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VACLAV FLA$KA, JAROSLAV JE_>EK and TOMA§ KEPKA 

Praha 

Received 2nd October 2007 

Transitive closures of the covering relation in lattices are investigated. 
Vyšetřují se tranzitivní uzávěry pokrývači relace ve svazech. 

This extremely short expository note collects a few more or less notoriously 
known results on the covering relation jS in lattices. Special attention is paid to the 
property that any two /J-sequences connecting two given elements are of the same 
length. We refer to [1] and [2] as for terminology, notation, further references, etc. 

1. The covering relation in lattices 

Throughout the note, let L = L( + , ) be a lattice (i.e., both L( + ) and L() are 
semilattices and a (a + b) = a = a + (ab) for all a, b e L). Define a relation a on 
L by (a, b) e a if and only if a + b = b. 

1.1 Proposition. 
(i) The relation a is a stable (reflexive) ordering of the lattice and (a, b)eoL if 

and only if ab = a. 
(ii) (a, a + b) e a, (b, a + b) e OL, (ab, a)e oc and (ab, b) e a for all a, be L. (In 

fact, a + b = supa (a, b) and ab = infa (a, /}).j 
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(iii) An element ae L is maximal in L(a) (i.e., a is right on-isolated) if and only 
if a = 1L is an absorbing element of L( + ) if and only if a is a neutral 
element of L(-). (Then a is the (unique) greatest element of L(a)j 

(iv) An element ae L is minimal in L(a) (i.e., a is left ^-isolated) if and only if 
a = 0Ll5 a neutral element ofL( + ) if and only if a is an absorbing element 
of L(). (Then a is the (unique) smallest element of L(OL).) 

Proof. It is obvious. • 

1.2. Lemma. 
(i) Every weakly pseudoirreducible finite a-sequence is pseudoirreducible. 

(ii) Every weakly pseudoireducible right (left, resp.) directed infinite oc-se-
quence is pseudoirreducible. 

(iii) If there exists no pseudoirreducible right (left, resp.) directed infinite 
oc-sequence then 1L e L (0L e L, resp.). 

Proof. It is obvious. • 

1.3 Lemma. Let (a, b)ea and I = Inta (a, b) = [c e L | (a, c) e a and (c, b) e a}. 
Then: 

(i) / is a sublattice of L and {a,b} .= /. 
(ii) a = 0/ and b = 17. 

(iii) a7 = aL \ I. 

Proof. It is obvious. • 

In the sequel, put /} = >/a and 7 = rt(i^)» s o that P ls the covering relation of 
L and y is its reflexive and transitive closure. Notice that i (y) = t (/}). 

1.4 Proposition. 
(i) P is totally antitransitive. 

(ii) P .= y .= a. 
(iii) y is an ordering of L. 
(iv) If (a, b) e a and Inta (a, b) is finite then (a, b) e y. 

Proof. It is obvious. • 

We say that the lattice L is resuscitable if so is the ordering a (i.e., a = 7). 

1.5 Proposition. The lattice L is resuscitable, provided that the following two 
conditions are satisfied: 

(1) no right (left, resp.) directed infinite i((x)-sequence is right (left, resp.) 
bounded in L(a); 

(2) no left (right, resp.) directed infinite ^-sequence is left (right, resp.) bounded 
in L(a). 

Proof. See II. 1.8. • 

1.6 Corollary. The lattice L is resuscitable, provided that it is finite. 
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1.7 Example. The boolean lattice of all subsets of an infinite set is not 
resuscitable. 

1.8 Example. A chain is resuscitable if and only if it can be embedded into the 
chain of integers (with respect to the usual ordering of integers). 

1.9 Example. Consider the lattice Lx = {l,a0,al,a2,...,b0,bl,b2,...} with 
(x, y) e a if and only if either x = y, or x = a0, or y = 1, or (x, y) = (ah a}) where 
i < f or (x, y) = (ah bj) where i < j). This infinite lattice L{ is resuscitable, while 
its sublattice {l,a0,aha2,...} is not. It follows that the class of resuscitable lattices 
is not closed under sublattices. 

2. On when the covering relation is right/left confluent 
(or weakly semimodular lattices) 

The lattice L is called 
- upwards (downwards, resp.) weakly semimodular if the semilattice L( + ) (L(-), 

resp.) is weakly semimodular; 
- weakly semimodular if it is both upwards and downwards weakly semimodular. 

2.1 Lemma. The lattice L is upwards (downwards, resp.) weakly semimodular 
if and only if the relation (i is right (left, resp.) confluent. 

Proof. SeeII.2.1. D 

2.2 Lemma. Assume that L is upwards (downwards, resp.) weakly semimodu
lar. If a,b,ce L are such that (a,b)ey and (a,c)ey ((b,a)ey and (c,a) e y, resp.) 
then (b,b + c)ey and (c,b + c) e y (be, b)ey and (be, c) e y, resp.). 

Proof. See II.2.3. D 

2.3 Corollary. If L is upwards (downwards, resp.) weakly semimodular then 
the ordering y is right (left, resp.) strictly confluent. 

2.4 Lemma. Assume that L is upwards (downwards, resp.) weakly semimodu
lar. If (a, b)ey then there exists no right (left, resp.) directed infinite \(y)-sequence 
(a0,ax,a2,...) ((..., b2,bub0), resp.) such that a0 = a (b0 = b, resp.) and (ahb)e<x 
((a,b^) e a, resp.) for every i > 1. 

Proof See II.2.6. D 

2.5 Lemma. Assume that L is weakly semimodular. If (a, b)ey then: 
(i) K = lntY(a,b) is a sublattice of L, a = 0K and b = lK. 

(ii) K is resuscitable. 
(iii) If ce Inta (a, b) and either (a, c)ey or (c, b)ey then ceK. 

Proof See II.2.7. D 
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2.6 Example. Consider the lattice L2 with seven elements 0, 1, a, b, c, d, e and 
the covering relation p = {(0,a), (0,b), (a,c), (a,d), (b,d), (b,c), (c, 1), (d, 1), (c, 1)}. 
(A finite lattice is uniquely determined by its covering relation.) Clearly, L2 is 
upwards weakly semimodular but not downwards weakly semimodular. 

2.7 Example. Consider the lattice N with five elements 0, 1, a, b, c and the 
covering relation p = {(0,a), (0, b), (a, 1), (b, c), (c, 1)}. Clearly, N is neither upwards 
nor downwards weakly semimodular. 

3 . Semimodular lattices 

The lattice L is called 
- upwards (downwards, resp.) semimodular if the semilattice L(-l-) (L(). resp.) is 

semimodular; 
- semimodular if it is both upwards and downwards semimodular. 

3.1 Lemma. 
(i) IfL is (upwards, downwards) semimodular then it is (upwards, downwards) 

weakly semimodular. 
(ii) If L is semimodular then y is a stable ordering of L. 

Proof See 77.3.2. D 

3.2 Proposition. Assume that L is resuscitable. Then L is (upwards, down
wards) semimodular if and only if it is (upwards, downwards) weakly semimodular. 

Proof. SeeII.3.3. D 

3.3 Corollary. If L is finite then L is (upwards, downwards) semimodular if 
and only if it is (upwards, downwards) weakly semimodular. 

3.4 Proposition. Assume that L is weakly semimodular. Let (a, b) e y and 
K = Inty(a,b). Then: 

(i) K is a sublattice of L, a = 0K and b = \K. 
(ii) K is semimodular and resuscitable. 

(iii) Every subchain of K (a) is finite and of length at most disty (a, b). 
(iv) K .= Inta (a, b) and ce K, provided that c e Inta (a, b) and either [a, c)ey or 

{c,b)ey. 
(v) If L is upwards or downwards semimodular then K = Inta (a, b). 

Proof. Combine 2.5 and II.6.3. D 

3.5 Proposition. The following four conditions are equivalent: 
(i) L is upwards (downwards, resp.) weakly semimodular, no right directed 

infinite i(oc)-sequence is right bounded in L(a) and no left directed infinite 
P-sequence is left bounded in L(a). 
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(ii) L is upwards (downwards, resp.) weakly semimodular, no left difrected 
infinite \(o)-sequence is left bounded in L(a) and no right directed infinite 
^-sequence is right bounded in L(a). 

(iii) L is upwards (downwards, resp.) semimodular and resuscitable. 
(iv) L is upwards (downwards, resp.) weakly semimodular and every right and 

left bounded subchain of L(a) is finite. 

Proof. SeeII.6.4. • 

3.6 Example. The lattice L2 from 2.6 is upwards semimodular but not down
wards weakly semimodular. 

3.7 Example. Consider the lattice L3 = {0,l,a,bbb2>---} w1th (x,>>)ea if and 
only if either x = y or x = 0 or y = 1 or (x, y) = (bhbj) where i < j . This infinite 
lattice L3 is weakly semimodular but neither upwards nor downwards semimodu
lar. Moreover, (0,1) e y, disty(0,1) = 2 and lnty(0,1) = {0,a, 1} ̂  L3 = lnta(0,1). 

4. Modular lattices 

The lattice L is called modular if no sublattice of L is a copy of the pentagon 
(the lattice N from 2.7). 

4.1 Proposition. If L is modular then it is semimodular. 

Proof. It is obvious. • 

4.2 Proposition. A resuscitable lattice is modular if and only if it is weakly 
semimodular. 

Proof. The direct implication follows from 4.1. Let L be a resuscitable, weakly 
semimodular lattice. By 3.2, L is semimodular. Let x < y stand for (x,y)ei(a) 
and x -< y stand for (x, y) e /$. Suppose that L is not modular, so that is contains 
a subpentagon {o,a, b,c, i} (o it its smallest element, i is the largest, and b < c). 
Choose these five elements in such a way that the interval Int (o,z) has minimal 
possible length. (Since L is resuscitable and semimodular, every interval I of L has 
a finite length n and every maximal chain in I is of length n). 

Suppose o -< b. Then a -< i by the upwards semimodularity, from which we get 
o -< c by the downwards semimodularity, a contradiction. Thus o is not covered 
by b and there exists an element de L with o < d < b. Put e = a + d. By the 
upwards semimodularity we have a -< e\ since a is not covered by i, we get 
a < e < i. Thus b £ e and e is incomparable with both b and c. By the minimality 
of Int(o,/), the elements d,e,b,c,i do not form a subpentagon. Since e + b = i, 
we get ec ^ d. Put / = ec. Thus d < f < e. But then the elements o, a, d, / e form 
a subpentagon of L, a contradiction with the minimality of Int (o, i). • 
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4.3 Corollary. A finite lattice is modular if and only if it is semimodular. 

4.4 Example. Proposition 4.2 cannot be generalized to arbitrary lattices. Let 
L be any infinite lattice such that its covering relation is empty. Then L is 
semimodular. Of course, such a lattice need not to be modular. Thus a semimodular 
lattice is not necessarily modular. 

The lattice L is called 
- upwards (downwards, resp.) strongly modular if the semilattice L( + ) (L(-), 

resp.) is strongly modular; 
- strongly modular if it is both upwards and downwards strongly modular. 

4.5 Example. For every cardinal number K > 0 denote by MK the (unique up 
to isomorphism) lattice of length 2 with K atoms (elements covering the least 
element). Clearly, each MK is a strongly modular lattice. We see that a strongly 
modular lattice is not necessarily distributive. 

4.6 Example. Denote by L4 the lattice with six elements a9 b9 c, d9 e9 f such 
that P = {(a9b)9 (b9c)9 (c,f), (a9d)9 (d9e)9 (b9e)9 (e9f)}. (The product of the 
two-element chain with the three-element chain.) Clearly, L4 is neither downwards 
nor upwards strongly modular. On the other hand, it is distributive. 

4.7 Proposition. The following conditions are equivalent: 
(i) L is upwards strongly modular; 

(ii) Lis downwards strongly modular; 
(iii) L is strongly modular; 
(iv) neither N nor L4 can be embedded into L. 

Proof By 4.6, each of the first three conditions implies (iv). Thus it is sufficient 
to prove that (iv) implies (i). Let L be a modular lattice not containing a sublattice 
isomorphic with L4 and suppose that L is not upwards strongly modular, so that it 
contains four distinct elements a9b9c9i such that a is incomparable with 
b9 i = a + b and b < c < i. If ac < i then these four elements together with ac 
form a subpentagon, a contradiction. Thus ac is incomparable with b. Put d = ac 
and e = ab = db\ we have e < d < a < i. Also, put f = d + b9 so that 
b < f < c < i. It can be easily checked that the elements e9 d9 a9 b9 f i. It can be 
easily checked that the elements e9 d9 a9 b9 f i form a sublattice isomorphic with L4, 
a contradiction. • 

4.8 Example. For two finite lattices P and Q we define a lattice L = P © Q, 
called their glued ordinal sum, as follows. Wew can assume that 
P n Q = {lp} = {Ob}- I n t h a t casde put L = P u Q and <xL = OLP U OLQ U (P X Q). 
Similarly, we can define R{ © ... © Rn for any finite nonempty sequence 
of lattices Rl9..., Rn. It follows from 4.7 that a finite lattice is strongly modular 
if and only if it can be expressed as the glued ordinal sum of a finite sequence 
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of finite lattices, each of which is either a chain or isomorphic to M„ for some 
n > 2. 

5. On when the covering relation is regular 

5.1 Proposition. If L is upwards or downwards weakly semimodular then its 
covering relation jS is regular. 

Proof. See II.5.1. • 
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