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2008 ACTA UNIVERSITATIS CAROLINAE - MATHEMATICA ET PHYSICA VOL. 49, NO. 1 

Commutative Radical Rings II 

TOMAS KEPKA and PETR NfiMEC 

Praha 

Received 4th October 2007 

This paper, which is a continuation of [8], deals with further properties of commutative 
radical rings (i.e., rings equal to their Jacobson radical). In particular, radical rings whose 
additive and/or adjoint groups have finite torsionfree or Priifer rank (or are minimax) are 
investigated. 

0. Introduction 

This paper is the second part of a comprehensive treatment concerning com
mutative radical rings, i.e., rings (generally without unit) which can arise as 
Jacobson radical of some (unitary) ring. As a tool, the adjoint (or circle) semigroup 
of a ring R is used, where the operation is given by a o b = a + b + ab for all 
a,b e R. All the notions and notation are the same as in [8] which is the first part 
of this treatment. When referring to result from [8], we write e.g. 1.7.22 for 
[8,7.22]. 
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1. Radical rings whose additive and/or 
adjoint groups have finite torsionfree rank 

1.1 Remark. An abelian group G is said to have torsionfree rank at most n, 
n being a non-negative integer, if G has an (at most) n-generated subgroup A such 
that G/A is torsion; we denote the fact by rnkTf(G) < n and, moreover, we put 
rnkTf(G) = n if rnkTf(G) < n and n = min {k| rnkTf(G) < k}. If G has not finite 
torsionfree rank then we say that G has infinite torsionfree rank. 

(i) rnkTf (G) = 0 if and only if G is torsion, 
(ii) If H is a subgroup of G then rakTf (G) is finite if and only if both rnkTf(if) 

and rnkTf(G/H) are so. 
(iii) rnkTf (G) = n > 0 if and only if G has a free (abelian) subgroup F of rank 

n such that G/F is torsion, 
(iv) If H is a subgroup of G such that neither H nor G/H is torsion and if 

rnkTf(G) = n then 1 < rnkTf(H) < n and 1 < rnkTf (G/H) < n. 

1.2 Example. Consider the radical domain R constructed in I.9.2(iii). Then 
R( + ) is torsionfree and rnkTf(/?( + )) = 1. On the other hand, R(o) ~ Z2( + ) x 
x Z( + )(w) for q = 2 and R(o) ~ Z( + )(w) for q > 3. Thus R(o) has infinite 

torsionfree rank. 

1.3 Proposition. Let R be a nilpotent ring. Then the additive group R (+) has 
finite torsionfree rank if and only if the same is true for the adjoint group R(o). 

Proof. Use 1.7.21. • 

1.4 Proposition. Let R be a nil-ring such that rnkTf (!?( + )) is finite. Then 
rnkTf(i?(o)) = rnkv(R( + )) is finite. 

Proof. We proceed by induction on m = rnkTf (/?( + )). If m = 0 then both 
/?( + ) and R(o) are torsion (1.7.22), and so rnkTf(/?(o)) = 0. Therefore, assume 
that m > 1. Then T ^ R, T being the torsion part of i?( + ), both groups T( + ) 
and T(o) are torsion and S = R/T is a nil-ring with rnkTf(S( + )) = m. If S2 = 0 
then S( + ) = S(o) and rnkTf(i?(o)) = rnkTf(S(o)) = rnkTf(S( + )) = m. Now, as
sume that S2 T-= 0. Since S is a nil-ring, it is not a domain and it follows from 1.1.21 
that S has a non-zero ideal K such that the additive group (S/K)( + ) is not torsion. 
In particular, K ?- S and we consider the factor-ring P = S/K. We have 
m = k + /, where k = rnkTf(K( + )) and / = rnkTf(P( + )). Using the fact that 
none of the groups K( + \ -°( + ) is torsion and then the induction hypothesis, 
we get rnkTf(K(o)) = k > 1 and rnkTf(P(o)) = / > 1. Thus rnkTf(K(o)) = 
= rnkTf(S(o)) = k + / = m. • 

1.5 Proposition. The following conditions are equivalent for a ring R: 
(i) R is a radical ring and the adjoint group R (o) is torsion. 

(ii) R is a nil-ring and the additive group P( + ) is torsion. 
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Proof, (i) => (ii). If 0 ^ a e R and S is the subring generated by a then S is 
a radical ring (1.7.5) and S is nilpotent by 1.10.4. Consequently, aeJr(R) and /? is 
a nil-ring. By 1.7.22, /?( + ) is torsion. 

(ii) => (i). See 1.7.22. • 

1.6 Proposition. Let R be a radical ring such that rnkTf(/?(o)) is finite. Then 
R is a nil-ring. 

Proof. Assume, on the contrary, that ^V(/?) # /?. Then in view of 1.1.8, we may 
assume that R is a domain and we denote by F the field of fractions of /?, by P the 
prime subfield of F and by X a transcendent basis of F over P. Now, F is algebraic 
over Q = P(X) and Rx = R n Q # 0. By 1.7.24, /?! is a radical domain and, of 
course, R\(o) has finite torsionfree rank. On the other hand, R\(o) is isomorphic 
(via a \—• a + 1) to a subgroup of Q* (the multiplicative group of non-zero 
elements of Q) and the latter group is isomorphic of the product P* x A, A being 
a free abelian group. If T denotes the torsion part of R{ (o) then F(o) is isomorphic 
to a subgroup of P*, and consequently T(o) is a finite group. Furthermore, 
Rx(o)/T(o) is isomorphic to a subgroup of Z( + )(w) x A. Thus Rx(o)/T(o) is 
a free abelian group of finite torsionfree rank and it means that the group is finitely 
generated. We conclude that R\(o) is finitely generated. But then R{ is nilpotent 
by 1.10.5, a contradiction. • 

1.7 Proposition. Let R be a radical ring such that mkTf(R(o)) is finite. Then 
rnkTf (/?( + )) is finite. 

Proof We proceed by induction on m = rnkTf(/?(o)). If m = 0 then R(o) is 
torsion, and hence i?( + ) is torsion by 1.5. Now, assume that m > 1 and consider 
an ideal I of R maximal with respect to the property that /(o) is torsion. Then 
/ ?- /?, rnkTf (/( + )) = 0 = rnkTf(/(o)), S = R/I is a radical ring and rnkTf(S(o)) = 
= m. If S2 = 0 then rnkTf (/?( + )) = rnkTf(S( + )) = rnkTf(S(o)) = m. Consequen
tly, assume that S2 ^ 0. By 1.6, S is a nil-ring, and so S is not a domain. Moreover, 
if T is the ideal of R such that I ^ T and T// is the torsion part of S( + ) then 
(T/I)(o) is torsion (1.5), and hence T(o) is torsion and T = I due to the maximaliy 
of /. We have shown that S( + ) is torsionfree, and therefore (S/K)( + ) is not torsion 
for a non-zero ideal K of S (1.1.21). Now, both K(o) and (S/K)(o) are not torsion 
and it follows easily that both ranks rnkTf(K(o)) and rnkTf((S/K)(o)) are lesser than 
m = rnkTf(S(o)). By induction, the ranks rnkTf(K( + )) and rnkTf((S/K)( + )) are 
finite and then the same is true for rnkTf(S( + )) = rnkTf (/?( + )). • 

1.8 Theorem. The following conditions are equivalent for a ring R: 
(i) R is a radical ring and the adjoint group R(o) has finite torsionfree rank. 

(ii) R is a nil-ring and the additive group /?( + ) has finite torsionfree rank. 
Moreover, if these conditions are satisfied then rnkTf (/?( + )) = rnkTf(/?(o)). 

Proof. Combine 1.4, 1.6 and 1.7. • 
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1.9 Corollary. Let R be a radical ring such that either R is not nil or at least 
one of the groups -R( + ) and R(o) has infinite torsionfree rank. Then the free 
(abelian) group Z( + ) ^ of infinite countable rank is isomorphic to a subgroup of 
the adjoint group R(o). • 

1.10 Example. Let S = Z2 [x] be the polynomial ring in one indeterminate 
x over the two-element field Z2 and let Q = Z2 (x) be the field of fractions of S. 
Then S is a principal ideal domain, we take an irreducible polynomial qeS and 
we put R = {fg~x\feSq, qeS\Sq) (1.9.2(H)). Then R is a radical domain, 
char(i?) = 2, -R( + ) is a (torsion) 2-elementary group and R(o) ~ Z(-\-fo) is 
a torsionfree group (of infinite torsionfree rank). 

1.11 Example. Consider the radical ring R constructed in 1.9.6(H), where 
p = 2. Then R( + ) ~ i?(o) are 2-elementary groups, (0: R) = 0, R2 = R and 
a2 = 0 for every a e R. 

1.12 Example. Consider the radical ring R constructed in 1.9.3(H), where 
F = Zp, p being a prime. Then R is a radical domain, R2 = R and -R( + ) is 
a p-elementary group (the adjoint group R (o) has infinite torsionfree rank). 

1.13 Remark, (cf. 1.11, 1.12) Let R be a radical ring such that R2 = R. 
(i) If -R(o) has finite torsionfree rank then both R(o) and -R( + ) are torsion 

(see 3.9). 
(ii) If /?( + ) has finite torsionfree rank then /?( + ) is torsion (see 3.9). 

1.14 Remark. Let R be a radical domain. By 1.8, R(o) has infinite torsionfree 
rank. If rnkTf(i?( + )) is finite then either rnkTf(JR( + )) = 0 and i?( + ) is an 
elementary p-group or rnkp.. (/?( + )) = rnkTf (-R( + )) is finite and /?( + )) is torsion
free (see 3.6). 

1.15 Propositin. Let R be a nil-ring such that the additive group -R( + ) is 
torsionfree and has finite torsionfree rank m = rnkTf (/?( + )). Then R is nilpotent 
of index at most m + 1 (i.e., Rm+{ = 0). 

Proof. We proceed by induction on m. Let a e R and / = (0: a). Since R is nil, 
we have J ^ 0 and rnkTf(/( + )) > 1. If I = R then Ra = 0. If I ^ R then 
S = R/I is a nil-ring and, since R (+) is torsionfree, the same is true for S (+). 
Moreover, rnkTf(S( + )) < m, Sm = 0 by induction, and hence Rm ^ /. Thus 
Rma = 0. • 

1.16 Corollary. Let R be a nil-ring such that the additive group R( + ) has 
finite torsionfree rank m = rnkTf(JR( + )). Let T be the torsion part of R(-\-). Then 
Rm+X <=z T. In particular\ R is nilpotent if and only if T is so. • 

1.17 Corollary. Let Rbe a radical ring such that the additive group -R( + ) has 
finite torsionfree rank m = rnkTf (!?( + )). Let T be the torsion part of JV (R) (+). 
Then J / '(i?)m+1 != T and, moreover: 
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(i) / / T = 0 then JT{R)m+l = 0. 
(ii) If{R/^ (#))( + ) is not torsion then JT{R)m c T. 
(iii) //(/?/T)( + ) w torsionfree and Jf{R)^R then J/'{R)m c T. 
(iv) / / T = 0 and 1 ? / ^ (/?))( + ) w not fors/on t/ien ^ {R)m = 0. 
(v) /?( + ) is torsionfree and JT{R)^ R then JT{R)m = 0. • 

2. Radical rings whose adjoint groups have finite priifer rank 

2.1 Remark. A (possibly non-commutative) group G is said to have Priifer 
rank at most n, n being a non-negative integer, if every finitely generated subgroup 
of G is (at most) n-generated; we denote this fact by rnkpr(G) < n and, moreover, 
we put rakpr(G) = n if G contains at least one finitely generated subgroup that is 
not {n — l)-generated (for n > 1). If G has not finite Priifer rank (i.e., for every 
n > 0 there exists a finitely generated subgroup that is not generated by n ele
ments) then we say that G has infinite Priifer rank. 

(i) rnkpr (G) = 0 if and only if G is trivial. 
Now, assume that G is abelian. 
(ii) If H is a subgroup of G and rnkpr(G) = n then rnkpr(H) < n and 

rakpr(G/H) < n. 
(iii) If H is a subgroup of G then rnkpr (G) is finite if and only if both ranks 

rnkpr(/f) and mkPT{G/H) are finite. If so, then rnkpr(G) < rnkpr(-r7) + 
+ rnkpr {G/H). 

(iv) rakTf(G) < rnkpr(G), and if G is torsionfree then rnkTf(G) = rnkpr(G). 
(v) If T denotes the torsion part of G then rakpr(G) = rakpr(T) + mkPr{G/T). 

Moreover, rakpr(G) = n > 0 if and only if (rakTf(G) = rnkTf (G/T) = 
=-)rnkpr(G/r) = m < n, |Socp(T)| = pkp, 0 < kp < n for every prime 
p and n = m + max {kp). 

(vi) If G is a reduced p-group and rakpr(G) is finite then G is finite. 

2.2 Lemma. Let R be a ring nilpotent of index k > 2. 
(i) //rnkpr (/?( + )) = r is finite then rnkpr(R(0)) < {k - l)r. 

(ii) If rnkpr(/?(o)) = s is finite then rnkpr (/?( + )) < {k — l)s. 

Proof. We proceed by induction on k. If k = 2 then R {+) = R (o) and there 
is nothing to prove. If k > 3 then K = (0 : R) ?- -R, S = R/K is nilpotent of index 
k - 1, K( + ) = K(o), K( + )/K( + ) = S( + ) and _R(o)/K(o) = S(o). Now, if 
r is finite then rakpr(/?(o)) < rnkpr(S(o)) + rakpr(K(o)) < {k - 2)rnkpr(S( + )) + 
+ rnkpr(K( + )) < <{k-l)r. Similarly, if s is finite. • 

2.3 Corollary. Let R be a nilpotent ring. Then mkPr{R{ + )) is finite if and only 
if nik,^ {R (o)) is finite. • 

2.4 Let R be a finite nil-ring such that /?( + ) is p-elementary for a prime p, 
\R\ = pr, r > 1, r = rnkpr (/?( + )). Further, let s = rnkpr (i? (o)), s > 1, k be the 
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nilpotence index of R, k > 2, and / be the smallest positive integer such that a1 = 0 
for every ae R. 

2.4.1 Lemma. 2 < / < f c < r + l and 1 < s < r. 

Proof. Obvious. • 

Given ae R and t > 1, let a^ be the f-th power a o a O ... o a of the elemment 
a in the adjoint group R(o). Let m be the smallest positive intger such that 
a<pm> = 0 for every ae R. 

2.4.2 Lemma. 1 < m < r ad r < sm. 

Proof. Obvious. • 

2.4.3 Lemma. pm~l < I - 1. 

Proof. Te inequality is clear for m = 1 and we assume that m > 2. There exists 
ae R such that a<pm~l> # 0 and, using 1.2.3 and the fact that R( + ) is p-elemen-
tary, we see that a<pm~l> = apm~\ Thus apm~l ?- 0 and pm~l < I. • 

2.4.4 Lemma. 1 < pm~l <l-l<k-l<r<sm. 

Proof. Combine the preceding three lemmas. • 

2.4.5 Lemma, m < s + 2. 

Proof. Assume, on the contrary, that s + 2 < m. Then 4 < m, s < m — 2 and 
sm < m(m — 2). But m(m — 2) < 2m~l < pm~\ and hence sm < pm~\ a contra
diction with 2.4.4. • 

2.4.6 Lemma, s < r < s(s + 2). 

Proof. By 2.4.1, 2.4.4 and 2.4.5. • 

2.5 Lemma. Let R be a finite nil-ring such that R( + ) is a p-groupfor a prime 
p. Ifr = rnkPr(i?( + )) and s = rnkPr(i?(o)) then r < s(s + 2). 

Proof. Put K = {ae R \pa = 0}. Then K is a non = zero ideal of R and 
rnkPr(K( + )) = r. By 2.4.6, we have r < s{(s{ + 2) < s(s + 2), where s{ = 
= rnkpriKjo)) < s. • 

2.6 Lemma. Let R be a radical ring such that R (o) is a p-group for a prime 
p and mkPr(R(o)) = s is finite. Then mkPr(R( + )) < s(s + 2) is finite. 

Proof. By 1.5 and 1.6, R is a nil-ring and R( + ) is torsion. Further, it follows 
from 1.7.22 that /?( + ) is a p-group and we put K = {ae R \ pa = 0}. Then K is 
a non-zero ideal of R and K( + ) is a p-elementary. If K is finite then, by 2.5, 
rnkp^K +)) = rnkPr(K( + )) < s / ^ + 2) < (s + 2), where s{ = rnkPr(K(o)). If 
K is infinite then K( + ) contains a finite subgroup 4 ( + ) such that \A\ > p^s+2) 
and we consider the subring S of K generated by A. Then S is a finitely generated 
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nil-ring and S is nilpotent by I.1.12(i). By 2.3, rnkPr(S( + )) = t is finite and, since 
S( + ) is p-elementary, we have p' = \S\ > \A\ > ps{s+2) and t > s(s + 2). On the 
other hand, rnkPr(S(o)) < rnkPr(K(o)) = sx < s and t < s(s + 2) by 2.5, contra
diction. • 

2.7 Theorem. Let R be a nil-ring (e.g., rnkTf(/?(o)) finite — see 1.6), p > 2 
be a prime number and P(-\-)be the p-component of R(-\-). Then: 

(i) P(o) is the p-component of R(o). 
(ii) rnkp..(P( + )) is finite if and only lfrnkPr(P(o)) is finite. 

(iii) If rnkPr(P( + )) is finite and Q( + ) is the divisible part of P( + ) then 
Q( +) = Q(o) is the divisible part ofP(o). 

(iv) 7/,rnkFr(P( + )) is finite then P is nilpotent. 

Proof, (i) If P = R then R (o) is a p-group by 1.7.22, and hence assume that 
P 7- K. Of course, P(o) is a p-group and it suffices to show that R(o)/P(o) 
has no elements of order p. Let, on the contrary, aeR\P be such that a<p> = 
= a o a O ... o a e P. Since R is nil and a £ P, ak e P and ak~{ $ P for some 
fc > 2. Now, pa*"1 + (5)A* + ... + (pZ1)a*+p-3 + a*+p"2 = flfc - 2 • a<p>e P, 
and therefore pa*-1 e P and ak~l e P, a contradiction. 

(ii), (iii) and (iv). First, assume that P ^ 0, rnkPr(P( + )) is finite and denote by 
Q the divisible part of P( + ). By 1.1.13, Q is and ideal of P,Q2 = 0 and 
6( + ) = 6(°)- Then our result is clear for Q = P and we may assume that 
Q T* -°. Now, T = P/Q is a finite nil-ring, and hence T is nilpotent and 
rnkPr(T(o)) is finite. Consequently, P is nilpotent, rnkPr(P(o)) is finite and Q(o) 
is the divisible part of P (o). 

Conversely, if rnkp^P^)) = s is finite then rnkPr(P( + )) < s(s + 2) by 2.6. • 

2.8 Theorem. Let Rbe a nil-ring (e.g., rnkTf(i?(o)) finite — see 1.6) and T be 
the torsion part of R(-\-). Then: 

(i) T(o) is the torsion part of R(o). 
(ii) 7frnkPr(T(o)) = s is finite then rnkPr(T( + )) < s(s + 2) is finite. 

(iii) //" rnkPr(T( + )) /s f;mte an J Q is the divisible part of T( + ) then 
Q( + ) = g(o) ij r/ie divisible part of T(o). 

Proof (i) T is an ideal of R and T(o) is a torsion subgroup of R(o) (1.7.22). 
Then T = Tu where Tj is the torsion part of R(o) and, by 2.7, every p-component 
of Tx (o) is in T Thus Tx = T. 

(ii) Using (i), the result follows from 2.7(ii). 
(iii) Use 2.7(iii) (see the proof of (i)). • 

2.9 Theorem. Let R be a radical ring such that the adjoint group R (o) has 
finite Priifer rank s = rnkPr(i?(o)). Then: 

(i) R is a nil-ring. 
(ii) rnkTf(P( + )) = rnkTf(/?(o)) = sx < s. 
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(iii) If T( + ) is the torsion part of R( + ) then T(o) is the torsion part of R(o) 
and rnkPr(F(o)) = s — s{. 

(iv) The additive group R( + ) has finite Priifer rank rnkp.. (/?( + )) < s{ + 
+ (s — s{)(s + 2 — s{). 

Proof, (i) and (ii). See 1.8. 
(iii) See 2.8. 
(iv) We have rnkPr(/?( + )) = rnkPr(F( + )) + mkPT(R( + )/T( + )) < (s - s,) 

(s + 2 - s{) + sx. D 

3. Radical rings whose additive groups have finite Priifer rank 

3.1 Example. Consider the radical domain R from I.9.2(iii), where q = 2. 
Then R( + ) is a torsion group of Priifer rank 1 and R(o) is neither torsionfree nor 
has finite Priifer rank. 

3.2 Theorem. Let R be a radical ring such the additive group R( + ) is 
a p-groupfor a prime p > 2 and the Priifer rank rnkp-(/?( + )) = r is finite. Then: 

(i) The ring R is nilpotent. 
(ii) The adjoint group R(o) is a p-group whose Priifer rank rnkp(R(o)) = s 

is finite and r < s (s + 2) (or — 1 + y/r + I < s). 
(iii) If Q is the divisible part of R( + ) then Q = (0: R), Q( + ) = Q(o) is the 

divisible part of R (o) and either Q = R and R2 = 0, or Q ^ R and R/Q is 
a finite nilpotent ring. 

Proof. By 1.1.13, Q is an ideal of R and Q = (0:R). Consequently, 
(2( + ) = Q(°) ls a divisible subgroup of R(o) and we will assume that Q ^ R. 
Then S = R/Q is a finite radical ring, and hence it is nilpotent by 1.7.12. Thus R is 
nilpotent and the rest is clear from 2.7. • 

3.3 Theorem. Let R be a radical ring such that the additive group R( + ) is 
torsion and has finite Priifer rank. Then: 

(i) R is a nil-ring. 
(ii) The adjoint group R (o) is torsion. 

(iii) If p is a prime and Rp (+) is the p-component of R( + ) then Rp (o) is the 
p-component of R (o). 

(1V) If Q (+) ^ the divisible part ofR( + ) then Q (o) is the divisible part of R (o). 
(v) R * R\ f]n^Rn = 0 and [Jn^(0: Rn) = R. 

(vi) If R is not nilpotent then Rn # Rn+l and (0: R% ^ (0 : Rn+% for every 
n > 1. 

Proof. The non-zero p-components Rp of R are ideals and R is the ring direct 
sum of these ideals. The rest follows easily from 3.2. • 
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3.4 Example. The ring R from 1.9.9(H) is a non-nilpotent nil-ring such that 
R( + ) is torsion and rnkPr(/?( + )) = 1. 

3.5 Theorem. Let R be a radical ring whose additive group R( + ) has finite 
Prufer rank. Then: 

(i) T <= Jf (R), where T is the torsion part of R( + ). 
(ii) T(o) is a torsion subgroup of the adjoint group R(o). 

(iii) R 7- R2. 
(iv) If R is not nilpotent then Rn # Rn*1 for every n > 1. 

Proof, (i) and (ii). See 3.3. 
(iii) We proceed by induction on r = rnkTf (/?( + ))(= rnk((R/T) ( + ))). If r = 0 

then R( + ) is torsion and R ^ R2 by 3.3(v). If r > 1 then S = R/T is a radical 
ring and S # S2, provided that S2 = 0. If w e S\(0 : S2) then K = Sw is a non-zero 
ideal of S, and if K = S then S # S2 by 1.7.10. On the other hand, if K # S then 
P = S/K is a radical ring, rnkTf(P( + )) < r, P ^ P2 by induction and it follows 
that R # R2. 

(iv) Use (iii). • 

3.6 Theorem. Let R be a radical domain such that the additive group R (+) 
has finite Prufer rank. Then: 

(i) char (R) = 0 and R (+) is torsionfree. 
(ii) The field F of fractions of R has finite dimension over its prime subfield 

Q (Q ~ Q, the field of rationals). 
(iii) C(R) > 2 (see 1.1.16). 
(iv) S = R + Z- lF is a semilocal domain with unit, R is an ideal of 

S,R^f(S)andS/R~Zc{R). 
(v) The additive groups R( + ), S( + ) F( + ) have the same finite Prufer rank 

equal to \F : Q\. 
(vi) THe adjoint group R (o) has infinite torsionfree rank. 

Proof. Since R is a domain, R is not finite, and hence char (R) = 0 and R (+) 
is torsionfree (1.1.15). Consequently, Q ~ Q and we may assume that Q = Q. 

We have rnkp..(P( + )) = r > 1 and R( + ) contains a finitely generated (free) 
subgroup A = <ty,..., ur}R<+) such that R( + )/A( + ) is torsion. 

Let aeR, B = <a,a2,a\...}R{+) and C = A n B. Then C( + ) is a finitely 
generated subgroup of B( + ), and hence C _= D = (a,aa,..., am}R^ for some 
m > 1. Moreover, B( + )/C( + ) ~ (A + B)( + )/A( + ) ^ R( + )/A( + ) is torsion, 
and therefore kam+l eC for some k > 1. It follows that kam+l = k{a + k2a

2 + 
+ ... kmam, so that the element a is algebraic over Q. Consequently, F is algebraic 
over Q. 

Let a, be R, a ^ 0. Then Q [a] is a subfield of F and there exist / > 0 and 
rationals r0,..., r; such that a-1 = r0 + rxa + ... + rfi. Now, ba~l = r0b + 
+ rxba + ... r,ba\ b, ba, ..., bale R and R( + )/A( + ) is torsion. Thus, for 
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a positive integer t, all the elements tb,tba,...,tbal are in A and ba~x = 
= t~xr0tb + t~xr{tba + ... + t~xrlba1. Consequently, ba~x = q{u{ + ... qrun 

qx e Q, and we have shown that F = Qux + ... + Qur and [F: Q] = r. 
Now, take 0 ^ a e R. Then s0 + s^ + ... s/*7 = 0 for some integers j > 1, 

s0,..., sp and we assume thatj is the smallest one with this property. Since R is 
a domain and R(+) is torsionfree, we have s0 ^ 0. Of course, s0e R n Z and it 
means that £(R) > 1. Since 1* $ /?, we have £(/?) > 2. 

Finally, since R is not nil, the rank rnkTf(/?(o)) is not finite. • 

3.7 Proposition. Let R be a radical ring such that the additive grop R (+) is 
not torsion and has finite torsionfree rank. Then R ^ R2 and either Rn ^ Rn+X for 
every n > 1 or Rm (+) is torsion for some m > 2. 

Proof. We may assume that -R( + ) is torsionfree. Then rnkp.. (!?( + )) = 
= rnkTf (-R( + )) is finite and the result follows from 3.5(ii). • 

3.8 Proposition. Let R be a radical ring such tht R = R2 and the additive 
group R (+) has finite torsionfree rank. Then: 

(i) -R( + ) is torsion. 
(ii) Both groups -R( + ) and R(o) have infinite Priifer rank. 

(iii) Either R(o) is torsion and R is a nil-ringy or R(o) has infinite torsionfree 
rank. 

Proof, (i) See 3.8. 
(ii) See 2.9(iv) and 3.5(iii). 

(iii) If R(o) is torsion then R is nil by 1.6. On the other hand, if R(o) has finite 
torsionfree rank then rnkTf(i?( + )) = rnkTf(i?(o)) by 1.8 and both -R( + ) 
and R (o) are torsion by (i). • 

3.9 Proposition. Let R be a nil-ring such that the additive group -R( + ) is 
torsionfree and has finite Priifer rank m = rnkpr (R (+)). Then R is nilpotent of 
index at most m + 1 and rnkPr(i?(o)) < m2. 

Proof. Combine 1.15 and 2.2(i). • 

3.10 Corollary. Let R be a nil-ring such that the additive group -R( + ) has 
finite Priifer rank m = rnkp.. (R (+)). Let T be the torsion part of /?( + ). 

(i) / f T = 0thenRm+x = 0. 
(ii) IfT^O then Rm c T. 

(iii) R is nilpotent if and only if T is so. 
(iv) rnkPr(i?(o)) is finite if and only //,rnkPr(T(o)) is so. 

3.11 Corollary. Let Rbe a radical ring such that the additive group -R( + ) has 
finie Priifer rank m = rnkp.. (R (+)). Let T be the torsion part of Jf (/?)( + ). Then 
JT(R)m+x ~\ T and, moreover: 

(i) 7fF= 0thenJ^(R)m+x = 0. 
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(ii) If R/JT (R))( + ) is not torsion then JT(R)m ^T.If, moreover, 7 V 0 then 
m > 2andjr(R)m~l c T 

(iii) If(R/T)( + ) is torsionfree and JT(R)^ R then Jr(R)m c T If moreover, 
T # 0 then m > 2 and JT(R)m~l c T. 

(iv) IfT=0 and R/JT(R))( + ) is not torsion then JT(R)m = 0. 
(v) IfR( + ) is torsionfree and JT(R) ^ R then JT(R)m = 0. • 

4. Various examples 

4.1 Let p > 2 be a prime, 1 < s < r be positive integers and a* b = 
= abps (mod pr) e Zpr for all a,b e Zf. 

4.1.1 Proposition, (i) C = C(p,r,s) = Zpr( + ,*) ls a radical ring. 
(ii) C w nilpotent of index q, where q is the smallest positive ineger with 

<Z > 1 + ;. 
(iii) Z(C) = f. 
(iv) rnkPr(C( + )) = 1. 

Proof. Easy to check. • 

Consider the adjoint group C(o). For all aeC and n > 1, the n-th power 
a O a O ... O a of a in C(o) is denoted by a<n>. 

4.1.2 Lemma. If p > 3 f/w?n l<p,_1> = p r"1. 

Proo/ If 2 < i < p r _ 1 then pr divides (^J^p'-1 (clear for r + 1 < i and easy 
to check fo i < r). Consequently, by 1.2.3, 

\«-l> = (P
r-' + £ (Pr~i)p

i'-l)) (modpr) = pr~\ • 

4.1.3 Lemma. If p = 2, r > 2 and s < 2 then l<2r~l> = 2r~\ 
Proof. Observe that 2r divides ( 2 7)2 ' - 1 for 3 < i < 2r"1, and hence l<2r-1> = 

= (2r"' + 2 r+5"2 • (2 r- ' - l))(mod 2r) = 2r~\ • 

4.1.4 Lemma. If p = 2, r > 2 and s = 1 ten a<y_1> = Ofor every ae C. 

Proof. The result is clear for r = 2, and if r > 3 then a<2r',} = 2 r"'a(l + 
+ (2r"' - l)a). If a is even then 2r"'a = 0. If a is odd then 6 = 1 + (2r~l - I) a 
is even and 2r~ lb = 0. • 

4.1.5 Lemma. If p = 2, r > 5 and s = 1 then 1<2""2> = 2"\ 

Proof. If 3 < i < 2r~2 and i ^ 4 then 2r divides (2rJ2)2'-\ Using this and 1.2.3, 
we see that l<y_2> = (2r"2 + 2r~2(2r~2 - 1) + 2r-1/)(mod2r), where / = 
= (2r"2 - l)(2r"2 - 3)(2r"3 - l)/3 is odd. Consequently, 2r~l(2r~2 + I - 1) = 
= 0 (mod 2r) and l<2r_i> = 2r~\ Q 
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4.1.6 Lemma, (i) Ifp = 2,r = Aands=\ then s = 1 then 1<4> = 8 (# 2r~2). 
(ii) Ifp = 2, r = 3 and s = 1 then 1<2> = 4 (# 2r~2). 

Proof Easy to check. • 

4.1.7 Proposition, (i) If p > 3 is odd then C(o) ~ Zpr( + ) is cyclic and, 
moreover, rnkPr(C(o)) = 1. 

(ii) If p = 2, r > 2 and s > 2 then C(o) ~ Z2r( + ) is cyclic and 
mkp,(C(o)) = 1. 

(iii) Ifp = 2,r= 1 then C(o) ~ Z2( + ) is cyclic and rnkPr(C(o)) = 1. 
(iv) If p = 2,r > 2ands = 1 then C(o) ~ Z2,-.( + ) x Z2( + ) is 2-generated 

andrnkPr(C(o)) = 2. 

Proof (i) and (ii). By 4.1.2 and 4.1.3, resp., the group C(o) contains an element 
of order (at least) pr. Since C has just pr elements, the group C(o) is cyclic. 

(iii) Obvious. 
(iv) By 4.L4, a<2r_1> = 0 for every aeC.On the other hand, by 4.1.5, 4.1.6(i) 

and 4.1.6(H), resp., the group C(o) contains an element of order 2r~l. But 
C(o) is the product of cyclic groups and C has just 2r elements. • 

4.1.8 Remark. If either p > 3 and r > s or p = 2 and 2 < s < r then 
C( + ) ^ C ( o ) b u t C ( + ) ~ C ( o ) . 

4.1.9 Remark. Using 4.1.1 (iii), it is easy to see that C(purusl) ~ C(p2,r2,s2) 
if and only if p{ = p2, rx = r2, s{ = s2 (ad then the rings coincide). 

4.2 Let p be a prime and n > 2. For every k, 1 < k < n — 1, put 
Rk = R(p,n,k) = Spk, where S = Zp„. 

4.2.1 Lemma, (i) Rk is an ideal of the ring S and Rk ~l J (S). 
(ii) Rk is a radical ring and \Rk\ = pn~k. 

(iii) /?,( + ) - Zpll-k( + ). 

(iv) C(-R,v) = p'> where I = min (k,n — k). 

Proof. Easy to check. • 

4.2.2 Proposition. Rk ~ C(p,n — kj) (see 4.1). 
Proof Define a mapping Q:Zp,,-k\—>S by Q(O) = pka (mod pk) for every 

0 < a < pn~k. Clearly, Im(r;) = Rk, Q is a homomorphism of the additive groups 
and, if a e Ker(oJ then pn divides pka, so that pn~k divides a and a = 0 in Zp,t-k. 
Thus Q is an isomorphism of Zpn~k( + ) onto /?*( + ). Moreover, if / = k (i.e., 
k < n — k) then Q (a * b) = Q (pkab) = p2kab = pka • pkb = Q(O)Q (b) and we see 
that Q is an isomorphism of the rings. On the other hand, if / = n — k < k then 
q(a * b) = Q(pn~kab) = pnab = 0 = pkapkb = Q(d)Q(b) and our result is pro
ved. • 
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4.2.3 Lemma. The following conditions are equivalent: 
(i) R(phn{mk{) ~ R(p2,n2,k2). 

(ii) p{ = p2 and (just) one of the following four cases takes place: 
(iil) n{ = n2 and k{ = k2; 
(ii2) n{ = 2k{ (then n{> 2 is even) and n2 = n{ + t, k2 = k{ + t, t > 1; 
(ii3) n2 = 2k2 (then n2 > 2 is even) and n{ = n2 + t, k{ = k2 + t, t > 1; 
(ii4) n{ 7-- n2, 2k! > nu 2k2 > n2 and n{ — k{ = n2 — k2. 

Proof Combine 4.2.2 and 4.1.9. D 

4.3 Proposition. Let p be a prime. Then: 
(i) C (p, r,s) ~ R (p, r + 8, s) for all 1 < s < r. 

(ii) C(p9r,r) ~ R(p,2r + j,r + j)for all 1 < r and 0 < j . 
(iii) R(p,n,k) ~ C(p,n — k,min(k,n — 1)) for all 1 < k < n — 1. 

Proof See 4.2.2. D 

4.4 For a prime p, let C(p, oo, oo) be the zero multiplication ring whose additive 
group is the quasicyclic group Zpoo. 

4.5 Let m > 2. Denote by D = D(m) the set of rational numbers x where 
a ,beZ, gcd(a,b) = 1. 

4.5.1 Proposition, (i) D is a subring of the field Q of rationals and D is 
a radical domain. 

(ii) C(D) = m. 
(iii) mkPr(D( + ))= 1. 
(iv) Given a prime number p, the additive group D (+) is p-divisible if and only 

if p does not divide m. 
(v) Ifm = 2 then D(o) - Z2( + ) x Z( + )H 

(vi) Ifm > 3 then D(o>) - Z( + p. 
(vii) rnkpT(D(o)) is infinite. 

Proof, (i), (ii), (iii) and (iv). Easy to check (see I.9.2(iii)). 
(v), (vi) and (vii). By 3.6(vi), the group D(o) has infinite Priifer rank. Now, 

since D(o) is isomorphic to a subgroup of Q* c.. Z2( + ) x Z( + fa}\ the result is 
clear. D 

4.5.2 Lemma. D(m{) ~ D(m2) if and only ifm{ = m2. 

Proof. Use 4.5.1(H). D 

4.5.3 Lemma. D(m{) _= D(m2) if and only ifm{ divides m2. 

Proof Obvious. D 

4.5.4 Lemma. If m{ divides m2 then D(m{) is an ideal of D(m2) if and only if 
any prime number dividing m2/m{ also divides m2. 
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Proof. Easy to check. • 

4.6 Let I? = /?( + ,*) be the (uniquely determined) ring defined on Z2( + )(2) 

by (1,0) * (1,0) = (0,1) and (1,0) * (0,1) = (0,1) * (1,0) = (0,1) * (0,1) = (0,0). 
Then R is nilpotent of index 3, rnkPr(i?( + )) = 2 and rnkPr(/?(o)) = 1. 

4.7 (i) For n > 1, let Rn denote the ring direct sum of n copies of the ring 
C(2,2,1) (see 4.1). The Rn is nilpotent of index 3, rnkp, (/?( + )) = n and 
rnkPr(i?(o)) = 2n. 

(ii) For n > 1, let R^ denote the ring direct sum of n copies of the ring /?( + ,*) 
(see 4.6). Then R^ is nilpotent of index 3, rnkP (R(n) (+)) = 2n and 
rnkPr(/?(n)(o)) = n. 

4.8 Consider the ring R = Rn from 1.9.12, where we choose T = Zp, p being 
a prime and n > 2. Then Rn is nilpotent of index n, \Rn\ = pn~\ Rn( + ) — 
~ Z ^ + y"-1* and rnkp, (£„( + )) = n - 1; put s = r n k p ^ o ) ) . 

(i) Denote by F the set of polynomials fe T[x\ such that deg(f) < n — 1 and 
fp e Zp [x] xn. It is easy to see that |F| = p* for n even and |F| = p^ for n 
odd. From this, it follows easily that rnkp^i^o)) = 5 for n even and 
rnkp^fl^o)) = *j± for n odd. 

(ii) Let m > 0 be such that pm < n - 1. Then (pm-times) 

pm~l (Dm\ 
a O a O ... o a = ocpm = xpm + £ ( K + %p[x]xn # 0, 

and so Rn(o) contains a cyclic subgroup of order pm+l. 

4.9 Put R = LI-R"> n > 2 (see 4.8). Then R is a nil-ring, R( + ) is a p-elemen-
tary group, R (o) is a p-group and R (o) is not bounded. 

5. Radical rings whose additive groups have Priifer rank 1 or 2 

5.1 Proposition. Let R be a radical ring such that R( + ) is a p-group for 
a prime p and rnkp,. (JR (+)) = 1. Then either R is finite and R ~ C (p, r, s)for some 
1 < s < r or R is infinite and R ~ C(p, 00,00) (see 4.1, ...,4.4). Moreover, 
1 < rnkPr(i?(o)) < 2, and rnkPr(/?(o)) = 2 if and only if p = 2, 2 < r < 00 and 
s= 1. 

Proof If R( + ) is not reduced then R( + ) - Zp^( + ) and R2 = 0 (1.1.13), so 
that R ~ C(p, 00, 00). Consequently, we may assume that R( + ) is reduced and, 
moreover, that R( + ) = Zp,( + ), r > 1. To avoid confusion, denote the multipli
cation of the ring R by the symbol *. Then, for all 0 < m, n < pr — 1, we have 
m * n = mn(\ * 1) = mnz, z = 1 * 1 e Zpr. Since R is a finite radical ring, R is 
nilpotent and it follows easily that p divides r. Thus z = psw, 1 < s < r — 1, 
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w e Zpr. If w = 0 then R = C (p, r, r). If w 7-= 0 and p does not divide w then pr 

divides wv — 1 for some v e Zpr and the mapping a 1—• va is an isomorphism of 
R onto C (p, r, s). • 

5.2 Proposition. Ltft R be a radical subring of Q. Then R = D(m) for some 
m > 2 (see 4.5) and R is rd-generated by m (see 1.7.18). 

Proof. We have R n Z ^ 0 and hence, let m be the smallest positive integer in 
R n Z. Since 1 £ R, we have m > 2. If b e Z is such that gcd(m,b) = 1 then 
I = um + vb for some u.veZ and, since R is a radical ring, we have 
-g = T ^ e / ? and x = i;-^e.R. Furthermore, gcd(w,fc) = 1 , 1 = zw + w6, 
*P e R and, finally, f = ^ ^ = z™ + wmeR. Thus D (m) c #. On the other 
hand, if 5e.R, c,deZ, gcd(c,d) = 1, then c e _ R n Z , m divides c and 
gcd (m, d) = 1. Then § e D (m) and we get R = D (m). • 

5.3 Theorem. A ring R is a radical ring with rnkp..(i?( + )) = 1 if and only if 
at least (and then just) one of the following three cases takes place: 

(1) R is a nil-ring, R( + ) is torsion and, if p is a prime such that p-component 
Rp( + ) of R( + ) is non-zero, then either Rp is finite and Rp ~ C (p, r, s) for 
some 1 < s < r or Rp is infinite and Rp ~ C(p, 00, 00) (see 4.1, ...,4.4). 
(Then R is the ring direct sum of the p-components, 1 < rnkPr(i?(o)) < 2, 
and rnkPr(i?(o)) = 2 if and only if R2 # 0 and R2 - C(2,r, 1), 2 < r.) 

(2) R is a zero multiplication ring and the additive group R( + ) is isomorphic 
to a (non-zero) subgroup of Q( + ). (Then R( + ) is torsionfree and 
r n k p ^ o ) ^ 1.) 

(3) R is a domain and R ~ D(m) for some m > 2 (see 4.5). (Then R is iso
morphic to a subring ofQ,R( + ) is torsionfree and rnkp..(.R(o)) is infinite.) 

Proof. If R (+) is torsion then R is the ring direct sum of its p-components and 
we use 5.1 to show (1). If R( + ) is not torsion then it is torsionfree and isomorphic 
to a subgroup of Q( + ). Moreover, R( + )/A( + ) is torsion for every non-zero 
subgroup A( + ) of R( + ) and, by 1.1.21, either R2 = 0 and (2) takes place or R is 
a domain and we use 5.2 to show (3). • 

5.4 Lemma. Let R be a radical ring such that rnkp- (/?( + )) = 2 and R (+) is 
torsion. Then R is nil. 

Proof. See 3.3(i). • 

5.5 Lemma. Let Rbe a radical ring such that mkPr(R( + )) = 2 and 0 7- T ^ 
7-= -R, T being the torsion part of R( + ). Then: 

(i)rnkPr(T( + )) = 1, T is nil (and as in 5.3(1)). 
(ii) S = R/T is a radical ring, rnkPr(S( + )) = 1 and S( + ) is torsionfree. 

(iii) Either S2 = 0, R2 c T and R is nil or S is a domain (as in 5.3(3)), T is 
a prime ideal and T = JV* (R). 
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Proof. Clearly, rnkpr(F( + )) = 1 = rnkpr(S( + )) and it remains to use 5.3. • 

5.6 Lemma. Let R be a radical ring such that rnkpr (R (+)) = 2 and R (+) is 
torsionfree. Let I be an ideal ofR.O^I^R. Then just one of the following three 
cases takes place: 

(1) rnkpr (/( + )) = 2 and (R/I)( + ) is torsion; 
(2) rnkpr (/( + )) = 1 and I2 = 0; 
(3) rnkpr (/( + )) = 1 and I is a domain. 

Proof. Use 5.3. • 

5.7 Lemma. Let R be a radical ring such that R( + ) is torsionfree and 
rnkpr (/?( + )) = l.IfaeR then at least one of the following tree cases takes place: 

(1 ) (0 :« ) = 0; 
(2) (0 : a) is a prime ideal; 
(3) R2a = 0. 

Proof. (R/(0 :a))( + ) ~ (Ra)( + ) is torsionfree and the rest is clear from 5.3. 

• 
5.8 Proposition. Let R be a radical ring such that vnkPT(R( + )) = 2 and let 

T denote the torsion part ofR( + ). Then just one of the following seven cases takes 
place: 

(1) R is a nil-ring and T = R (i.e., R( + ) is torsion); 
(2) R is a nil-ring, 0 # T 9-= R, R2 =\ T, rnkpr(F( + )) = 1 and T is a nil-ring 

of the type 5.3.(1); 
(3) 0 7- T = JT(R) 7- i?, T is a prime ideal of /?, rnkPr(T( + )) = 1, T is 

a nil-ring of the type 5.3(1), mkPT((R/T)( + )) = 1 and R/T is a radical 
domain of the type 5.3(3); 

(4) R is nilpotent of index at most 3 (i.e., R3 = 0) and T = 0 (i.e., R( + ) is 
torsionfree and isomorphic to a subgroup of Q (+) x Q (+ )); 

(5) T = 0 7-= J^(R) T«- R (i.e., R( + ) is torsionfree and isomorphic to a sub
group of Q( + ) x Q( + )), Jr(R)2 = 0, JV(R) is a prime ideal of R and 
R/Jr(R) is a radical domain of the type 5.3(3); 

(6) T = 0 = J^(R) (i.e., R is semiprime, R( + ) is torsionfree and isomorphic 
to a subgroup of Q (+) x Q (+)) and there exist two non-zero prime ideals 
I and JofR such that I n J = 0, R is isomorphic o a subring ofR/I x R/J 
and both R/I and R/J are radical domains of the type 5.3(3); 

(7) R is a domain. 

Proof. lfT=R then R is nil by 3.5(i). IfO^T^R then rnkpr(F( + )) = 1 = 
= rnkpr((i?/T)( + )) and either (2) or (3) is true by 5.3. Now, assume that T = 0, 
i.e., R( + ) is torsionfree. If R is nil then R3 = 0 by 3.9. IfO^Jr(R)^R then 
(5) is true by 3.1 l(iv) and 5.3. Finally, assume that T = 0 = Jf(R\ i.e., R is 
semiprime and R( + ) is torsionfree, and that R is not a domain. Then 
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A = {a e R | (0 : a) # 0} ^ 0 and (6) is true, provided that (0 : a) n (0 : b) = 0 for 
some a,be A (use 5.3). In the opposite case, it is easy to see that A is a non-zero 
ideal of R. If A ^ R then rnkPr(,4( + )) = 1 and A is a domain by 5.3, a contra
diction. Thus A = R. 

Now, let a,beR be such that ab # 0. If c e ( 0 : a) then ca = 0e (0 : b) and, 
since (0 : b) is prime by 5.7, we have c e (0: fc). Consequently, (0 : a) £ (0 : b) and, 
in fact, (0: a) = (0: b), the converse inclusion being similar. 

Choose 0 ^ ueR and take 0 ^ ve(0:u). If w £ (0 : u) u (0 : v) then 
WM^-OT- wv, and hence (0 : u) = (0 : w) = (0 : t;), v G (0 : v) and v2 = 0, which is 
a contradiction with Jf (R) = 0. We have shown that (0 : u) u (0 : v) = R. But this 
is not possible, since both (0 : u) and (0 : v) are proper ideals of R. • 

5.9 Proposition. Let R be a radical ring such that rnkp-(/?(o)) = 1. Then 
rnkpr (/?( + )) < 3 and just one of the following two cases takes place: 

(1) R is a nil-ring and both groups -R( + ) and R(o) are torsion; 
(2) R is a zero multiplication ring (i.e., R2 = 0) and -R( + ) is isomorphic to 

a subgroup of Q (+). 

Proof First, R is a nil-ring by 2.9(i). If R(o) is torsion then -R( + ) is torsion 
by 1.5 and rnkp.. (/?( + )) < 3 by 2.8(ii). On the other hand, if R(o) is not torsion 
then it is torsionfree, and so i?( + ) is torsionfree, too (2.9(iii)). Now, 1 = 
= rnkp-(i?(o)) = rnkTf(K(o)) = rnkTf(/?( + )) = rnkPr(/?( + )), R( + ) is isomor
phic to a subgroup of Q( + ) and R2 = 0 by 1.15. • 

5.10 Example. Consider the four-element ring R from 4.6 (see also 4.8). Then 
R3 = 0, rnkPr(R( + )) = 2 and rnkPr(/?(o)) = 1. 

6. Radical rings whose additive and/or adjoint 
groups have pseudofinite weak Priifer rank 

6.1 Remark, (cf. 2.1(v)) An abelian group G is said to have pseudofinite weak 
Priifer rank if rnkTf(G) is finite and, moreover, rnkPr(7^) is finite, where p is any 
prime number and Tp is the p-component of G; we denote this fact by 
rnkp^G) < oo. 

(i) If rnkPr(G) is finite then rnkPw(G) < oo. 
(ii) If H is a subgroup of G then rnkf̂  (G) < oo if and only if rnk^ (H) < oo 

and rnkPw(G/fl) < oo. 
(iii) Put G = ] jZ p (+ } p \ where p runs trough an infinite set of prime numbers. 

Then G is a torsion group, rnkPwG < oo, but G has infinite Priifer rank. 

6.2 Theorem. The following conditions are equivalent for a ring R: 
(i) R is a radical ring and rnkPw(JR(o)) < oo. 

(ii) R is a nil-ring and rnkPw(i?( + )) < oo. 
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Proof, (i) implies (ii). R is a nil-ring by 1.6 and we have rnk^ (/?( + )) < oo by 
1.7 and 2.7(i), (ii). 

(ii) implies (i). By 1.8, rnkTf(i?(o)) is finite and we use 2.7(i),(ii) again. • 

6.3 Remark. Let R be a radical ring such that R = R2. 
(i) Assume that R (+) is a p-group for a prime p. By 3.8(ii), both groups R (+) 

and -R(o) have infinite Priifer rank. If R = pR then /?( + ) is divisible and 
R2 = 0 by I.1.13(iii), a contradiction with R = R2. Thus R ^ pR, 
S = R/pR is a radical ring, S = S2 and S (+) is a p-elementary group with 
infinite Priifer rank. Consequently, S( + ) is a direct sum of an infinite 
number of copies of Zp (+). 

(ii) Assume that rnkTf (/?( + )) is finite. By 3.8(i), i?( + ) is torsion. Now, R is 
the ring direct sum of its p-components Rp, and if Rp 7-= 0 then Rp is 
a radical ring Rp = R2

p and Rp (+) is a p-group (see (i)). 

6.4 Proposition. Ler Rbe a radical ring such that either rnk^ (#( + )) < 00 or 
rnkPw(/?(o)) < oo. Then R 7- I?2. 

Proof. See 6.2 and 6.3. • 

6.5 Theorem. Let R be a radical ring such that the additive group -R( + ) is 
torsion and rnk^(/?( + )) < oo. Then: 

(i) R is a nil-ring. 
(ii) The adjoint group R (o) is torsion. 

(iii) If p is a prime and -Rp( + ) t^e p-component of R(-\-) then Rp(o) is the 
p-component of R(o). 

(1V) ff Q( + ) i5 ^ divisible part of -R( + ) £h£ft G(°) i5 ^ divisible part of 
R(o). 

(v) i? * K2, H^ iK" = Oand U^i(0:KM) = R. 
(vi) IfR is not nilpotent then Rn ^ Rn+{ and (0: Rn)R # (0: Rn+%for every 

n>\. 

Proof. The same as that of 3.3. • 

7. Radical rings whose additive and/or adjoint groups are minimax 

7.1 Remark. A (possibly non-commutative) group G is called minimax if 
G contains a normal subgroup H such that H satisfies the maximal condition on 
subgroup and the factorgroup G/H satisfies the minimal condition on subgroups, 

(i) The following conditions are equivalent for an abelian group G (= G (+)): 
(il) G is torsion and minimax. 
(i2) G satisfies the minimal condition on subgroups. 
(i3) rnkp-(G) is finite and G is P-group for a finite set P of primes. 
(i4) G is a direct sum of finitely many cyclic or quasicyclic p-groups. 
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(ii) An abelian group is finite, provided that it is reduced, torsion and 
minimax. 

(iii) An abelian group G is minimax if and only if G contains a finitely 
generated free subgroup F such that the factorgroup G/F satisfies the 
equivalent conditions from (i). 

(iv) If G is an abelian minimax group then both ranks rnkTf(G) and rnkPr(G) 
are finite, 

(v) The class of abelian minimax groups is closed under taking subgroups, 
factor-groups and extensions, 

(vi) No infinite direct sum or product of non-zero abelian groups is minimax. 
(vii) The additive group Qp( + ) (see 1.9.1) is a torsionfree minimax group that 

is not finitely generated, 
(viii) The quasicyclic p-group Zpoo is a torsion minimax group that is not finitely 

generated, 
(ix) The additive group Q ( + ) of rationals is a torsionfree group of Priifer rank 

1, but it is not minimax. 
(x) The direct sum \jzp (+), p running through an infinite set of primes, is 

a torsion group of rank 1, but it is not minimax. 

7.2 Proposition. Let R be a radical ring such that R(o) is minimax. Then 
R (+) is minimax. 

Proof. By 1.6 and 1.7, R is nil and r = rnkTf (/?( + )) is finite. Now, we proceed 
by induction on r. 

If r = 0 then -R( + ) is torsion and, by 2.9(iv), rnkp..(R( + )) is finite. Further, 
since R(o) is minimax, this group has only finitely many non-zero p-components 
and, in view of 2.7, the same is true for -R( + ). Consequently, having finite Priifer 
rank, the group -R( + ) is minimax. 

Next, let r > 1 and let T denote the torsion part of -R( + ). We have T ^ -R, 
T( + ) is minimax (as shown above) and we put S = R/T. Then S( + ) is torsionfree 
and it suffics to show that the group is also minimax. If S2 = 0 then S( + ) = S(o) 
is minimax. Hence assume S2 ^ 0. Since S is nil, it is not a domain, and so 
(S/K)( + ) is not torsion for a non-zero ideal K of S (1.1.21). Clearly, 
rnkTf (K (+)) < r, rnkTf((S/K) (+)) < r, and therefore both K (+) and 
S (+ )/K (+) are minimax. Thus S (+) is minimax, too. • 

7.3 Proposition. Let R be a radical ring such that -R( + ) is torsion and 
minimax. Then R is nilpotent. 

Proof. The divisible part Q of /?( + ) is an ideal of R and Q _= (0: R) by 1.1.13. 
Further, # ( + ) = Q( + ) © -4( + ), the reduced torsion minimax group -4( + ) is 
finite and mA = 0 for some m e Z, m > 1. The set I = {ae R \ ma = 0} is an 
ideal of R, I is finite and R = Q + /. Now, I is nilpotent and the same is true for 
K. • 
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7.4 Lemma. Let R be a radical ring such that R (+) is minimax and (R/l) (+) 
is torsion for every non-zero ideal I of R. Then R is nilpotent. 

Proof. If (0: R) 7- 0 then R is nilpotent by 7.3 (consider R/(0: R)). If 
(0: R) = 0 then R is a domain by 1.1.21. Let F be the field of fractions of R and 
let Q denote the prime subfield of F. According to 3.6, F has finite dimension over 
Q and we may assume that Q = Q is the field of rationals. Consequently, the 
integral closure V of Z in F is a Dedekind domain. Further, there are a finitely 
generated subgroup -4( + ) of -R( + ) and a finite set P of prime numbers such that 
R(+ )/A (+) is a torsion P-group. If W = V [p~{\p e P] c F then F is a quotient 
field of both domains Vand Wand it is easy to see that R ~l VVand that R(o) is 
isomorphic to a subgroup of W*. Finally, if Jt is the set of maximal ideals I of 
V such that Vp ~i I for at least one pe P then ^ is finite and Jt generates 
a subgroup ^ in the group «sF of non-zero fractional ideals of V. The mapping 
(p:wh> Vw, w G KV*, is a homomorphism of W* into ^ and Ker(<p) = V*. Thus 
both Kcr((p) and Im(cp) are finitely generated, too. We have shown that R(o) is 
finitely generated and then R is nilpotent by 1.10.5, a contradiction with R being 
a domain. • 

7.5 Proposition. Let R be a radical ring such that R (+) is minimax. Then R is 
nilpotent. 

Proof. We proceed by induction on r = rnkTf (/?( + )). If r = 0 then R( + ) is 
torsion and R is nilpotent by 7.3. Hence, assume r > 1 and put S = R/T, T being 
the torsion part of -R( + ). The ideal T is nilpotent (7.3) and we have to show that 
S is nilpotent, too. Now, S( + ) is a torsionfree minimax group, rnkTf(S( + )) = r 
and, due to 7.4, we may assume that P( + ) = (S/K)( + ) is a non-zero torsionfree 
group for a non-zero ideal K of S. Clearly, r = rnkTf(P( + )) + rnkTf(K( + )) and 
the radical rings P and K are nilpotent by induction. Thus S is nilpotent. • 

7.6 Lemma. Let R be a nilpotent ring. Then R (+) is minimax if and only if 
R (o) is so. 

Proof. Use 1.7.21. • 

7.7 Theorem. Let Rbe a radical ring. Then te additive group R (+) is minimax 
if and only if the adjoint group R(o) is minimax. If these conditions are satisfied 
then R is nilpotent. 

Proof. Combine 7.2, 7.5 and 7.6. • 

7.8 Example. Let R be a zero multiplication ring such that P( + ) -*-- Qp( + ) 
(/?( + ) ^ Zpoc (+) , resp.). Then R (+) is a non-finitely generated torsionfree 
(torsion, resp.) minimax group and R is not finitely id-generated. 

7.9 Remark. Let G be an abelian minimax group. Then G contains a finitely 
generated free subgroup F such that K = G/F satisfies the equivalent conditions 
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of 7.1(i). Now, given a prime number p, the divisible part of the p-component 
Kp of K is the direct sum of mp > 0 copies of Zpoo ( + ) and we put rnkMn(G) = mp. 
Further, we put rnkMm(G) = rnkTf(G) + £rnkMm(G), p running through all primes. 

(i) rnkTf(G) < rnkMm(G), and rnkTf(G) = rnkMm(G) if and only if G is finitely 
generated, 

(ii) If H is a subgroup of G then rnkMm(G) = rnkMm (H) + mkMm (G/tf) for 
every prime p and rnkMm(G) = mkMm(H) + mkMm(G/#). 

7.10 Proposition. Let R be a radical ring such that the additive group R (+) 
(or the adjoint group -R(o)) is minimax (see 7.7). Then rnkMm (/?( + )) = 
= rnkMm(/?(o))for every prime p and rnkMm (/?( + )) = rnkMm (R (o)j. 

Proof. By 7.7, R is nilpotent and, by 1.8, rnkTf(/?( + )) = rnkTf(K(o)). We 
proceed by induction on the nilpotence index n of R to show that 
rnkMm (/?( + )) = rnkMm(i?(o)). If n = 2 then /?( + ) = i?(o) and the assertion is 
trivial. If n > 3 then I = (0: R) ^ R and S = R/I is a radical ring nilpotent of 
index n - 1. Now, / ( + ) = 7(o), and so rnkMm(/( + )) = rnkMm(/(o)). On the 
other hand, rnkMm(S( + )) = rnkMm(S(o)) by induction and the rest is clear. • 
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