. Clearly, the relations τ, σ, v are symmetric and v is reflexive.

Lemma 2.10. Assume that S is zeropotent. Then:
(i) $a \in \operatorname{Ann}(a)$ for every $a \in S$.
(ii) If $a \dashv b$, then $(a, b) \in \sigma$ and $\{a, b\} \subseteq \operatorname{Ann}(a) \cap \operatorname{Ann}(b)$.
(iii) $\pi \cup v \subseteq \sigma$.
(iv) τ is irreflexive and σ is reflexive.

If S is zeropotent and $\sigma_{S}=v_{S}$ (see 2.10 (iii)), then we say that S is balanced.

3. Nil-semigroups

In this section, let S be a semigroup with $o \in S$.
An element $a \in S$ is said to be nilpotent (of index at most m) iff $m a=o$ for a positive integer m. Let $N_{m}(S)$ denote the set of nilpotent elements of index at most m and $N(S)$ the set of nilpotent elements.

Lemma 3.1.

(i) $N_{m}(S)$ is an ideal of S for every positive integer m.
(ii) $N(S)$ is an ideal of S.
(iii) $\{o\} \subseteq N_{1}(S) \subseteq N_{2}(S) \subseteq \ldots$ and $N(S)=\bigcup N_{m}(S), m \geq 1$.

The semigroup S is said to be a nil-semigroup (of index at most m) iff $N(S)=S\left(N_{m}(S)=S\right)$.

Lemma 3.2.

(i) S is a nil-semigroup of index at most 1 iff $S=0$.
(ii) S is a nil-semigroup of index at most 2 iff S is a zp-semigroup.

Lemma 3.3. $N(T)=o_{T}$, where $T=S / N(S)$.
The semigroup S is said to be nilpotent (of index at most m) iff $a_{1}+$ $+\ldots+a_{m}=o$ for all $a_{1}, \ldots, a_{m} \in S$.

Lemma 3.4.

(i) If S is nilpotent of index at most $m \geq 1$, then S is a nil-semigroup of index at most m.
(ii) Sis nilpotent of index at most 1 iff $S=o$.
(iii) S is nilpotent of index at most 2 iff S is a za-semigroup.

Lemma 3.5. If S is a finitely generated nil-semigroup, then S is finite and nilpotent.

4. The ordering \preceq_{s}

In this section, let S be a nil-semigroup. Define a relation $\preceq(\preceq s)$ on S by $a \leq b$ iff $b \in(S+a) \cup\{a\}$.

Lemma 4.1. Let $a, b \in S$ be such that $a=a+b$. Then $a=o$.
Proof. We have $a=a+b=a+2 b=a+3 b=\ldots=a+m b$. But b is nilpotent.

Lemma 4.2.

(i) \preceq is a compatible ordering of S.
(ii) o is the greatest element of (S, \preceq).
(iii) If $|S| \geq 2$, then $S \backslash(S+S)$ is the set of minimal element of (S, \preceq).

Proof.
(i) Clearly, \preceq is reflexive, transitive and compatible. Now, if $a \preceq b \preceq a$, $a \neq b$, then $a=b+c, b=a+d$, and so $a=a+e, e=c+d$. By 4.1, $a=o$. Then $b=o$ too, and hence $a=b$, a contradiction.
(ii) Easy.
(iii) Easy.

Corollary 4.3. If $|S| \geq 2$ and $S+S=S$, then the ordered set ($S \preceq$) has no minimal elements. In particular, S is infinite and not finitely generated.

Lemma 4.4. Ann $(S) \backslash\{o\}$ is the set of maximal elements of the ordered set $(R$, ऽ), $R=S \backslash\{0\}$

Proof. Easy (use 4.1).
Corollary 4.5. If $|S| \geq 2$ and S is semiseparable, then the ordered set (R, \preceq) has no maximal elements.

Lemma 4.6. If $|S| \geq 3$, then the ordered set (S, \preceq) does not have smallest element.

Proof. Use 4.1.
Lemma 4.7. The followinng conditions are equivalent:
(i) If $a, b, c, d, e \in R$ are such that $a+b \neq o$ and $a+d=c=b+e$, then $c=a+b$ or $c=a+b+f$ for some $f \in S$.
(ii) If $a, b, c \in R$ are such that $a+b \neq 0, a \preceq c$ and $b \leq c$, then $a+b \leq c$.
(iii) If $a, b \in R$ are such that $a+b \neq o$, then $a+b=\sup (a, b)$ in (S, \preceq) (and (R, \preceq)).
If equivalent conditions of 4.7 are satisfied, then S will be called down-wards-regular.

Lemma 4.8. If $a \leq b$, then $a \dashv b$.
The semigroup S will be called decent if the relations \preceq_{s} and \dashv_{s} coincide (i.e., if $a t_{s} b$ implies $a \preceq_{s} b$).

Lemma 4.9. Assume that S is decent. Then:
(i) S is separable
(ii) S is downwards-regular iff it is upwards-regular.

Define a relation $\mu\left(=\mu_{S}\right)$ on S by $(a, b) \in \mu$ iff $c \leq a$ and $c \preceq b$ for at least one $c \in S$ (i.e., $a, b \in(S+c) \cup\{c\})$. Clearly, μ is reflexive and symmetric.

Lemma 4.10.
(i) $\mu \subseteq v$.
(ii) If S is zeropotent, then $\mu \subseteq \nu \subseteq \sigma$.

If S is zeropotent and $\sigma_{S}=\mu_{S}$ (see 4.10 (ii)), then we shall say that S is strongly balanced.

Lemma 4.11. Assume that S is decent. Then:
(i) $\mu=\nu$.
(ii) If S is zeropotent, then S is balanced iff it is strongly balanced.

5. Ordered sets of special type

5.1. Let (R, \preceq) be a non-empty ordered set together with an irreflexive and symmetric relation $\tau\left(=\tau_{R}\right)$ defined on R. For $a, b \in R$, we put $a \vee b=$ $=\sup (a, b)$, provided that this supremum exists in (R, \preceq). Now, we will assume that the following condition is satisfied:
(Z0) If $a, b \in R$ are such that $(a, b) \in \tau$, then $a \vee b$ exists.
For $a \in R$, let $t(a)=\{x \in R ;(a, x) \in \tau\}$. Consider the following condition:
(Z1) If $(a, b) \in \tau$ and $(c, a \vee b) \in \tau$, then $(a, c) \in \tau$ and $(b, a \vee c) \in \tau$.
Lemma 5.2. Assume that (Z1) is true.
(i) If $a, b, c \in R$ are such that $(a, b) \in \tau$ and $(c, a \vee b) \in \tau$, then $(a, b),(a, c)$, $(b, c) \in \tau$ and $(a, b \vee c),(b, a \vee c),(c, a \vee b) \in \tau$.
(ii) If $a, b \in R$ are such that $a \leq b$, then $(a, b) \notin \tau$.
(iii) If $(a, b) \in \tau$, then $a \neq a \vee b \neq b$.

Consider some more conditions:
(Z2) For every $a \in R$ there exist $b, c \in R$ such that $(b, c) \in \tau$ and $a=b \vee c$
(Z3) For every $a \in R$ there exists at least one $b \in R$ with $(a, b) \in \tau$ (i.e., $t(a) \neq \emptyset)$.
(Z4) For all $a, b \in R, a \neq b,(a, b) \notin \tau$, there exists at least one $c \in R$ such that either $(a, c) \in \tau,(b, c) \notin \tau$ or $(a, c) \notin \tau,(b, c) \in \tau$ (i.e., $t(a) \neq t(b))$.
(Z5) If $a \leq b, a \neq b$ then there exists at least one $c \in R$ such that $(a, c) \in \tau$ and $b=a \vee c$.
(Z6) If $a, b \in R$ are such that $a \leq b$, then $t(b) \subseteq t(a)$.
(Z7) If $a, b \in R$ are such that $(a, b) \notin \tau$ and $t(b) \subseteq t(a)$, then $a \leq b$.
(Z8) If $a, b, c \in R$ are such that $(a, b) \in \tau$ and $t(c) \subseteq t(a) \cap t(b)$, then $t(c) \subseteq$ $\subseteq t(a \vee b)$.
(Z9) If $a, b \in R$ are such that $(a, b) \in \tau$, then $t(a) \cap t(b)=t(a \vee b)$.
(Z10) If $a, b, c \in R$ are pair-wise different such that $(a, b) \in \tau$ and $a \vee d=c=$ $=b \vee e$ for some $d, e \in R,(a, d) \in \tau,(b, e) \in \tau$, then there exists $f \in R$ such that $(a \vee b, f) \in \tau$ and $c=a \vee b \vee f$.
(Z11) If $a, b \in R$ are such that $\emptyset \neq t(a) \neq t(b) \neq \emptyset$ and $(a, b) \notin \tau$, then there exists $c \in R$ such that $t(a) \cup t(b) \subseteq t(c)$.
(Z12) If $a, b \in R$ are such that $a \neq b$ and $(a, b) \notin \tau$, then there exist $c, d, e \in R$ such that $(c, d) \in \tau,(c, e) \in \tau, a=c \vee d, b=c \vee e$
5.3. Let (R, \leq) be a non-empty ordered set. Define a relation τ on R by $(a, b) \in \tau$ iff the infimum $a \wedge b=\inf (a, b)$ does not exist in (R, \leq). Clearly, τ is irreflexive and symmetric.
5.4. Let $T(=(T, \wedge, \vee))$ be a distributive lattice with a smallest element 0_{T} and a greatest element 1_{T} such that $|T| \geq 3$. Consider the basic order \leq defined on T and also the ordered set (R, \leq), where $R=T \backslash\left\{0_{T}, 1_{T}\right\}$. Define τ on R by $(a, b) \in \tau$ iff $a \wedge b=0_{T}$ (see 5.3). Clearly, τ is irreflexive and symmetric. Now, assume that the following condition is satisfied:
(Y0) If $a, b \in R$ and $a \wedge b=0_{T}$, then $a \vee b \neq 1_{T}$ (and hence $a \vee b \in R$).
Next, consider some more conditions:
(Y2) For every $a \in R$ there exist $b, c \in R$ such that $b \wedge c=0$ and $a=b \vee c$
(Y3) For every $a \in R$ there exists at least one $b \in R$ with $a \wedge b=0$.
(Y4) For all $a, b \in R, a \neq b, a \wedge b \neq 0$, there exists at least one $c \in R$ such that either $a \wedge c=0 \neq b \wedge c$ or $a \wedge c \neq 0=b \wedge c$.
(Y5) For all $a, b \in R, a \leq b, a \neq b$, there exists at least one $c \in R$ such that $a \wedge c=0$ and $b=a \vee c$.
(Y7) If $a, b \in R$ are such that $a \wedge b \neq 0$ and $a \not \leq b$, then there exists at least one $c \in R$ with $a \wedge c=0 \neq b \wedge c$.
(Y12) If $a, b \in R$ are such that $a \neq b$ and $a \wedge b \neq 0$, then there exist $c, d, e \in R$ such that $c \wedge d=0=c \wedge e, a=c \vee d, b=c \vee e$.

Lemma 5.5.

(i) The conditions (Z0), (Z1), (Z6), (Z8), (Z9), (Z10), (Z11) are satisfied.
(ii) If $i \in\{2,3,4,5,7,12\}$, then (Zi) is equivalent to $(Y i)$.

Example 5.6. Let \mathfrak{a} be an uncountable cardinal. Put $\mathfrak{I}=\left\{A \subseteq \mathfrak{a} ;|A| \leq \aleph_{0}\right\} \cup$ $\cup\{\mathfrak{a}\}$. Then \mathfrak{I} is a sublattice of the lattice of all subsets of \mathfrak{a} and r is a congruence of \mathfrak{I}, where $(A, B) \in r$ iff $|(A \cup B) \backslash(A \cap B)|<\aleph_{0}$. Now, $T=\mathfrak{I} / r$ is an (infinite) distributive lattice, $0_{T}=\emptyset / r, \quad 1_{T}=\mathfrak{a} / r$ and we consider the ordered set $R=T \backslash\left\{0_{T}, 1_{T}\right\}$ together with the irreflexive and symmetric relation τ. If $(a, b) \in \tau$, then $a \wedge b=0_{T} \notin R$ and $1_{T} \neq a \vee b \in R$. Moreover, it is easy to check that all the conditions (Z0), ..., (Z12) are satisfied (use 5.5).

6. One sort of examples of zs-semigroups

Let (R, \leq) be a nonempty ordered set together with an irreflexive and symmetric relation τ such that the conditions (Z0), (Z1) and (Z2) are satisfied. Let o be an element not belonging to R and $S=R \cup\{o\}$. We extend the ordering \leq to S setting $a \leq o$ for every $a \in S$. Now, define an addition on S by $a+b=a \vee b$ if $(a, b) \in \tau$ (see (Z0)) and $a+b=o$ otherwise.

Proposition 6.1. $S(=S(+))$ is a zs-semigroup.

Proof. Since τ is symmetric, the operation + is commutative. Further, $(x, o) \notin \tau$ for every $x \in S$, hence $x+o=o$ and o is an absorbing element. Since τ is irreflexive, we have $x+x=o$ for every $x \in S$. The equality $S=S+S$ follows from (Z2). It remains to show that $S(+)$ is associative.

Let $a, b, c \in S$. If $o \in\{a, b, c\}$, then $(a+b)+c=o=a+(b+c)$, and so we assume that $a, b, c \in R$.
If $(a, b) \notin \tau$ and $(b, c) \notin \tau$, then $a+b=o=b+c$, and so $(a+b)+c=o=$ $=a+(b+c)$.
If $(a, b) \notin \tau$ and $(b, c) \in \tau$, then $a+b=o, b+c=b \vee c,(a, b \vee c) \notin \tau$ by (Z1) and $(a+b)+c=o=a+(b+c)$.

If $(a, b) \in \tau$ and $(b, c) \notin \tau$, then $a+b=a \vee b, b+c=o,(c, a \vee b) \notin \tau$ by (Z1) and $(a+b)+c=o=a+(b+c)$.

If $(a, b) \in \tau$ and $(b, c) \in \tau$, then $a+b=a \vee b, b+c=b \vee c$. Now, if $(a, b \vee c) \notin$ $\notin \tau$, then $(c, a \vee b) \notin \tau$ by (Z1) and $(a+b)+c=o=a+(b+c)$. Similarly, if $(c, a \vee b) \notin \tau$. Finally, if $(a, b \vee c) \in \tau$ and $(c, a \vee b) \in \tau$, then $(a+b)+c=$ $=(a \vee b)+c=(a \vee b) \vee c=\sup (a, b, c)=a \vee(b \vee c)=a+(b \vee c)=$ $=a+(b+c)$.

Lemma 6.2.

(i) $\operatorname{Ann}(a)=S \backslash t(a)$ for every $a \in R$.
(ii) $\operatorname{Ann}(o)=S$.

Lemma 6.3. $\operatorname{Ann}(S)=\{a \in R ; t(a)=\emptyset\} \cup\{o\}$.
Lemma 6.4. The semigroup S is semiseparable iff (Z3) is true.
Lemma 6.5. If $a, b \in R$, then $(a, b) \in \pi$ iff $t(a)=t(b)$
Lemma 6.6. The semigroup is separable iff the conditions $(\mathrm{Z} 3)$ and $(\mathrm{Z} 4)$ are satisfied.

Lemma 6.7. Let $a, b \in R, a \neq b$. Then $a \leq b$ iff $b=a \vee c$ for some $c \in R$ such that $(a, c) \in \tau$.

Lemma 6.8. If $a, b \in S$ are such that $a \leq b$, then $a \leq b$.
Lemma 6.9. The relations \leq and \leq coincide iff the condition $(Z 5)$ is satisfied.
Lemma 6.10. Let $a, b \in R$. Then:
(i) $a \dashv b$ iff $t(b) \subseteq t(a)$.
(ii) $o \dashv a$ iff $t(a)=\emptyset$.
(iii) $a \dashv o$.

Lemma 6.11. If $a, b, c \in R$ are such that $a \leq b$ and $(a, b),(b, c) \in \tau$, then $a+c \leq b+c$.

Lemma 6.12. The ordering \leq of S is compatible with the addition iff \leq is contained in \dashv and this is equivalent to the condition (Z6).

Lemma 6.13. The relations \leq and \dashv coincide iff the conditions $(Z 3),(Z 6)$ and (Z7) are satisfied.

Lemma 6.14. The relations \leq, \leq and \dashv coincide (i.e., S is decent) iff the conditions (Z3), (Z5), (Z5) and (Z7) are satisfied.

Lemma 6.15. The semigroup S is upwards-regular iff $(Z 8)$ is true.
Lemma 6.16. The semigroup S is strongly upwards-regular iff $(\mathrm{Z9})$ is true.
Lemma 6.17. The semigroup S is downwards-regular iff $(Z 10)$ is true.
Lemma 6.18. The semigroup S is (strongly) balanced iff $(Z 11)((Z 12))$ is true.
In the sequel, the semigroup $S(=S(+))$ will be denoted by $\mathscr{Z}(R, \leq, \tau, o)$.

7. A few consequences

Proposition 7.1. Let S be a non-trivial separable upwards-regular zs-semigroup. Put $R=S \backslash\{o\}$, denote by \leq the restriction of the ordering t_{s} to R (see 2.4) and define a relation τ_{R} on R by $(a, b) \in \tau_{R}$ iff $a+b \neq o$. Then:
(i) (R, \leq) is an infinite ordcered set.
(ii) τ_{R} is irreflexive and symmetric.
(iii) If $(a, b) \in \tau_{R}$, then $a+b=a \vee b=\sup (a, b)$ in (R, \leq).
(iv) The conditions (Z0), (Z1), (Z2), (Z3), (Z4), (Z6), (Z7) and (Z8) are satisfied.
(v) The condition (Z5) is satisfied iff S is decent.
(vi) The condition (Z9) is satisfied iff S is strongly upwards-regular.
(vii) The condition ($Z 10$) is satisfied iff S is downwards-regular.
(viii) The condition (Z11) ((Z12)) is satisfied iff S is (strongly) balanced.

Proof. See 2.4, 2.6, 2.7, 4.3 and 6.
Corollary 7.2. The following conditions are equivalent for a groupoid S :
(i) S is a non-trivial separable upwards-regular zs-semigroup.
(ii) $o \in S,|S| \geq 2$ and there exist an ordering \leq and an irreflexive and symmetric relation τ defined on $R=S \backslash\{o\}$ such that the conditions $(Z 0)$, $(Z 1),(Z 2),(Z 3),(Z 4),(Z 6),(Z 7)$ and (Z8) are satisfied and $S=\mathscr{Z}(R, \leq, \tau, o)$ (then \leq is \dashv_{s} restricted to R, τ is τ_{s} restricted to R, $a+b=\sup (a, b)$ for $(a, b) \in \tau$ and $a+b=o$ otherwise).

Proposition 7.3. Let S be a non-trivial downwards-regular zs-semigroup. Put $R=S \backslash\{o\}$, denote by \leq the restriction of the ordering $\leq s$ to R (see 4.2) and define a relation τ_{R} on R by $(a, b) \in \tau_{R}$ iff $a+b \neq o$. Then:
(i) (R, \leq) is an infinite ordered set.
(ii) τ_{R} is irreflexive and symmetric.
(iii) If $(a, b) \in \tau_{R}$ then $a+b=a \vee b=\sup (a, b)$ in (R, \leq).
(iv) The conditions $(\mathrm{Z} 0),(\mathrm{Z} 1),(\mathrm{Z} 2),(\mathrm{Z5}),(\mathrm{Z} 6)$ and $(\mathrm{Z} 10)$ are satisfied.
(v) The condition (Z 3) is satisfied iff S is semiseparable.
(vi) The conditions (Z3) and (Z4) are satisfied iff S is separable.
(vii) The conditions (Z3) and (Z7) are satisfied iff S is decent.
(viii) The condition (Z8) ((Z9)) is satisfied iff S (strongly) upwards-regular.
(ix) The condition (Z 11) ((Z 12)) is satisfied iff S (strongly) balanced.

Proof. See 4.2, 4.3, 4.7 and 6.
Corollary 7.4. The following conditions are equivalent for a groupoid S :
(i) S is a non-trivial downwards-regular zs-semigroup.
(ii) $o \in S,|S| \geq 2$ and there exist an ordering \leq and an irreflexive and symmetric relation τ defined on $R=S \backslash\{o\}$ such that the conditions $(Z 0)$, $(Z 1),(Z 2),(Z 5),(Z 6)$ and $(Z 10)$ are satisfied and $S=\mathscr{Z}(R, \leq, \tau, o)$ (then \leq is \preceq_{s} restricted to R, τ is τ_{s} restricted to $R, a+b=\sup (a, b)$ for $(a, b) \in \tau$ and $a+b=o$ otherwise $)$.

8. Particular examples of zs-semigroups

Example 8.1. Let I be a infinite set, $|I|=\mathfrak{a}$, and \mathfrak{I} the set of infinite subset of I. Define an operation \oplus on \mathfrak{I} by $A \oplus B=A \cup B$ if $A \cap B=\emptyset$ and $A \oplus B=I$ otherwise.

Proposition 8.2. $\mathfrak{I}(=\mathfrak{I}(\oplus))$ is a zs-semigroup, where $o_{\mathfrak{I}}=I$.

Lemma 8.3.

(i) $\mathfrak{H}=\operatorname{Ann}(\mathfrak{I})$ is the set of cofinite subsets of I.
(ii) $\pi_{\mathfrak{I}}=\varrho_{\mathfrak{3}}=(\mathfrak{H} \times \mathfrak{H}) \cup \mathrm{id}_{\mathfrak{3}}$

Corollary 8.4. \mathfrak{J} is not separable.
Lemma 8.5. $A \dashv_{\mathcal{J}} B$ iff either $A \subseteq B$ or B is a cofinite subset of I (i.e., $B \in \mathfrak{A}$).
Lemma 8.6. $A \preceq_{\mathfrak{s}} B$ iff either $A=B$ or $B=I$ or $A \subseteq B$ and $B \backslash A$ is infinite.

Corollary 8.7.

(i) If $A \preceq \mathfrak{\Im} B$, then $A \subseteq B$. The converse is not true.
(ii) If $A \subseteq B$, then $A \dashv_{\mathfrak{J}} B$. The converse is not true.

Proposition 8.8. \mathfrak{J} is upwards-regular but neither strongly upwards-regular nor downwards-regular.

Lemma 8.9.

(i) $(A, B) \in \sigma_{\mathfrak{J}}$ iff either $A \cap B \neq \emptyset$ or $A \cup B=I$.
(ii) $(A, B) \in v_{\mathfrak{J}}$ iff $(A, B) \in \mu_{\mathfrak{\Im}}$ and iff $A \cap B$ is infinite.

Corollary 8.10. $\mu_{\mathfrak{I}}=v_{\mathfrak{J}}$ and \mathfrak{I} is not balanced.
Let \mathfrak{b} be an infinite cardinal such that $\mathfrak{b} \leq \mathfrak{a}$. Put

$$
\mathfrak{I}_{\mathrm{b}}=\{A \in \mathfrak{I} ;|A| \leq \mathfrak{b}\} \cup\{I\}
$$

Proposition 8.11. For every $\mathfrak{b} \leq \mathfrak{a}$ is \mathfrak{I}_{b} a subsemigroup of $\mathfrak{I}^{\text {. }} \mathfrak{I}_{b}$ is also a non-trivial zs-semigroup, upwards-regular, but neither downwards-regular nor balanced.

Proposition 8.12. If $\mathfrak{b}<\mathfrak{a}$, then $\mathfrak{I}_{\mathfrak{b}}$ is separable, strongly upwards-regular and the relations \subseteq and $\dashv_{\mathfrak{I}_{b}}$ coincide. Moreover, the automorphism group Aut $\left(\mathfrak{I}_{\mathfrak{b}}\right)$ of $\mathfrak{J}_{\mathrm{b}}$ operates transitively on $\mathfrak{I}_{\mathrm{b}} \backslash\{I\}$.

Let Ω be a (non-principal) maximal ideal of the Boolean algebra of all subsets of I such that $A \in \mathfrak{\Omega}$ for every $A \subseteq I,|A|<\mathfrak{a}$. Put $\mathfrak{L}=\{B \in \mathfrak{\Omega} ;|B|=\mathfrak{a}\} \cup\{I\}$.

Proposition 8.13. \mathfrak{L} is a subsemigroup of \mathfrak{I} and \mathfrak{L} is a non-trivial separable zs-semigroup. Moreover, the automorphism group $\operatorname{Aut}(\mathfrak{L})$ of \mathfrak{L} operates transitively on $\mathfrak{L} \backslash\{\mathfrak{I}\}=\{B \in \mathfrak{N} ;|B|=\mathfrak{a}\}$.

Proof. Take $A, B \in \mathfrak{L}, A \neq I \neq B$. Then $A^{\prime}=I \backslash A \notin \mathcal{K}, B^{\prime}=I \backslash B \notin \Omega$ and $A^{\prime} \cap B^{\prime} \notin \boldsymbol{\Omega}$. Since $A \cup B \in \mathfrak{L}$, we have $\left|A^{\prime} \cap B^{\prime}\right|=\mathfrak{a}$. Consequently, $A^{\prime} \cap B^{\prime}=$ $=C_{1} \cup C_{2}, C_{1} \cap C_{2}=\emptyset,\left|C_{1}\right|=\mathfrak{a}=\left|C_{2}\right|$. Since $A^{\prime} \cap B^{\prime} \notin \Omega$, we may assume that $C_{1} \notin \mathfrak{\Omega}$. Then $C_{2} \subseteq C_{1}^{\prime} \in \mathfrak{\Omega}$ and $C_{2} \in \boldsymbol{\Omega}$. Further, $D_{1}=A^{\prime} \backslash C_{1} \subseteq C_{1}^{\prime} \in \mathfrak{\Omega}$, $D_{1} \in \mathcal{R}$ and $D_{2}=B^{\prime} \backslash C_{1} \in \boldsymbol{\Omega}$. On the other hand, $C_{2} \subseteq D_{1} \cap D_{2}$, and so $D_{1}, D_{2} \in \mathcal{L}$. Clearly, there is a permutation p of I such that $p(A)=B, p\left(D_{1}\right)=D_{2}$ and $p \mid C_{1}=$ id. Now, define a transformation f of the Boolean algebra of subsets of I by $f(E)=p(E)$, for every $E \subseteq I$. Then f is a permutation of the Boolean algebra and $f(A)=B$. It remains to show that f is an automorphism of $\mathcal{L}(\oplus)$.

If $L \in \mathfrak{L}, \quad L \neq I, \quad$ then $L=L_{1} \cup L_{2} \cup L_{3}, \quad L_{1}=L \cap A, \quad L_{2}=L \cap C_{1}$, $L_{3}=L \cap D_{1}$, and $f(L)=p\left(L_{1}\right) \cup p\left(L_{2}\right) \cup p\left(L_{3}\right) \subseteq B \cup L_{2} \cup D_{2} \in \mathcal{R}$. Thus $f(L)=p(L) \in \mathfrak{L}$. Quite similarly, $f^{-1}(L) \in \mathfrak{L}$. It follows that $f \mid \mathcal{L}$ is a permutation of \mathcal{L}. The rest is clear.

Example 8.14. Define another operation \boxplus on \mathfrak{I} (see example 8.1) by A 田 $B=$ $=A \cup B$ if $A \cap B$ is finite and A 田 $B=I$ otherwise.

Proposition 8.15. $\mathfrak{I}(=\mathfrak{J}(\boxplus))$ is a zs-semigroup, where $o_{\mathfrak{J}}=I$.

Lemma 8.16.

(i) $\mathfrak{A}=\operatorname{Ann}(\mathfrak{I})$ is the set of cofinite subsets of I.
(ii) $\pi_{\mathfrak{J}}=(\mathfrak{H} \times \mathfrak{H}) \cup \mathrm{id}_{\mathfrak{3}}$.
(iii) $(A, B) \in \varrho_{\mathfrak{J}}$ iff $(A \cup B) \backslash(A \cap B)$ is finite.

Corollary 8.17. \mathfrak{I} is not separable.
Lemma 8.18. $A \dashv_{\mathfrak{J}} B$ iff either $A \subseteq B$ or $A \backslash B$ is finite and $B \backslash A$ is infinite or B is a cofinite subset of I (i.e., $B \in \mathfrak{A}$).

Lemma 8.19. $A \preceq_{\mathfrak{J}} B$ iff either $A=B$ or $B=I$ or $A \subseteq B$ and $B \backslash A$ is infinite.

Corollary 8.20 .

(i) If $A \preceq_{\mathfrak{J}} B$, then $A \subseteq B$. The converse is not true.
(ii) If $A \subseteq B$, then $A \dashv_{\mathfrak{J}} B$. The converse is not true.

Proposition 8.21. \mathfrak{I} is neither upwards- nor downwards-regular.

Lemma 8.22.

(i) $(A, B) \in \sigma_{\mathfrak{J}}$ iff either $A \cap B$ is infinite or $A \cup B=I$.
(ii) $(A, B)=v_{\mathfrak{I}}$ iff $(A, B) \in \mu_{\mathfrak{I}}$ and iff $A \cap B$ is infinite.

Corollary 8.23. $v_{\mathfrak{I}}=v_{\mathfrak{J}}$ and \mathfrak{I} is not balanced.
Proposition 8.24. ϱ is a congruence of the semigroup \mathfrak{I}, the factor $\mathfrak{I}=\mathfrak{I} / \varrho$ is a non-trivial zs-semigroup and \mathfrak{J} is separable, upwards-regular, do-wnwards-regular and decent. \mathfrak{I} is neither strongly upwards-regular nor balanced.

Proposition 8.25. If $\mathfrak{a}=\aleph_{0}$, then the automorphism group Aut (\mathfrak{I}) of \mathfrak{I} operates transitively on $\mathfrak{J} \backslash\left\{a_{\mathfrak{3}}\right\}$.

Proposition 8.26. Assume that $\mathfrak{a} \geq \aleph_{1}$ and put $\mathfrak{R}=\left\{A \in \mathfrak{I} ;|A|=\aleph_{0}\right\} \cup\{I\}$. Then
(i) $\mathfrak{\Omega}$ is a subsemigroup of \mathfrak{I}.
(ii) Ω is a non-trivial zs-semigroup.
(iii) If $A, B \in \mathcal{R}$, then $(A, B) \in \pi_{\mathfrak{\Omega}}$ iff $(A, B) \in r$ (i.e., $(A \cup B) \backslash(A \cap B)$ is finite).

Proposition 8.27. Assume that $a \geq \aleph_{1}$ and put $\mathfrak{L}=\mathfrak{\Omega} / \pi_{\boldsymbol{\Omega}}$ (see Proposition 8.26). Then
(i) \mathfrak{Z} is a non-trivial zs-semigroup.
(ii) \mathfrak{L} is separable, strongly upwards-regular, downwards-regular, decent and strongly balanced.
(iii) Aut (\mathfrak{L}) operates transitively on $\mathfrak{L} \backslash\left\{o_{\mathfrak{Q}}\right\}$.

Remark 8.28. The semigroup \mathfrak{L} is identical with the semiroup constructed by means of Example 5.6 and Proposition 6.1.

[^0]: Department of Algebra, Charles University, Sokolovská 83, 18600 Praha 8-Karlín, Czech Republic
 The work is a part of the research project MSM 0021620839 financed by MŠMT and partly supported by the Grant Agency of Charles University, grant \#444/2004/B-MAT/MFF.

