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ACTA UNIVf.RSI 1ATIS CAkOLINAH - MATHEMATICA ET PHYSICA VOL. 50, NO, 1 

Quasitrivial semimodulcs III 

KHALDOUN AL-ZOUBI, TOMÁŠ KLPKA and PETR NĚMEC 

Praha 

Received 15. October 2008 

The paper continues the investigation of semi modules. Main emphasis is kid on minimal 
(i.e., every proper subsemimodule has just one element), almost minimal and congruence-
simple semimodules. 

This paper is a continuation of [1] and [2] and we use the same notation. When 
referring to these two papers, we use e.g. 1.4.1 for Proposition 4.1 from [1] and II.2 
for section 2 from [2]. 

1. A l m o s t m i n i m a l s e m i m o d u l e s ( a ) 

A left scmimodule sM will be called almost minimal if it has both an additively 
absorbing element OM and an additively neutral element 0^ and if So = o -£ 0 = SO, 
Sx == M for every x e M \ P, P = fo,0}, |P| = 2. Throughout this section, let M be 
almost minimal. 

1.1 Lemma, (i) [o\% {Of, P and M arc just all subsemimodules ofsM. 
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(ii) sM has either three (iff\M\ = 2) or four (iff\M\ : 3) different subsemimod-
ules. 

(ni) P=P(sM)=Q(sMl 
(iv) sM is quasitrivial if and only if it is minimal and if and only if\M\ = 2 (then 

sM*QlJS- see 1.3.2;. 

Proof Easy. • 

1.2 Lemma, x + y ± O./or a// Jc,y e M, JC -£ 0. 

Proof Assume, on the contrary, that x + y = 0. Then r £ P, and hence sx = o for 
some s £ 5 . Now, O = O + sy = sx + sy = s(x + y) = :v0 • ~ 0, a contradiction. n 

1.3 Lemma. Put r] = 170 (see 11.2). Then: 
(i) 77 is a congruence of sM and (x,y) £ ^ if and only if{s\ xs = ()) = { s | .yv = 

= 0 } . 

(ii) (JC, 0) £ ^for every x -£ 0. 
(iii) (y, o) £ ^for every y # o. 
(iv) 77 # M x M. 
( v ) 77 = Jfc,. 

(vi) (JC, 2JC) G 17 for every x £ M. 
(vii) 77 is the unique (proper) maximal congruence ofsM. 

Proof By 1.2 and II.2.2, 17 is a congruence of SM. Moreover, (0 : 0) = 5 , 
(o : 0) = 0 and 0 -£ (JC : 0) =£ S for every x £ P. Now, the assertions (i) - (iv) are 
clear. 

Let (x,y) £ ^. If s £ (x : o) then (o,sy) = (sw.sy) e 17, sy = o by (iii) and 
s £ (y : 0). We have shown that (JC : o) C (y : o). Symmetrically, (y : 0) C (x : r;). so 
that (x : o) = (y : o) and (jc,y) € ^0. Thus 17 C rl0. 

Let (u,v) £ r]0. If s £ (u : 0) then (0, sv) = (SM, .VV) £ ij(,. That is, 0 = (0 : o) = 
= (sv : 0), and therefore sv = 0 and s £ (v : 0). We have shown that (u : 0) c (v : 0). 
Symmetrically, (v : 0) C (u : 0), so that (u : 0) = (v : 0) and (w, v) e /70 = 77. Thus 

no £ n* 
Let JC € M. If sjc = 0 then s2x = 2sx = 0. Conversely, if r2x = 0 then rx + rx = 0 

and rx = 0 by 1.2. Thus (x. 2x) £ ^. 
Finally, let o~ be a proper congruence of SM. If (0,0) £ a then(o, x) = (0 + .v, 

0 + x) £ (r for every x £ M, so that cr = M x M, a contradiction. It follows that 
(o, 0) i (r. Similarly, if (0, x) £ o~ for some x i=- o then sx = 0, s € S, and we 
get (o,0) = (so, sx) £ a\ a contradiction. Consequently, if (jc,y) £ <x, .v £ y, then 
x t o ± y. Moreover, if tx = o then (o, ty) £ cr and ty = 0. Similarly the other case 
and we see that (x,y) £ % = 17 (by (v)). Thus cr c 77. D 

1.4 Proposition. 5N = 5M/77 is On (additively) idempotent congruence-simple 
almost minimal semimodule. If sM is not quasitrivial then the same is true for sN. 

Proof Combine 1.3 and l.l(i). • 



1.5 Corollary. The following conditions are equivalent: 
(i) yM is congruence-simple* 

(ii) // = idM. 
(iii) (fx\y € M \ P are such that x 9- y //V/i 0 e {.vx, .sy} O/Hf AX ^ sy for at least 

one s e 5. D 

1.6 Lemma. If(x,y) € // ///£// {//1 .v + u = o } = { v|y + v = 0}. 

P/w/. If .v + u = o then (O, y + u) = (.v + u. y + u) e //, and hence y + u = o. D 

1.7 Lemma. Either M(+) z.v idempotent or Id(M(+)) = P. 

Proof Id(M(+)) is a subsemimodule of s M and P c Id(M(+)). D 

1.8 Lemma. //M. <g I/for f m y n* e M \ 11 

Frwf: If w € P then (0 : w) = 0 = (o : vr), and hence (0, 0) € r/w. • 

2. A l m o s t m i n i m a l s e m i m o d u l e s ( b ) 

This section is an immediate continuation of the preceding one. 

2.1 Lemma, (i) The set (x : 0) is a left ideal of the semiring S for every x € M\{o}. 
(ii) (x : 0)y is a subsemimodule of 5 M for all x, y € A/, x -£ o. 

(iii) (x : 0) n (y : 0) = (.v + y : Q)for all .v,y € M. 
(iv) (x : ()))' = {0} if and only if x ± o = x + y. 

FrOOf (f) and (ii) are checked easily, while (iii) follows from 1.2. As concerns 
(iv), assume first that (x : 0)y = o. Then ix : 0) ^ 0, and so x -£ o. Moreover, by (iii), 
0 = (x : 0) n (y : 0) = (.v + y : 0), and therefore x + y = o. Conversely, if x -£ o = JC + y 
then (A : 0) 0 (y : 0) = (o : 0) = 0 by (iii), and hence 0 $ (x : 0)y. By (ii), (x : 0)y is 
a subsemimodule of sM and (.v : ())y = o now follows from 1.1 (i). • 

2.2 Lemma. The following conditions are equivalent for x,y € M: 
(i) (x : 0)y c {0}. 
(ii) (x : 0) c (y : 0). 

(iii) (x, x + y) € 1/. 
Moreover, if sM is congruence-simple then these conditions are equivalent to: 

(iv) x + y == x. 

Proof (i) implies (ii) trivially, 
(ii) implies (iii). By 2.1(iii), (x + y : 0) = (A : 0), so that (x + y,x) € 77. 
(iii) implies (i). We have (x : 0) = (x + v : 0) = (x : 0) O (y : 0), and hence 
(.v : 0) c (y : ()) and (x : ())y c {()}. 

Assume, finally, that sM is congruence-simple. Then // = idjvi by 1.5, and therefore 
the conditions (iii) and (iv) coincide in this case. D 

2.3 Lemma. The following conditions are equivalent for x,y 6 M: 
(i) (x : 0)y = (0). 



(ii) x 9- o and (x : 0) c (y : 0). 
(iii) x 9- o tf'fd (x, x + y) £ r\. 

Moreover, if sM is congruence-simple then these conditions are euiqvalent to: 
(iv) A* 4- y = A* -£ o. 

Proof We have (x : 0) £ 0 for x # 0 and the rest is clear from 2.2. • 

2.4 Lemma. Assume that s M is congruence-simple. If x, y e M are such that 
x + y =£ x then there is at least one t e S with tx = 0 and ty = o. 

Proof Since x + y -.-= x, we have x t o and (x : 0) =£ i . Now, it follows from 2.1(H) 
and 2.2 that o £ (x : 0)y and our result is clear. D 

2.5 Lemma, (i) The set (x : o) is a left ideal of the semiring S for every x £ M \ {0}. 
(ii) (x : o) ~ 5 c (x : o)for every x £ M\ {0}. 

(iii) (x : o)y is a subsemimodule of sM for all x,y e M, x # 0. 
(iv) (x : o)y + M c (.v : o)y for all x,y e M, x # 0 # y. 

Proof (i), (ii) and (iii). Since x -£ 0, we have (x : 0) =,-- 0 and the remaining 
assertions are easy to check. 
(iv) If y = 0 then (x : o)y = {o\. If y # 0, s e (x : 0) and z £ M then z = ry for some 
r £ S and sy + z = sy + ry = ('.y + r)y £ (x : o)y, since ,v + r £ (x : o) by (ii). • 

2.6 Lemma, (i) (0 : o)y = 0/Or every y £ M. 
(ii) (0 : 0)0 = {o}. 

(iii) (0 : 0)0 = {0}. 
(iv) (0 : o)y = Mfo/ carry y 6 M \ P. 

Proof We have (0 : 0) = 0, (0 : o) = S and the rest is clear. c 

2 J Lemma. Let x 6 A/ \ P. Then: 
(i) (x : 0)0 = {0}. 

(ii) (x : 0)0 = {0}. 
(iii) If(x : c) c (y : 0), y € M, then (x : o)y = {o}. 

Proof We have (x : 0) 7- 0 and the rest is clear. • 

2.8 Lemma. Assume that sM is congruence-simple. Ifx,y £ M, y # 0, then either 
(x : o)y = 0 or (x : o)y = {0} or (x : o)y = M. 

Proof Put K = (x : o)y and a = (K x K) U idM. By 2.5(iii) and 2.5(iv), we see that 
a is a congruence of 5M. If a = idM then either K = 0 or K = {o}. If a — M x A/ then 
K = M. D 

2.9 Lemma. Assume that sM is congruence-simple. Let x,y e M \ {0}. {fix : o) £ 
£ (y : 0) T/ien (x : o)y = M (and* hence for every z £ M there is at least one t £ S with 
tx-o and ty = z). 

Proof Since x -£ 0, we have (x : 0) ^ 0. Moreover, (x : 0) £ (y : 0), and hence 
(x : o)y # {0}. Now, (x : o)y = M by 2.8. D 



2.10 Lemma. Assume that sM is congruence-simple. Let x,y € M be such that 
x + y = .v T1 y. Then: 

(i) A" T~ 0, y 9- o a/id (x : o) <£(y : o). 
(ii) //'y 9- 0 then for every z £ M t/ierf /s fit teas/ r?nf f e S w/t/* tx = o and ty = z. 

Proof (i) Since x+y = x ^ y, we have x -T~ 0 and y =£ r;. Moreover, (y : O) C (A* : o). 
But 77 = idM and x ^ y. Thus (A : 0) £ ( j * o). 
(ii) Combine (I) and 2.9. n 

3. A l m o s t m i n i m a l s e m i m o d u l e s ( c ) 

Throughout this section, let 5M be an almost minimal semimodule that is not 
quasitrivial (see l.l(iv)). 

3.1 Lemma, (i) The semiring S is not left quasitrivial 
(ii) The semiring S contains no left multiplicatively absorbing element. 

(iii) The homomorphism if : S —> End(M(+)) given by (<p(s))(x) = sx (see II.4.1) 
is infective, provided that S is congruence-simple. 

Proof (i) and (ii). Since s^ is not quasitrivial, we can find x € M \ P and then 
sM = Sx is a homomorphic image of sS. Now, if q € S were left multiplicatively 
absorbing then qM = qSx = qx, and so \qM\ = 1. But q0 = 0 t o = qo, a contradic­
tion. 
(iii) Use II.4. l(v). n 

3.2 Lemma. Assume that M is finite. Then there is at least one q € S such that: 
(i) qx = Ofjr cwry A e M \ {()}. 

hi) <yy = (Y/ + s)yfor all s e S andy € M. 
(iii) r/c = r^/z./^r tf// / € 5 <//id - € M. 

Proof l;or every A £ M \ {()} there is q. e: 5 with qxx = O. Put </ = X </i> * G M, 
A =£ 0. Then </(A/ \ {()}) = o. Moreover, if y #* 0 then (q + .y)y = r/y + sy = o + ,vy = r;. 
Of course, (7 + .v)0 = 0 = qy. Similarly, if - 9- 0 then sqz. = so = O = </;;. Again, 
sgO = 0 = q(), D 

3.3 Proposition. Assume that S is congruence-simple and M is finite. Then S 
contains an additively absorbing element o<$ such that os is right multiplicatively 
absotbing. On the other hand, S has no left multiplicatively absorbing element. 

Proof Combine 3A(ii), 3.1 (iii), 3.2(ii) and 3.2 (iii). • 

3.4 Lemma. Assume that sM is finite and congruence-simple. Then for every 
u «:: M \ {0} there is at least one t £ S such that tx = 0 if x + u = u and tx = o if 
x + u # u. 
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Proof Put L = {x| x + u t u}. Then L is a non-empty finite set (we have o £ L 
and 0 g L) and for every x £ L there is tx £ S with tAx = o and txu = 0. Put t = X lV 
x £ L. Then tL = o and tw = 0. Now, if y + w = u then 0 = tu = ty + tu = try. • 

3.5 Lemma. Assume that sM is finite and congruence-simple. Then for all u £ 
£ M\P and v € M there is at least one s e S such thai su = v, sx + v = vifx + u = u 
and sx = o if x + u ± u. 

Proof. By 3.4, there is t r S with tx = 0 if x + u = w and tx = o if x + u -£ it. Since 
u g P, there is r G 5 with ru - v. Put s = r + t. Then su = ru + tu = v + 0 = v. If 
x+w = u then v = sw = sx+su = sx+v. If x+u t u then :v.v = rx+tx = rx+o = o. D 

4. A s o r t of m i n i m a l s e m i m o d u l e s ( a ) 

In this section, let 5M be a minimal semimodule such that o = OM e M and So = o 
(i.e., 0 G P(sM)). If 5M is quasitrivial then \M\ = 2 and sM is isomorphic to one of 
the semimodules <2i,8» Qi,s a n ( i Q+s ( s e e 1.4.1). Now, we will assume that sM is not 
quasitrivial. Thee Q(sM) = P(sM) = {o}. 

4.1 Lemma, (i) [o] and M are just all subsemimodules ofsM. 
(ii) For all x,y £ M, x =£ 0, there /s at least one s c 5 inf/i sx = y. 

Proof. It is easy. D 

4.2 Lemma, (i) r\0 *
s an equivalence (see II.2). 

(ii) If(x,y) £ Tjo then (sx, sy) £ t]()fior every s £ S. 
(iii) (x, o) i Tjofor every x £ M, x # o. 

Proof. It is easy. • 

4.3 Lemma. Define a relation A0 on M by (x,y) e A if and only if(x : o) c (y : o). 
Then: 

(i) A0 is a quasiordering (i.e., it is reflexive and transitive). 
(ii) ker(,l0) = IJ0. 

(iii) (x,o) £ A0 for every x £ M. 
(iv) (o,y) £ J0 far every y £ M \ {o}. 
(v) (x, x + y) £ A0for all x,y £ M. 

Proof It is easy. • 

4.4 Lemma. The following conditions are equivalent for x,y £ M: 
(1) (x,y)£A0. 

(ii) (x : 6)y = {o}. 
(iii) (x : o)y ^ M. 

Proof Use the fact that (x : o)y is a subsemimodule of 5 M. n 



4.5 Lemma. L^t x e M, x £ o, he such that the set L = {y £ M\(yfx) i A0) is 
Jinite 'Then fior every z e M there is at least one s e S such that sx = z and sy = o 
for every y € L. 

Proof. By 4.4, (y : 6)x = M, and so there is .vv € S with .yvy = o and syx = z. Now, 
we put :v = X -vy* y £ L. n 

4.6 Lemma. Assume that M is Jinite. Then tM = |o}fOr /it lewt one t c S. 

FrOO/.' I:or every x € M, there is tx e S with txx = o. Now, we put / = X ^ 
x c A/. D 

4.7 Lemma. Assume that the semiring S is congruence-simple and M is finite. 
Then S contains a bi-absorbing element % such that osM = {o}. 

Proof See II.4.3. • 

5. P a r t i a l s u m m a r y 

5.1 Lemma. Let sM be a semimodule such that I = M whenever I is a subsemi-
module ofis M with I + M c I and \I\ > 2 (e.g., s M congruence-simple). Ifw € P(sM) 
(i.e., Sw = w) then either vv = OM or w = % . 

Proofi Put / = M + w. Then (/ + M) U SI c I and w e L If I = M then vv = 0M. If 
|I| = 1 then vv = 6>,v/. • 

5.2 Corollary. Let sM be a semimodule as in 5. L Then |P(sM)| < 2. D 

5.3 Lemma. Let S be a bi-ideal-simple semiring (e.g., S congruence-simple). If 
q e S is multiplicatively absorbing then either q = O5 is additively neutral or q = (>s 
is bi-absorbing. 

Proofi The set S + q is a bi-ideal of S. D 

5.4 Proposition. The following conditions are equivalent for a congruence-simple 
semiring S: 

(i) S is Jinite, not left quasitrivial and S has the multiplicatively absorbing ele­
ment if (then either q = O.y is additively neutral or q = os is bi-absorbing — 
see 5.3). 

(ii) There is a finite non-quasitrivial minimal semimodule $M with Q(sM) # 0. 
(i i i) There is a finite non-quasitrivial congruence-simple minimal semimodule 5 N 

with Q(SN) ± 0. 

Proofi (i) implies (ii). By 1.7.5, there exists a finite minimal semimodule 5M that 
is not quasitrivial. Moreover, by I.7.6(ii), we have P(sM) =£ i . 
(ii) implies (iii). By 1.6.3, there is a congruence^ of 5M such that5N = sM/g is min­
imal, congruence-simple and not quasitrivial. Obviously, N is finite and Q(sM)/g c 
-= Q(sN). 



(iii) implies (i). By 1.5.9, the semiring S is finite and it is not left quasitrivial due 
to 1.5.8(H). Furthermore, by II.3.1, Q(SN) = P(SN) = {w}, Sw = w and, by 11.3.4, 
either w = 0M or w = OM (see also 11.4.4(H)). Finally, by II.4.4(iii) and II.4.4(iv), 
the semiring S contains the multiplicatively absorbing element q and either q = 0? or 
q = Os • a 

5.5 Proposition. Let S be a semiring satisfying the equivalent conditions of 5.4 
and let SM be a (finite) non-quasitrivial congruence-simple minimal semimodule. 
Then just one of the following two cases holds: 

( 1 ) 5 contains the additively neutral and multiplicatively absorbing element 0$, 
Ann(sM) = {0S}. Q(SM) = P(sM) = {0M} andS • 0M = 0M = 0S • M; 

(2) S contains the bi-absorhing element os> Ann(sM) = {os}, Q(SM) = P(SM) = 
= {%} and S - o\f = oM = os • M. 

Proof We have M = Sx for any x e M \ Q(sM). The rest is clear from 5.4 and 
II.4.4. a 

5.6 Lemma. Let SM be a finite minimal semimodule such that Q(sM) = i . 
(i) IfM(+) is idempotent then M(+) has an absorbing element % . 

(ii) IfoM £ M then qM = oMfor at least one q £ 5. 
(iii) IfS is congruence-simple then q is uniquely determined, q is both additively 

and left multiplicatively absorbing in S and q is not right multiplicatively 
absorbing (consequently, S has no right multiplicatively absorbing element 
at all). 

Proof (i) We have oM = 2 *> x e M. 
(ii) We have Sx = M for every x € M, and so qxx = OM h>r some qx e S. If q = X </n 
x e M, then f M = o^. 
(iii) By H.4.3(i) and II.4.3(v), q is both additively and left multiplicatively absorbing 
in S. In particular, # is uniquely determined. On the other hand, it follows from 
IL4.5(ii) that S has no right multiplicatively absorbing element. D 

5.7 Lemma. Let S be a congruence-simple semiring. Then at least one of the 
following two cases holds: 

(1) Q(s M.) # ®for every finite minimal left semimodule s M; 
(2) Q(NS) # § for every finite minimal right semimodule Ns. 

Proof Let SM be a finite minimal left semimodule with Q(SM) = 0. Since M(+) 
is a finite (commutative) semigroup, the set I of idempotent elements of M(+) is non­
empty. Moreover, I is a subsemimodule of SM, Now. if / = \w\ is one-element then 
Sw = w and w e Q(sM) = 0, a contradiction. Thus !/| ,* 2 and we get / = M, since 
M is minimal. That is, M(+) is idempotent and it follows from 5.6 that 5 has a left 
multiplicatively absorbing element but no right one. The rest is clear. D 

5.8 Lemma, (i) IfS is a finite semiring then every minimal (left, right) semimodule 
is finite. 
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(ii) IfS is a congruence-simple semiring such that there exists a non-quasitrivial 
finite (left, right) semimodule then S is finite. 

Proof See 1.5.10 and 1.5.9. D 

53 Classification. Now, (finite congruence-simple) semirings S will be divided 
into the following four pair-wise disjoint classes: 

(A) There exists at least one non-quasitrivial minimal left 5-semimodule and at 
least one non-quasitrivial minimal right 5-semimodule. 

(B) There exists at least one non-quasitrivial minimal left semimodule and all 
minimal right senrtimodules are quasitrivial. 

(C) There exists at least one non-quasitrivial minimal right semimodule and all 
minimal left semimodules arc quasitrivial. 

(D) All minimal left or right semimodules are quasitrivial. 
(Notice that the classes (B) and (C) are dual via forming the opposite semirings.) 

5 JO Proposition. Let S be a finite congruence-simple semiring of type (A). Then: 
(i) S is neither left nor right quasitrivial. 

(ii) S contains the multiplicatively absorbing element q such that either q = i)s 
is additively neutral or q = os is bi-absorbing. 

(iit) If q = 0s then either S is additively idempotent or S is a ring. 
(iv) If q = os then either S is additively idempotent or S + S = {Ov}-
(v) If sM (Nv, resp.) is a non-quasitrivial minimal left (right, resp.) semimodule 

then M (N, resp.) is finite and Q(sM) ± 0 (Q(NS) ± 0, resp.) (see 5.5 and 
11.4.4;. 

Proof First, it follows from 1.5.8(H) (and its dual) that S is neither left nor right 
quasitrivial. Now, let sM (Nv, resp.) be a non-quasitrivial minimal left (right, resp.) 
seminodulc. By 5.8(i), M (N, resp.) is finite. Moreover, taking into account 5.7, 
we can assume that Q(sM) t- 0 (the other case being dual). Now, by 5.4, S has the 
multiplicatively absorbing element q such that either q = 0S is additively neutral or 
q = os is bi-absorbing. 

Assume that q = O5 and that sM is congruence-simple (see 1.6.3). By 5.5(1), we 
have 0t\f G M and SOM =: 0^ = O.vM. Define a relation K on M by (x,y) € K if 
.v + a = my and y + v = nx for some //. v e M and positive integers m,n. It is easy 
to check that K is a congruence of ,vlV/ and (r., 2r.) e K for every z £ M. If K = idM 
then z := 2c and M(+) is idempotent. On the other hand, if K t id\i then K = M X Mf 

(:.. i).\j) e K for every z e M and this fact easily implies that M(+) is a group, i.e., M is 
a module. However, by 11.4. l(v), the semiring 5 is isomorphic to a subscmiring of the 
(finite) semiring End(M(+)) and we conclude that cither S is additively idempotent 
or it is a ring. 

Next, assume that q = os and that SM is congruence-simple (see 1.6.3). By 5.5(2), 
So,\t "r <>M = osM, Consider the congruence K of SM, If K = idM then M(+) is 
idempotent and the same is true for S( + ) If K = M x M then, for every z e M» 
(c, 0/L/) c- A% and so mz = oM lor a positive integer ///. The set J = {c | 2c = OM } 



is a subsemimodule of SM, If |J| = 1 then J = {OM} and 2w t OM for every 
w e M \ {OM}- NOW, if n is the smallest positive integer with nw = rjM then w > 3, 
(n - \)w t OM and (rt - \)w € J, a contradiction. Thus |J| > 2 and we have J = M, 
since M is minimal. We have shown that 2x = OM for every x e M. Further, put 
9 = ((M + M)x(M + M)) u idM. Again, 0 is a congruence of SM. If 6 = idfvf then 
M + M = (OM} and 5 + 5 .- \os] by IIAl(v). If 0 = M x M then M + M = M and 
M(+) is a non-trivial commutative nil-semigroup of index 2 and without irreducible 
elements. However, any such semigroup is infinite, a contradiction. 

Finally, if Q(NS) = § then, proceeding similarly as in the proof of 5.7, we can 
show that N(+) is idempotent and 5 has no left multiplicatively absorbing element, 
a contradiction. • 

5.11 Remark. Let 5 be a finite congruence-simple semiring of type (A) (see 5.10). 
(i) If 5 is a ring then S is a copy of a matrix ring over a (finite) field (use 1.5.7 

and the fact that 5 is not quasitrivial). Non-quasitrivial minimal semimodules 
are just the usual simple modules. 

(ii) If S + S = {os} then the multiplicative semigroup S(-) is congruence-simple. 
(iii) Let 5 be additively idempotent. Then S has the multiplicatively absorbing 

element q and either q = 0S is additively neutral or q = os is hi-absorbing. 
Assume that q = 0S (the subtype (Al)). If $M (Ns, resp.) is a non-quasitrivial 

minimal semimodule then OM £ M (ON e N, resp.) and S - OM = {OM} = O.y • M 
(OM • S = {ON} =•- N • 0iS*, resp.). Moreover, SM (NSf resp.) is additively idempotent. 

Now, assume that q = os (the subtype (A2)). If SM (Ns, resp.) is a non-quasitrivial 
minimal semimodule then OM £ M (ON e N, resp.) and S • oM = {OM} = o.y * M 
(#A, • s = {ON} =-- N • O.y, respA. Moreover, SM (NSy resp.) is additively idempotent. 

5.12 Proposition, In S he a finite congruence-simple semiring of type (B). Then: 
(i) S is not left quasitriviaL 

(ii) IfS is right quasitrivial then S - K°p. 
(iii) If\S\ > 3 then S is neither left nor right quasitriviaL 
(iv) S contains the additively absorbing element q such that q is left multiplica­

tively absorbing, 
(v) 5 has no right nndtiplicatively absorbing element. 

(vi) S is additively idempotent, 
(vii) If SM is a non-quasitrivial minimal left semimodule then M is finite and 

Q(sM) = <&. 
(viii) Sop is of type (Q. 

Proof First, it follows from 1.5.8(H) that S is not left quasitriviaL If S is right 
quasitrivial then S is not commutative and it follows from the right-hand form of 1.5.7 
that 5 --- K°p. Combining this with the right-hand form of 1.7.5, we conclude that S 
has no right multiplicatively absorbing element. Now, let SM be a non-quasitrivial 
minimal left semimodule. By 5.8(i), M is finite. By 1.6.3, there is a congruence p 
of sM such that SN = SM/Q is non-quasitrivial, minimal and congruence-simple. If 
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Q(sM) * i then Q(SN) t 0. On the other hand, it follows from. II.4.4 that Q(SN) = i . 
Thus Q(sM) = 0 as well. Moreover, proceeding similarly as in the proof of 5.7, 
we can show that M(+) and N(+) are idempotent. Then, of course, 5 is additively 
idempotent (use II.4.1(v)). We have proved the assertions (i), (ii), (iii), (v), (vi) and 
(vii). Finally, (iv) follows from. 5.6 and (viii) is clear. • 

5.1.3 Remark. Let 5 be a finite congruence-simple semiring of type (B) (see 5.12). 
Then S is additively idempotent and S has the additively absorbing element q such 
that q is left multiplicatively absorbing but not right muliplicatively absorbing. More­
over, there exists a non-quasitrivial congruence-simple minimal left semimodule 5 M 
with Q(sM) = 0; we have Sx = M for every x e M (i.e., S acts transitively on M). 
Further, if S is not isomorphic to K°p then, according to 1.7.3 (and 1.4), there ex­
ists a non-quasitrivial congruence-simple almost minimal right semimodule Ns. Both 
semimodules 5 M and N5 are additively idempotent. 

5.14 Proposition. Let S be a finite congruence-simple semiring of type (D). Then 
S is commutative, quasitrivial and either S is isomorphic to one of K.2, K3, K4 or S 
is a zero multiplication ring of prime order (see 1.5.7). 

Proof Assume that 5 is not left quasitrivial. Let 5M be a non-quasitrivial. finite 
semimodule with minimal \M\ (see 1.6.8). Since S is of type (D), the semimodule 5M 
is not minimal. Then, by I.6.8(i) and I.6.8(iv), we see that sM is congruence-simple 
and f}(sM) = Q(sM) -=- Q\js- Moreover, using 1.7.3 and its proof, we conclude that 

SM is almost minimal. Now, by 3.3, S contains the additively absorbing element Os 
such that Os is also right multiplicatively absorbing. Consequently, applying the dual 
of 1.7.5, we see finally that 5 is right quasitrivial. The rest is clear from 1.5.7 and its 
dual. D 

5.15 Remark. Let S be a finite additively idempotent congruence-simple semir­
ing. The element os = £ 1 , x e 5 , is additively absorbing. If % is neither left nor 
right multiplicatively absorbing then O5 € S and Os is multiplicatively absorbing. 
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