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ACTA UNTVERSITATIS CAROLINAE - MATHEMATICA ET PHYSICA VOL. 48, NO. 1 

Transitive Closures of Binary Relations II. 

VÁCLAV FLAŠKA, JAROSLAV JEŽEK AND TOMÁŠ KEPKA 

Praha 

Received 31. October 2006 

Transitive closures of the covering relation in semilattices are investigated. 
Vyšetřují se tranzitivní uzávěry pokrývající relace v polosvazech. 

This very short note is an immediate continuation of [1]. We therefore refer to 
[1] as for terminology, notation, various remarks, further references, etc. 

1. The covering relation in semilattices 

Throughout the note, let S = S( + ) be a semilattice (i.e., a commutative 
idempotent semigroup). Define a relation a on S by (a, b)eoi if and only if 
a + b = b. 

1.1 Proposition. 
(i) The relation a is a stable (reflexive) ordering of the semilattice. 

(ii) (a, a + b) e a and (b, a + b) e a for all a,beS (in fact, a + b = supa(a, b)). 
(iii) An element ae S is maximal in 5(a) (i.e., a is right cc-isolated) if and only 

if a = Os is an absorbing element of S; then a is the (unique) greatest 
element of S (a), 

(iv) An element ae S is minimal in S(<x) (i.e., a is left oc-isolated) if and only if 
a$(S\ {a}) + 5 (then the set (S\ {a}) + S is a proper ideal of S). 
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(v) An element aeS is the smallest element of S (a) if and only if a = Os is 
a neutral elements of S. 

Proof. It is obvious. • 

1.2 Lemma. 
(i) Every weakly pseudoirreducible finite ^-sequence is pseudoirreducible. 

(ii) Every weakly pseudoirreducible right (left, resp.) directed infinite OL-se-
quence is pseudoirreducible. 

(iii) If there exists no pseudoirreducible right directed infinite ^-sequence then 
oseS. 

Proof. It is obvious (combine (ii), 1.1 (iii) and L5.4(iii)). • 

1.3 Lemma. Let (a, b)eoL and I = Inta (a, b) = {ceS\ (a, c) e a, (c, b) e a}. Then: 
(i) / is a subsemilattice of S and {a,b} <= I. 

(ii) a = 0/ and b = oh 

(iii) a7 = as | I. 

Proof. It is obvious. • 

In the sequel, put P = yfoL and y = rt (ft). Notice that i (y) = t (/?). 

1.4 Proposition. 
(i) p is totally antitransitive. 

(ii) p .= y .= a. 
(iii) p = 0 if and only if either \S\ = 1 or S is infinite and for all a, be S such 

that a + b = b 7-= a there exists at least one ceS with a + c = c # a and 
b + c = b ^ c. 

(iv) y is an ordering of S. 
(v) If (a, b)eoL and Inta (a, b) is finite then (a, b) e y. 

Proof. It is obvious. • 

1.5 Lemma. The following conditions are equivalent for a,b e S: 
(i) (a,b)ep; 
(ii) a + b = b 7-- a and c e {a,b} whenever ce S is such that a + c = c and 

b + c = b. 

Proof. It is obvious. • 

We shall say that semilattice S( + ) is resuscitable if so is the ordering a (i.e., 
a = y). 

1.6 Lemma. Let (a, b)ei(a) be such that there exists no right (left, resp.) 
directed infinite \(a)-sequence (ao,a\,ai,...) ((..., b2,bi,bo), resp.) with ao = a 
(bo = b, resp.) and (at, b)e a (a, ft,) e OL, resp.) for every i > 1. Then there exists at 
least one ce S such that (a, c) e a ((c, b) e OL, resp.) and (c, b) e (I ((a, c) e p, resp.). 

72 



Proof. If (a, b)e P then we put c = a. If (a, b) $ /? then there is ai G S with 
(a ,a i )e i (a) and (ai,ft)ei(a). If (aub)e P then we put c = ai. If (aub)$ p then 
there is ^ e S wit (ai,a2) Gi(a) and (a2,fe) Gi(a). Proceeding similarly further, we 
get our result. • 

1.7 Lemma. Let (a,b)ei(oc) be such that there exists no right (left, resp.) 
directed infinite i(oc)-sequence (ao,ai,a2,...) ((..., bi,b\,bo), resp.) with ao = a 
(bo = b, resp.) and (a,,b) G a ((a,bt) e a, resp.) for every i > 1 and no left (right, 
resp.) directed infinite P-sequence (..., c2,Ci,Co) ((do,di,d2,...), resp.) with Co = b 
(do = a, resp.) and (a, c;) G a ((dj, b) e a, resp.) for every j > 1. Then (a, b) e y. 

Proof. According to 1.6, there is Ci G S such that (a, ci) G a and (ci, Co) G /?, where 
Co = b. If (a, ci) G y then (a, b) G y. If (a, Ci) ̂  y then (a, Ci) G i (a), (a, Ci) £ j5 and, by 
1.6 again, there is c2eS with (a,c2)Ga and (C 2 ,CI)G/?. Proceeding similarly 
further, we get our result. • 

1.8 Corollary. The semillatice S is resuscitable, provided that the following 
two conditions are satisfied: 

(1) no right (left, resp.) directed infinite i(oc)-sequence is right (left, resp.) 
bounded in S (a); 

(2) no left (right, resp.) directed infinite P-sequence is left (right, resp.) bounded 
in S(a); 

1.9 Corollary. The semilattice S is resuscitable, provided that there exist no 
right (left, resp.) directed infinite i(oi)-sequences and no left (right, resp.) directed 
infinite P-sequences. 

1.10 Corollary. The semillatice S is resuscitable, provided that it is finite. 

1.11 Lemma. If (a,b)ey then {a,b} ^ lnty(a,b) = [c\(a,c)ey, (c,b)ey) ^ 
c Inta(a,b). 

Proof It is obvious. • 

1.12 Example. Let A be a non-empty set and 9* the set of subsets of A. Then 
9 (u) is a semilattice, 0 = 0^, A = o^, (B, C) e a if and only i f f i c C , (D, E)eP 
if and only if D ^ E and \E\D\ = 1. This semilattice is resuscitable if and only 
if A is finite. 

2. On when the covering relation is right confluent 
(or weakly semimodular semilatt ices) 

The semilattice S will be called weakly semimodular if d e [b,b + c) whenever 
a,b,c,deS are such that b 7-= c, (a,b)e P, (a,c)e P, b + d = d and b + c = 
= d + c. 
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2.1 Lemma. The following conditions are equivalent: 
(i) S is weakly semimodular; 

(ii) (b,b + c)e fl (and (c,b + c) e ft) whenever a,b,c e S are such that 
(a, b) e P, (a, c) e ft and b =£ c; 

(iii) /? is right confluent. 

Proof. It is obvious. • 

2.2 Lemma. Assume that S is weakly semimodular. If a,b,c e S are such that 
(a, b) ey and (a, c) e /? then (c,b + c) e y and either (b,b + c) G fi or b = b + c 
(and then (c, b) G y). 

Proof. There is nothing to show for a = b. Hence, assume that a # b and let 
(ao,ai,..., am), m > 1, be a ^-sequence with a0 = a and am = b; we will proceed 
by induction on m. 

If ai = c then (c, b + c) = (ai, ft) e 7 and b = b + c. If ai 7-= c then (ai, ai + c) G 
G /?, (c, ai + c, b + c) = (ai + c, ai + c + b) G 7 by induction, so that (c, b + c) G 
G 7. Moreover, either (b, b + c) = (b, b + ai + c) e /? or b = b + ai + c = 
= 6 + c. • 

2.3 Lemma. Assume that S is weakly semimodular. If a,b,c e S are such that 
(a,b)ey annd (a,c)ey then (b,b + c) G 7 and (c,b + c) G 7. 

Proof. If a = b or a = c then there is nothing to show. Hence, assume that 
b # a 7-= c and let (a0,ai,..., aw), m > 1, be a jS-sequence with a0 = a and am = fe. 
By 2.2, (ai, ai + c) G 7, and therefore (b, b + c) = (b + ai, (ft + ai) + c) G 7 by 
induction on m. Quite similarly, (c, b + c) G 7. • 

2.4 Corollary. Tfrhc semilattice S is weakly semimodular then the ordering 7 is 
right strictly confluent. 

2.5 Lemma. Assume that S is weakly semimodular. If (a, b)ey then there exists 
no right directed infinite ^-sequence (ao,ai,a2,...) such that ao = a and (a„fe) G a 
for every i > 1. 

Proof Let, on the contrary, such a /J-sequence exist. If a = b then (b,a\) = 
= (a, ai) G /?, a contradiction with (ai, b) G a. Thus a ^ b and there is a finite 
jS-sequence (bo,bi,b2,...,bm), m > 1, with bo = a and bm = b. If m = 1 then 
(a,b)e P and, since (a,a\)e ft and (ai, fcjea, we get ai = b, and hence a2 = ai, 
a contradiction with (ai, a2) G />. Thus m > 2 and we shall proceed by induction 
on m. 

If ai = b\ then the contradiction follows by induction. On the other hand, if 
ai 7-= b\ then (ai,a + b\)e(5 and (bi,ai -I- b\)e(}; of course, (ai + b\,b)eoi. If 
a2 = ai + bi then we use induction once more. Thus a2 7-= a\ + 61, 
(a2,a2 + b\)efi, (ai + bi, a2 + bi)G/} and (a2 + bi,b)Ga. Proceeding in this 
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way, we get the ^-sequence (b\,a\ + b\,a2 + b\,a^ + b\,...) and we come by 
induction to our final contradiction. • 

2.6 Lemma. Assume that S is weakly semimodular. If (a, b)ey then there exists 
no right directed infinite i(y)-sequence (ao, a\, a2,...) such that ao = a and (a„ b)ea 
for every i > 1. 

Proof Use 2.5 and the fact that i(y) = t(j3). • 

2.7 Lemma. Assume that S is weakly semimodular. If (a, b)ey then: 
(i) T = Inty (a, b) is a subsemilattice of S, a = Or and b = or-

(ii) T is resuscitable. 
(iii) 0LT = 7T = a s | T = ys \ T and f}T = Ps\T. 
(iv) If (a, c)ey and (c, b)e a then ceT (i.e., (c, b) e y). 

Proof. 
(i) If c,d e T then (a,c)ey and (a,d) e y, and so (c,c + d)ey by 2.3. Since 

y is transitive, we get (a, c + d)ey. Quite similarly, (c, b)ey and 
(c,c + d)ey implies (c + d, b) = (c + d, b + c + d) e y and we conclude 
that c + deT. 

(ii) This is easy to see (use 2.3). 
(iii) This is also easy to see (use 2.3). 
(iv) Use 2.3. • 

2.8 Example. Consider the following infinite semilattice Si: 

0 a b\ b2 
bъ . .. bm Ьm+\ bm+2 .. 0 

0 0 a b\ b2 bъ . .. bm Ьm+\ Ьm + 2 •• 0 

a a a 0 0 o . 0 0 0 0 

bi b\ 0 b\ b\ b\ . .. b\ Ь\ b\ .. 0 

Ъг b2 0 b\ b2 b2 . .. b2 b2 
b2 .. 0 

Ъг bъ 
0 b\ b2 bъ . .. bъ bъ 

bъ .. 0 

bm bm 0 b\ b2 bъ . .. ьm bm bm 
0 

Ьm+1 bm+\ 0 b\ b2 bъ . .. bm Ьm+\ bm+\ .. 0 

bm+г Ьm + 2 0 b\ b2 bъ . •• Ьm bm+\ bm+2 .. 0 

0 0 0 0 0 o . 0 0 0 0 

Clearly, Si( + ) is weakly semimodular and /J = {(0,a), (a,o), (b\,o), 
(bi+1, bi)\ | i > 1}. Moreover, (0, o) e y, Intv (o, 0) = [0,a, o], (0, b\) $ y and 
(..., b2,b\,o) is a left bounded left directed infinite /J-sequence. Finally. Si is not 
resuscitable. 
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2.9 Example. Consider the following infinite semilattice S2: 

0 a . .. Ьm Ьm+1 Ь m + 2 •• 0 

0 0 a . • Ьm Ьm+1 Ь m + 2 -. 0 

a a a . 0 0 0 0 

bm bm o . .. Ьm Ьm Ьm 
0 

bm+í bm+i o . .. Ьm Ьm+1 Ьm+1 0 

Ьm + 2 Ьm + 2 o . • Ьm Ьm+1 Ь m + 2 -. 0 

0 0 o . 0 0 0 0 

Clearly, 52 is weakly semimodular and /? = {(0,a),(a,o),(ftI+i,fe,) | i e Z}. More
over, (0,o) e 7, lnty(o,0) = {0,a,o} ^ S2 = lnta(0,o), hence S2 is not resuscitable. 
Finally, S2 contains both left and right (bounded) directed infinite //-sequences. 

2.10 Example. Consider the following five-element semilattice P: 

0 a b c 0 

0 0 a b c 0 

a a a 0 0 0 

b b 0 b c 0 

c c 0 c c 0 

0 0 0 0 0 0 

Clearly, /} = {(0,a),(0,fc),(fe,c),(a,o),(c,o)}, /? is neither right nor left confluent 
and P is not weakly semimodular. 

3. Semimodular semilattices 

The semilattice 5 will be called semimodular if (a 4- c, b + c) e r (/?) whenever 
(a, b) e P and ceS. 

3.1 Lemma. The following conditions are equivalent: 
(i) S is semimodular; 

(ii) d e {a + c,b + c] whenever a,b,c,de S are such that (a,b) e /?, 
a + c^b + c, a + c + d = d and b + c + d = b + c; 

(iii) r (/?) is stable. 

Proof. It is obvious. a 
3.2 Lemma. IfS is semimodular then it is weakly semimodular and y is a stable 

ordering of S. 

Proof. It is obvious. D 
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3.3 Proposition. If the semilattice S is resuscitable (e.g., S is finite) then it is 
semimodular if and only if it is weakly semimodular. 

Proof. Only the converse implication needs a proof. Assume that S is weakly 
semimodular and take a,b,ceS such that (a,b)e/? and a + c 9-= b + c. By 3.2 
and 2.1, the relation /? is right confluent, and so (a + c,b + c)e P follows from 
1.9.5. • 

3.4 Lemma. Assume that S is semimodular. If (a, b) e y, (a, c)eoc and (c, b)eoL 
(i.e., c e Inta (a, b)) then (c, b) e y. 

Proof. We have (c,b) = (a + c,a + b) e y by 3.2. • 

3.5 Lemma. Let (a, c) e P, (c, b) e P, (a, d)eoL and (d, b) e a. 
(i) If S is weakly semimodular then (a, d) e P implies (d, b) e p. 

(ii) If S is semimodular then (a, d)e P if and only if (d, b) e ft. 

Proof. 
(i) We can assume c ^ d. Then (c, c + d)e P, (d,c + d)e ft and, of course, 

(c + d,b)e a. Since (c, b) e p we have c + d = b and (d, b) e p. 
(ii) Assume c 7-= d and (d,b) e P (see (i)). Clearly, a ^ d. If e e S is such that 

(a, e)eoL and (e, d)ecc then either e = a + e = c + e or (e,c + e) = 
= (a + e,c + e)e ft. 

If e = c + e then (c, e) e a, hence (c, d) e a and c = d, since (c, b)e P and 
(d, b)e P, a contradiction. Thus (e, c + e) e p. If c + e = c then (e, c)e P 
and e = a, since (a, e)eoL and (a, c) e p. On the other hand, if c + e 9-= c 
then c + e = b, since (c,c + e)eoc and (c + e,b)e a. Finally, if c + e = b 
then (e, b)e P and e = d, since (e, d)eoc and (d, b) e p. We have proved that 
e e {a,d} and it follows that (a, d)e /?. • 

3.6 Example. The semilattice Si (see 2.8) is weakly semimodular but not 
semimodular. 

4. Strongly modular semilattices 

The semilattice S will be called strongly modular if no subsemilatice of S is 
a copy of P (see 2.10). 

4.1 Proposition. If S is strongly modular then it is semimodular. 

Proof. Using 3.1, let (a,b)e P, a + c ^ b + c, a + c + d = d and 
b + c + d = b + c. We have to show that de{a+ c,b + c}. 

Clearly, (a,b)ea,(a + c,b + c)e OL, (a + c,d) eoL,(d,b + c)eoL and it follows 
easily that T = {a,b,d,a + c,b + c}, is a subsemilattice of S. Moreover, T = P, 
provided that \T\ = 5. Consequently, since S is strongly modular, we get \T\ < 4. 
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First, a + c 7-= b + c and (a, b) e /? implies a =/= b. If a = a + c then b + c = 
= a + b + c = a + b = b, d = a + c + d = a + d, b = b + c = b + c + d = 
= b + d, (a, d) e a, (d, b) e a, and hence d e {a,b} = {a + c,b + c}, since (a, b) e /?. 
Furthermore, if a = b + c (a = d, resp.), then a = b + c = b + c + c = 
= a + c(a = d = a + c + d = a + c + a = a + c, resp.). 

Now, we can assume that a $ {b,a + c, d, b + c}. If b = a + c then b = b + b = 
b + a + c = b + c and a + c = b + c, a contradiction. If b = b + c then 
(a, a + c) e a and (a + c, b) = (a + c, b + c) e a implies a + c = b (we have 
(a, b) e /? and a ^ a + c) and a + c = b + c, a contradiction once more. Further
more, if b = d then b = d = a + c + d = a + c + b = b + c, which was 
already proved to be contradictory. 

Finally, we can assume that a$ {b,d,a + c,b + c}, b^ {a,d,d + c,b + c}, 
d £ {a,fe} and a + c 7-- b + c. Since |T| < 4, we obtain d e {a + c, fe + c} as 
desired. • 

4.2 Example. Let A be a non-empty set and !F the set of non-empty finite 
subsets of A. Then #"(u) is a free semilattice over A,(B,C)ea if and only 
if B g C, (D,E)eP if and only if D £ £ and |£\D| = 1. Moreover, 
J^(u) is semimodular and resuscitable. It is strongly modular if and only if 
\A\ < 3 (if \A\ > 4 then consider the set {{q},!^,a2},{ai, a2? 3̂}? {̂ b 03,^4}, 
{aua2,a3,a4}}). 

4.3 Example. Define an operation 0 on the set N0 of non-negative integers 
by m 0 n = lcm (m,n). Then Mo(0) becomes a semilattice, (m,n)e<x if and 
only if m divides n and (k, I) e P if and only if l/k is a prime number. Clearly, 
No(0) is semimodular and resuscitable. On the other hand, the set {1,4,9, 
18,36} is a subsemilattice isomorphic to P( + ), and so N o ( 0 ) is not strongly 
modular. 

5. On when the covering relation is regular 

5.1 Proposition. If the semilattice S( + ) is weakly semimodular then the 
covering relation /? is regular. 

Proof. Let (a,b) e y and T = lniy(a,b). By 2.7 and 3.3, T is a semimodular and 
resuscitable semilattice. Moreover, a = 0T and b = oT. In particular, b is right 
a^isolated. We have PT = PS\T, ocT = yT= ys\T = rt(pT) and (c,b) e aT. The 
relation pT is right confluent (on T) and pT is regular by 1.8.3. Now, our result 
easily follows. • 

5.2 Example. Put S = P (see 2.10). Then p is not regular. 

5.3 Example. Consider the following six-element semilattice S3 (+): 
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0 a b c d 0 

0 0 a b c d 0 

a a a b 0 0 o 
b b b b 0 0 0 

c c 0 0 c d 0 

d d 0 0 d d 0 

0 0 0 0 0 0 0 

Clearly, /? = {(0,a), (0, c), (a, b), (c, d), (b, o), (d, o)} and /? is regular. On the other 
hand, S3 is not weakly semimodular. 

5.4 Remark. Assume that j8 is regular. If (a,b)ei(y) ( = t(j8)) then all the 
/J-sequences from a to b have the same length, say m > 1, and we put 
disty (a, b) = m. We put also disty (c, c) = 0 for every ceS. 

5.5 Lemma. Assume that /? is regular. If (a, b)ey and (b, c)ey then 
disiy(a,c) = disty(a,b) + disty (b,c). 

Proof It is obvious. • 

6. Further results 

6.1 Lemma. Assume that S is semimodular. If (a, b) e y, (a, c) e a and (c, b)ea 
then (a,c)ey and (c,b)ey. 

Proof. We have (c,b) e y by 3.4 and the covering relation j8 is regular by 5.1. 
Put m = disty(a,b). If m = 0 then a = c = b and there is nothing to prove. If 
m = 1 then (a, b) e /? and eigher c = a or c = b and there is nothing to prove 
again. Consequently, assume that m > 2 and proceed by induction on m. 

There is a //-sequence (a0,a1?..., am) such that a0 = a and am = b. Now, 
(auax + c)e a, (ax + c,b)e a, disty(a1?b) = m — 1 and we get (aua{ + c) e y by 
induction. According to 5.5, m — 1 = dist7(a1,fe) = distr(a1,a1 + c) + disty(a1 + c,b). 
If disty(a1 + c,b) > 1 then disty (aba! + c) < m — 2, disty (a, ax + c) = 1 + 
+ dis^ (al9 a{ + c) < m — 1 and (a, c) e y by induction (we have (c, at + c) e a). 

Now, consider the case disty (a! + c,b) = 0. Then a{ + c = b and we get 
(c,b) = (a0 + c, a{ + c)er(ft). If c = b then (a,c)ey trivially, and hence, let 
(c, b) e P and (a, c) £ 7. Then there is d e S with (a, d) e i (a) and (d, c) e i (a). If 
(a, d) ^ 7 then, according to the preceding part of the proof, we get (d, b) e /J, and 
so d = c, a contradiction. Thus (a, d)ey and we have m = distr (a, b) = 
= dis^ (a, d) + disty (d,b). Since a 7-= d, it follows that disty (d,b) < m — 1, and 
therefore (d, c) e y by induction. Consequently, (a, c) e y, a contradiction. • 

6.2 Lemma. Assume that S is semimodular. If (a, b) e y, (a, c) e a, (c, d) e /? and 
(d, b) e a tften (a, c) e y, (c, d)ey and (d, b) e y. 
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Proof. We have (a, d)ey and (d, b) e y by 6.1. Then (a, c)ey and (c, d) e y by 6.1 
again. • 

6.3 Proposition. Assume tat S (+) is weakly semimodular. Let (a, b)ey and 
T = Inty (a, b). Then: 

(i) T is a subsemilattice of S, a = 0T and b = oT. 
(ii) T is semimodular and resuscitable. 

(iii) fiT = ps | T and ocT = yT = ots \ T = ys \ T. 
(iv) Every non-empty subset A of T contains at least one element that is 

maximal in A (a) and at least one element that is minimal in A (a). 
(v) Every subchain of T(a) is finite and of length at most disty(a,fe). 

(vi) T ^ Inta (a, b) and ceT, provided that (a, c)ey and (c, b) e a. 
(vii) T = Inta (a, b), provided that S is semimodular. 

Proof. 
(i) This is 2.6 (i). 

(ii) T is resuscitable by 2.6 (ii), and hence it is semimodular by 3.3. 
(iii) This is 2.6 (iii). 
(iv) Use 5.1 and 5.5. 
(v) Use 5.1 and 5.5. 

(vi) This is 2.6 (iv). 
(vii) See 6.1. • 

6.4 Proposition. The following conditions are equivalent: 
(i) S is weakly semimodular, no right (left, resp.) directed infinite \((x)-se-

quence is right (left, resp.) bounded in S(a) and no left (right, resp.) 
directed infinite ^-sequence is left (right, resp.) bounded in S(a). 

(ii) S is semimodular and resuscitable. 
(iii) S is weakly semimodular and every right and left bounded subchain ofS(oc) 

is finite. 

Proof, (i) implies (ii). The semilattice S is resuscitable by 1.8, and so it is 
semimodular by 3.3. 

(ii) implies (iii). Let C be a non-empty subchain of S(a) such that there exist 
a,beS with (a,c) e a and (c ,b)ea fr every ce C. Then C c lnta(a,b) = 
= lnty(a,b) and C is finite by 6.3 (ix). 

(iii) implies (i). Every right (left, resp.) directed i (a)-sequence is left (right, 
resp.) bounded in S(a). The rest is clear. • 
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