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Praha 

Received 2nd October 2007 

Transitive closures of the covering relation in lattices are investigated. 
Vyšetřují se tranzitivní uzávěry pokrývači relace ve svazech. 

This extremely short expository note collects a few more or less notoriously 
known results on the covering relation jS in lattices. Special attention is paid to the 
property that any two /J-sequences connecting two given elements are of the same 
length. We refer to [1] and [2] as for terminology, notation, further references, etc. 

1. The covering relation in lattices 

Throughout the note, let L = L( + , ) be a lattice (i.e., both L( + ) and L() are 
semilattices and a (a + b) = a = a + (ab) for all a, b e L). Define a relation a on 
L by (a, b) e a if and only if a + b = b. 

1.1 Proposition. 
(i) The relation a is a stable (reflexive) ordering of the lattice and (a, b)eoL if 

and only if ab = a. 
(ii) (a, a + b) e a, (b, a + b) e OL, (ab, a)e oc and (ab, b) e a for all a, be L. (In 

fact, a + b = supa (a, b) and ab = infa (a, /}).j 
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(iii) An element ae L is maximal in L(a) (i.e., a is right on-isolated) if and only 
if a = 1L is an absorbing element of L( + ) if and only if a is a neutral 
element of L(-). (Then a is the (unique) greatest element of L(a)j 

(iv) An element ae L is minimal in L(a) (i.e., a is left ^-isolated) if and only if 
a = 0Ll5 a neutral element ofL( + ) if and only if a is an absorbing element 
of L(). (Then a is the (unique) smallest element of L(OL).) 

Proof. It is obvious. • 

1.2. Lemma. 
(i) Every weakly pseudoirreducible finite a-sequence is pseudoirreducible. 

(ii) Every weakly pseudoireducible right (left, resp.) directed infinite oc-se-
quence is pseudoirreducible. 

(iii) If there exists no pseudoirreducible right (left, resp.) directed infinite 
oc-sequence then 1L e L (0L e L, resp.). 

Proof. It is obvious. • 

1.3 Lemma. Let (a, b)ea and I = Inta (a, b) = [c e L | (a, c) e a and (c, b) e a}. 
Then: 

(i) / is a sublattice of L and {a,b} .= /. 
(ii) a = 0/ and b = 17. 

(iii) a7 = aL \ I. 

Proof. It is obvious. • 

In the sequel, put /} = >/a and 7 = rt(i^)» s o that P ls the covering relation of 
L and y is its reflexive and transitive closure. Notice that i (y) = t (/}). 

1.4 Proposition. 
(i) P is totally antitransitive. 

(ii) P .= y .= a. 
(iii) y is an ordering of L. 
(iv) If (a, b) e a and Inta (a, b) is finite then (a, b) e y. 

Proof. It is obvious. • 

We say that the lattice L is resuscitable if so is the ordering a (i.e., a = 7). 

1.5 Proposition. The lattice L is resuscitable, provided that the following two 
conditions are satisfied: 

(1) no right (left, resp.) directed infinite i((x)-sequence is right (left, resp.) 
bounded in L(a); 

(2) no left (right, resp.) directed infinite ^-sequence is left (right, resp.) bounded 
in L(a). 

Proof. See II. 1.8. • 

1.6 Corollary. The lattice L is resuscitable, provided that it is finite. 
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1.7 Example. The boolean lattice of all subsets of an infinite set is not 
resuscitable. 

1.8 Example. A chain is resuscitable if and only if it can be embedded into the 
chain of integers (with respect to the usual ordering of integers). 

1.9 Example. Consider the lattice Lx = {l,a0,al,a2,...,b0,bl,b2,...} with 
(x, y) e a if and only if either x = y, or x = a0, or y = 1, or (x, y) = (ah a}) where 
i < f or (x, y) = (ah bj) where i < j). This infinite lattice L{ is resuscitable, while 
its sublattice {l,a0,aha2,...} is not. It follows that the class of resuscitable lattices 
is not closed under sublattices. 

2. On when the covering relation is right/left confluent 
(or weakly semimodular lattices) 

The lattice L is called 
- upwards (downwards, resp.) weakly semimodular if the semilattice L( + ) (L(-), 

resp.) is weakly semimodular; 
- weakly semimodular if it is both upwards and downwards weakly semimodular. 

2.1 Lemma. The lattice L is upwards (downwards, resp.) weakly semimodular 
if and only if the relation (i is right (left, resp.) confluent. 

Proof. SeeII.2.1. D 

2.2 Lemma. Assume that L is upwards (downwards, resp.) weakly semimodu
lar. If a,b,ce L are such that (a,b)ey and (a,c)ey ((b,a)ey and (c,a) e y, resp.) 
then (b,b + c)ey and (c,b + c) e y (be, b)ey and (be, c) e y, resp.). 

Proof. See II.2.3. D 

2.3 Corollary. If L is upwards (downwards, resp.) weakly semimodular then 
the ordering y is right (left, resp.) strictly confluent. 

2.4 Lemma. Assume that L is upwards (downwards, resp.) weakly semimodu
lar. If (a, b)ey then there exists no right (left, resp.) directed infinite \(y)-sequence 
(a0,ax,a2,...) ((..., b2,bub0), resp.) such that a0 = a (b0 = b, resp.) and (ahb)e<x 
((a,b^) e a, resp.) for every i > 1. 

Proof See II.2.6. D 

2.5 Lemma. Assume that L is weakly semimodular. If (a, b)ey then: 
(i) K = lntY(a,b) is a sublattice of L, a = 0K and b = lK. 

(ii) K is resuscitable. 
(iii) If ce Inta (a, b) and either (a, c)ey or (c, b)ey then ceK. 

Proof See II.2.7. D 
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2.6 Example. Consider the lattice L2 with seven elements 0, 1, a, b, c, d, e and 
the covering relation p = {(0,a), (0,b), (a,c), (a,d), (b,d), (b,c), (c, 1), (d, 1), (c, 1)}. 
(A finite lattice is uniquely determined by its covering relation.) Clearly, L2 is 
upwards weakly semimodular but not downwards weakly semimodular. 

2.7 Example. Consider the lattice N with five elements 0, 1, a, b, c and the 
covering relation p = {(0,a), (0, b), (a, 1), (b, c), (c, 1)}. Clearly, N is neither upwards 
nor downwards weakly semimodular. 

3 . Semimodular lattices 

The lattice L is called 
- upwards (downwards, resp.) semimodular if the semilattice L(-l-) (L(). resp.) is 

semimodular; 
- semimodular if it is both upwards and downwards semimodular. 

3.1 Lemma. 
(i) IfL is (upwards, downwards) semimodular then it is (upwards, downwards) 

weakly semimodular. 
(ii) If L is semimodular then y is a stable ordering of L. 

Proof See 77.3.2. D 

3.2 Proposition. Assume that L is resuscitable. Then L is (upwards, down
wards) semimodular if and only if it is (upwards, downwards) weakly semimodular. 

Proof. SeeII.3.3. D 

3.3 Corollary. If L is finite then L is (upwards, downwards) semimodular if 
and only if it is (upwards, downwards) weakly semimodular. 

3.4 Proposition. Assume that L is weakly semimodular. Let (a, b) e y and 
K = Inty(a,b). Then: 

(i) K is a sublattice of L, a = 0K and b = \K. 
(ii) K is semimodular and resuscitable. 

(iii) Every subchain of K (a) is finite and of length at most disty (a, b). 
(iv) K .= Inta (a, b) and ce K, provided that c e Inta (a, b) and either [a, c)ey or 

{c,b)ey. 
(v) If L is upwards or downwards semimodular then K = Inta (a, b). 

Proof. Combine 2.5 and II.6.3. D 

3.5 Proposition. The following four conditions are equivalent: 
(i) L is upwards (downwards, resp.) weakly semimodular, no right directed 

infinite i(oc)-sequence is right bounded in L(a) and no left directed infinite 
P-sequence is left bounded in L(a). 
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(ii) L is upwards (downwards, resp.) weakly semimodular, no left difrected 
infinite \(o)-sequence is left bounded in L(a) and no right directed infinite 
^-sequence is right bounded in L(a). 

(iii) L is upwards (downwards, resp.) semimodular and resuscitable. 
(iv) L is upwards (downwards, resp.) weakly semimodular and every right and 

left bounded subchain of L(a) is finite. 

Proof. SeeII.6.4. • 

3.6 Example. The lattice L2 from 2.6 is upwards semimodular but not down
wards weakly semimodular. 

3.7 Example. Consider the lattice L3 = {0,l,a,bbb2>---} w1th (x,>>)ea if and 
only if either x = y or x = 0 or y = 1 or (x, y) = (bhbj) where i < j . This infinite 
lattice L3 is weakly semimodular but neither upwards nor downwards semimodu
lar. Moreover, (0,1) e y, disty(0,1) = 2 and lnty(0,1) = {0,a, 1} ̂  L3 = lnta(0,1). 

4. Modular lattices 

The lattice L is called modular if no sublattice of L is a copy of the pentagon 
(the lattice N from 2.7). 

4.1 Proposition. If L is modular then it is semimodular. 

Proof. It is obvious. • 

4.2 Proposition. A resuscitable lattice is modular if and only if it is weakly 
semimodular. 

Proof. The direct implication follows from 4.1. Let L be a resuscitable, weakly 
semimodular lattice. By 3.2, L is semimodular. Let x < y stand for (x,y)ei(a) 
and x -< y stand for (x, y) e /$. Suppose that L is not modular, so that is contains 
a subpentagon {o,a, b,c, i} (o it its smallest element, i is the largest, and b < c). 
Choose these five elements in such a way that the interval Int (o,z) has minimal 
possible length. (Since L is resuscitable and semimodular, every interval I of L has 
a finite length n and every maximal chain in I is of length n). 

Suppose o -< b. Then a -< i by the upwards semimodularity, from which we get 
o -< c by the downwards semimodularity, a contradiction. Thus o is not covered 
by b and there exists an element de L with o < d < b. Put e = a + d. By the 
upwards semimodularity we have a -< e\ since a is not covered by i, we get 
a < e < i. Thus b £ e and e is incomparable with both b and c. By the minimality 
of Int(o,/), the elements d,e,b,c,i do not form a subpentagon. Since e + b = i, 
we get ec ^ d. Put / = ec. Thus d < f < e. But then the elements o, a, d, / e form 
a subpentagon of L, a contradiction with the minimality of Int (o, i). • 
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4.3 Corollary. A finite lattice is modular if and only if it is semimodular. 

4.4 Example. Proposition 4.2 cannot be generalized to arbitrary lattices. Let 
L be any infinite lattice such that its covering relation is empty. Then L is 
semimodular. Of course, such a lattice need not to be modular. Thus a semimodular 
lattice is not necessarily modular. 

The lattice L is called 
- upwards (downwards, resp.) strongly modular if the semilattice L( + ) (L(-), 

resp.) is strongly modular; 
- strongly modular if it is both upwards and downwards strongly modular. 

4.5 Example. For every cardinal number K > 0 denote by MK the (unique up 
to isomorphism) lattice of length 2 with K atoms (elements covering the least 
element). Clearly, each MK is a strongly modular lattice. We see that a strongly 
modular lattice is not necessarily distributive. 

4.6 Example. Denote by L4 the lattice with six elements a9 b9 c, d9 e9 f such 
that P = {(a9b)9 (b9c)9 (c,f), (a9d)9 (d9e)9 (b9e)9 (e9f)}. (The product of the 
two-element chain with the three-element chain.) Clearly, L4 is neither downwards 
nor upwards strongly modular. On the other hand, it is distributive. 

4.7 Proposition. The following conditions are equivalent: 
(i) L is upwards strongly modular; 

(ii) Lis downwards strongly modular; 
(iii) L is strongly modular; 
(iv) neither N nor L4 can be embedded into L. 

Proof By 4.6, each of the first three conditions implies (iv). Thus it is sufficient 
to prove that (iv) implies (i). Let L be a modular lattice not containing a sublattice 
isomorphic with L4 and suppose that L is not upwards strongly modular, so that it 
contains four distinct elements a9b9c9i such that a is incomparable with 
b9 i = a + b and b < c < i. If ac < i then these four elements together with ac 
form a subpentagon, a contradiction. Thus ac is incomparable with b. Put d = ac 
and e = ab = db\ we have e < d < a < i. Also, put f = d + b9 so that 
b < f < c < i. It can be easily checked that the elements e9 d9 a9 b9 f i. It can be 
easily checked that the elements e9 d9 a9 b9 f i form a sublattice isomorphic with L4, 
a contradiction. • 

4.8 Example. For two finite lattices P and Q we define a lattice L = P © Q, 
called their glued ordinal sum, as follows. Wew can assume that 
P n Q = {lp} = {Ob}- I n t h a t casde put L = P u Q and <xL = OLP U OLQ U (P X Q). 
Similarly, we can define R{ © ... © Rn for any finite nonempty sequence 
of lattices Rl9..., Rn. It follows from 4.7 that a finite lattice is strongly modular 
if and only if it can be expressed as the glued ordinal sum of a finite sequence 
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of finite lattices, each of which is either a chain or isomorphic to M„ for some 
n > 2. 

5. On when the covering relation is regular 

5.1 Proposition. If L is upwards or downwards weakly semimodular then its 
covering relation jS is regular. 

Proof. See II.5.1. • 
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