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Quasitrivial semimodules I11
KHALDOUN AL-ZOUBI, TOMAS KEPKA and PETR NEMEC
Praha

Received 15. October 2008

The paper continues the investigation of semimodules. Main emphasis is laid on minimal
(i.e., every proper subsemimodule has just one element), almost minimal and congruence-
simple semimodules.

This paper is a continuation of [1] and [2] and we use the same notation. When
referring to these two papers, we use e.g. 1.4.1 for Proposition 4.1 from [1] and 1.2
for section 2 from [2].

1. Almost minimal semimodules (a)

A left semimodule ¢ M will be called almost minimal if it has both an additively
absorbing element 0y, and an additively neutral element Oy and if So =0 # 0 = S0,
Sx = M forevery x € M\ P, P = {0,0}, |P| = 2. Throughout this section, let M be
almost minimal.

1.1 Lemma. (i) {0}, {0}, P and M are just all subsemimodules of s M.
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(i1) sM has either three (iff M| = 2) or four (iff IM| > 3) different subsemimod-
ules.

(i) P =P(sM) = Q(sM).

(iv) sM is quasitrivial if and only if it is minimal and if and only if |M| = 2 (then
SM = QI.S — See 132)

Proof. Easy. O
1.2 Lemma. x +y # 0 forall x,y e M, x # Q.

Proof. Assume, on the contrary, that x + y = 0. Then x ¢ P, and hence sx = o for
some s € S. Now, 0 =0+ sy = sx+ sy = s(x+y) = s0 = 0, a contradiction. o

1.3 Lemma. Put i = ny (see 11.2). Then:
(1) nis a congruence of s M and (x,y) € nif and only if {s|xs =0} = {s|sy =
=0}
(1) (x,0) ¢ n for every x # 0.
(ii1) (y,0) & n foreveryy # o.
(iv) n# M xX M.
(V) n=n,.
(vi) (x,2x) € npforevery x € M.
(vii) n is the unique (proper) maximal congruence of s M.

Proof. By 1.2 and 11.2.2, n is a congruence of ¢M. Moreover, (0 : 0) = §,
(0:0)=0and 0 # (x:0) # S forevery x ¢ P. Now, the assertions (i) — (iv) are
clear.

Let (x,y) € n. If s € (x : o) then (0, sy) = (sx,sy) € n, sy = o by (ii1) and
s € (v : 0). We have shown that (x : 0) C (y : 0). Symmetrically, (y : 0) C (x : 0), s0O
that (x : 0) = (v : 0) and (x,y) € n5,. Thus  C 1,,.

Let (u,v) € n,. If s € (u : 0) then (0, sv) = (su, sv) € n,. Thatis, d = (0 : 0) =
= (sv : 0), and therefore sv = 0 and s € (v : 0). We have shown that (u : 0) C (v : 0).
Symmetrically, (v : 0) € (u : 0), so that (u : 0) = (v : 0) and (u,v) € 19 = n. Thus
o € 1.

Let x € M. If sx = 0 then s2x = 2sx = 0. Conversely, if r2x = O thenrx+rx =0
and rx = 0 by 1.2. Thus (x,2x) € 7.

Finally, let o be a proper congruence of s M. If (0,0) € o then(o,x) = (0 + x,
0+ x) € o forevery x € M, so that o = M x M, a contradiction. It follows that
(0,0) ¢ o. Similarly, if (0,x) € o for some x # o then sx = 0, s € S, and we
get (0,0) = (so, sx) € o, a contradiction. Consequently, if (x,y) € o, x # y, then
x # o #y. Moreover, if 1x = o then (o,ty) € o and ry = o. Similarly the other case
and we see that (x,y) € 1, = 17 (by (v)). Thus o~ C 1. m]

1.4 Proposition. N = ¢M/n is an (additively) idempotent congruence-simple
almost minimal semimodule. If s M is not quasitrivial then the same is true for g N.

Proof. Combine 1.3 and 1.1(1). o



1.5 Corollary. The following conditions are equivalent:
(1) sM is congruence-simple.

(i1) n = 1dy.
(i) If x,y € M\ P are such that x # y then 0 € {sx, sy} and sx # sy for at least
onesesSs. =]

1.6 Lemma. If (x,y) € nthen{u|x+u=0}={v|y+v=o}.

Proof. If x + u = o then (0,y + u) = (x+u,y+u) € n,and hence y + u = o. o
1.7 Lemma. Either M(+) is idempotent or Id(M(+)) = P.

Proof. 1d(M(+)) 1s a subsemimodule of s M and P C Id(M(+)). u]
1.8 Lemma. n,, € n for everyw € M\ P.

Proof. If w ¢ Pthen (0 : w) =0 = (0 : w), and hence (0, 0) € n,,. O

2. Almost minimal semimodules (b)

This section is an immediate continuation of the preceding one.

2.1 Lemma. (i) The set (x : 0) is a left ideal of the semiring S for every x € M\ {0}.
(1) (x: 0)yis a subsemimodule of s M for all x,y € M, x # o.

(i) (x:0)N@y:0)=(x+y:0)forall x,ye M.

(iv) (x:0)y ={o}ifandonly if x # 0 = x + y.

Proof. (1) and (i1) are checked easily, while (iii) follows from 1.2. As concerns
(iv), assume first that (x : 0)y = o. Then (x : 0) # 0, and so x # 0. Moreover, by (iii),
0=(x:0N(:0)=(x+y:0),and therefore x+y = 0. Conversely, if x #0 = x+y
then (x : 0) N (y: 0) = (0 : 0) = 0 by (ii1), and hence 0 ¢ (x : O)y. By (i), (x : O)y is
a subsemimodule of ¢ M and (x : 0)y = 0 now follows from 1.1(i). O

2.2 Lemma. The following conditions are equivalent for x,y € M:
(1) (x:0)yc {0}
(1) (x:0) < (y:0).
(111) (x,x+y)en.
Moreover, if s M is congruence-simple then these conditions are equivalent to:
(iv) x+y=nx.

Proof. (1) implies (ii) trivially.
(11) implies (iii). By 2.1(iii), (x + y : 0) = (x : 0), so that (x + y, x) € n.
(i11) implies (i). We have (x : 0) = (x+y : 0) = (x : 0) N (y : 0), and hence
(x:0)C (y:0)and (x:0)y C {0}.

Assume, finally, that ¢ M is congruence-simple. Then 7 = idy by 1.5, and therefore
the conditions (iii) and (iv) coincide in this case. ]

2.3 Lemma. The following conditions are equivalent for x,y € M:

(i) (x:0)y = [0}



(1) x#oand (x:0)C(y:0).
(1) x#oand (x,x+y) €.

Moreover, if s M is congruence-simple then these conditions are euigvalent to:
(iv) x+y=x#o.

Proof. We have (x : 0) # 0 for x # o and the rest is clear from 2.2. O

2.4 Lemma. Assume that s M is congruence-simple. If x,y € M are such that
X+ y # xthen there is at least one t € S withtx = 0 and ty = o.

Proof. Since x+y # x, we have x # 0 and (x : 0) # 0. Now, it follows from 2.1(ii)
and 2.2 that 0 € (x : 0)y and our result is clear. a

2.5 Lemma. (i) The set (x : 0) is a left ideal of the semiring S for every x € M\ {0}.
(1) (x:0)+S C(x:0)foreveryxe M\ {0}

(i11) (x : o)y is a subsemimodule of s M for all x,y € M, x # 0.

(iv) (x:o0)y+MC (x:o)yforallx,ye M, x#0 # y.

Proof. (i), (i1) and (iii). Since x # 0, we have (x : 0) # 0 and the remaining
assertions are easy to check.
(iv)If y=o0then (x: 0)y = {0}. If y # 0, s € (x : 0) and z € M then z = ry for some
reSandsy+z=sy+ry=(s+r)ye(x:o)y, since s+ r € (x:o0)by (ii). m]

2.6 Lemma. (i) (0 : 0)y = 0 for every y € M.

(11) (0 :0)o = {o}.

@i11) (0 :0)0 = {0}

(iv) (0 :0)y = M foreveryy e M\ P.

Proof. We have (0 : 0) =0, (0: 0) =S and the rest is clear. ]

2.7 Lemma. Let x € M\ P. Then:
(1) (x:0)o = {o}.
(1) (x:0)0 = {0}
(i) If (x:0) S (y:0), y€ M, then (x: o)y = {o}.

Proof. We have (x : 0) # 0 and the rest is clear. O

2.8 Lemma. Assume that ¢ M is congruence-simple. If x,y € M, y # 0, then either
(x:0)y=0o0r(x:0)y={o}or(x:0)y=M.

Proof. Put K = (x : o)y and a@ = (K X K) Uidy. By 2.5(ii1) and 2.5(iv), we see that
a is a congruence of ¢ M. If @ = idy then either K = @ or K = {o}. If @ = M X M then
K=M. O

2.9 Lemma. Assume that s M is congruence-simple. Let x,y € M\ {0}. If (x : 0) €
€ (v :0) then (x : 0)y = M (and hence for every z € M there is at least one t € S with
tx =o0andty = z).

Proof. Since x # 0, we have (x : 0) # 0. Moreover, (x : 0) € (y : 0), and hence
(x :0)y # {o}. Now, (x : 0)y = M by 2.8. O
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2.10 Lemma. Assume that s M is congruence-simple. Let x,y € M be such that
x+y=x#y. Then:
(1) x#0,y#oand(x:0) <L (y: o).
(11) Ify # O then for every z € M there is at least onet € S withtx = oand ty = z.

Proof. (1) Since x+y = x # y, we have x # O and y # 0. Moreover, (y : 0) € (x : 0).
Butnp =idy and x # y. Thus (x: 0) £ (v : 0).
(i1) Combine (i) and 2.9. a

3.Almost minimal semimodules (c¢)

Throughout this section, let ¢ M be an almost minimal semimodule that is not
quasitrivial (see 1.1(iv)).

3.1 Lemma. (i) The semiring S is not left quasitrivial.

(i1) The semiring S contains no left multiplicatively absorbing element.

(111) The homomorphism ¢ : S — End(M(+)) given by (¢(s))(x) = sx (see 11.4.1)
is injective, provided that S is congruence-simple.

Proof. (1) and (i1). Since g M is not quasitrivial, we can find x € M \ P and then
sM = Sxis a homomorphic image of sS. Now, if g € S were left multiplicatively
absorbing then gM = ¢S x = gx, and so |gM| = 1. But g0 = 0 # o = go, a contradic-
tion.

(ii1) Use IL4.1(v). O

3.2 Lemma. Assume that M is finite. Then there is at least one g € S such that:
(1) gx = o forevery x € M\ {O}.

(1) gy=(q+s)yforallseS andy e M.

(ill) gz =tqzforallt € S and z € M.

Proof. For every x € M \ {0} there is g, € S with g.x = 0. Putg = Y g, x € M,
x # 0. Then g(M \ {0}) = 0. Moreover, if y # 0 then (¢ + s)y = gy + sy = 0 + sy = 0.
Of course, (¢ + 5)0 = 0 = gy. Similarly, if z # O then sqz = so = 0 = gz. Again,
sq0 = 0 = ¢0. O

3.3 Proposition. Assume that S is congruence-simple and M is finite. Then S
contains an additively absorbing element os such that os is right multiplicatively
absorbing. On the other hand, S has no left multiplicatively absorbing element.

Proof. Combine 3.1(ii), 3.1(1i1), 3.2(i1) and 3.2 (iii). O

3.4 Lemma. Assume that sM is finite and congruence-simple. Then for every

u € M\ {0} there is at least one t € S such thattx = 0 if x+u = uand tx = o if
X+ U F U



Proof. Put L = {x|x+ u # u}. Then L is a non-empty finite set (we have 0 € L
and 0 ¢ L) and for every x € L thereist, € S withr,x = o and t,u = 0. Putt = } 1y,
xe L ThentL =oandfu=0. Now,if y+u=wuthenO=1tu=ty+tu=ty. =

3.5 Lemma. Assume that s M is finite and congruence-simple. Then for all u €
€ M\ Pandv € M there is at least one s € S such that su =v, sx+v=vifx+u=u
and sx =0 if x + u # u.

Proof. By 3.4, thereisr € S withrx =01if x+u = wand rx = 0 if x + 1 # u. Since
u¢ P,thereisre S withru=v. Puts=r+¢t Thensu=ru+tu=v+0=v.If
x+u =uthenv = su = sx+su = sx+v. If x+u # uthen sx = rx+tx =rx+o=0. 0O

4. A sort of minimal semimodules (a)

In this section, let ¢ M be a minimal semimodule such thato = oy € Mand So = o
(i.e., 0 € P(sM)). If s M is quasitrivial then [M| = 2 and s M is isomorphic to one of
the semimodules Q; s, 0> and Q45 (see 1.4.1). Now, we will assume that g M is not
quasitrivial. Then Q(s M) = P(s M) = {o}.

4.1 Lemma. (1) {0} and M are just all subsemimodules of s M.
(i1) Forall x,y € M, x # o, there is at least one s € S with sx = y.

Proof. Tt is easy. o

4.2 Lemma. (i) 1, is an equivalence (see 11.2).
(1) If (x,y) € n, then (sx, sy) € n, for every s € S.
(ii1) (x,0) ¢ 1, forevery x € M, x # o.

Proof. It is easy. o

4.3 Lemma. Define a relation 1, on M by (x,y) € A if and only if (x : 0) € (y : 0).
Then:
(i) A, is a quasiordering (i.e., it is reflexive and transitive).
(ii) ker(d,) = 7.
(111) (x,0) € A, forevery x € M.
(iv) (0,y) & A, for everyy e M\ {o}.
V) (x,x+y) e, forall x,y e M.

Proof. 1t is easy. O

4.4 Lemma. The following conditions are equivalent for x,y € M:
(1) (x,y) € 4.

(i) (x:o)y = {o}

(i) (x:0)y # M.

Proof. Use the fact that (x : 0)y is a subsemimodule of ¢ M. O



4.5 Lemma. Let x € M, x # o, be such that the set L = {y € M|(y,x) ¢ A,} is
finite. Then for every z € M there is at least one s € S such that sx = z and sy = o
foreveryye L.

Proof. By 4.4, (y : 0)x = M, and so there is 5, € § with 5,y = 0 and s,x = z. Now,
weputs =3 s,y€L =

4.6 Lemma. Assume that M is finite. Then tM = {0} for at least one t € S.

Proof. For every x € M, there is t, € S with t,.x = 0. Now, we putt = ) 1,
xeM. o

4.7 Lemma. Assume that the semiring S is congruence-simple and M is finite.
Then S contains a bi-absorbing element os such that os M = {0}.

Proof See I1.4.3. o

S5.Partial summary

5.1 Lemma. Let ¢ M be a semimodule such that I = M whenever I is a subsemi-
module of sM with [+ M C I and|l| > 2 (e.g., s M congruence-simple). If w € P(s M)
(i.e., Sw=w) then either w = Oy or w = 0.

Proof. Putl = M +w. Then({ + MY)USI Clandw e l. If I = M thenw = 0y, If
7] = 1 thenw = oy. a

5.2 Corollary. Let s M be a semimodule as in 5.1. Then |P(s M)| < 2. ]

5.3 Lemma. Let S be a bi-ideal-simple semiring (e.g., S congruence-simple). If
q € S is multiplicatively absorbing then either q = Os is additively neutral or g = og
is bi-absorbing.

Proof. The set § + g is a bi-ideal of S. O

5.4 Proposition. The following conditions are equivalent for a congruence-simple
semiring S :
(1) S is finite, not left quasitrivial and S has the multiplicatively absorbing ele-
ment q (then either g = Os is additively neutral or q = os is bi-absorbing —
see 5.3).
(i1) There is a finite non-quasitrivial minimal semimodule s M with Q(s M) # 0.
(ii1) There is a finite non-quasitrivial congruence-simple minimal semimodule s N
with Q(sN) # 0.

Proof. (i) implies (i1). By 1.7.5, there exists a finite minimal semimodule ¢ M that
is not quasitrivial. Moreover, by 1.7.6(ii), we have P(s M) # 0.
(i1) implies (ii1). By 1.6.3, there is a congruence p of ¢ M such that yN = ¢ M/p is min-
imal, congruence-simple and not quasitrivial. Obviously, N is finite and Q(sM)/o C
C Q(sN).



(iii) implies (i). By 1.5.9, the semiring S is finite and it is not left quasitrivial due
to 1.5.8(ii). Furthermore, by 11.3.1, Q(sN) = P(sN) = {w}, Sw = w and, by 11.3.4,
either w = Oy or w = o (see also 11.4.4(i1)). Finally, by 11.4.4(iii) and 11.4.4(iv),
the semiring S contains the multiplicatively absorbing element ¢ and either ¢ = Og or
q=0s. |

5.5 Proposition. Ler S be a semiring satisfying the equivalent conditions of 5.4
and let sM be a (finite) non-quasitrivial congruence-simple minimal semimodule.
Then just one of the following rwo cases holds:

(1) S contains the additively neutral and multiplicatively absorbing element O,
Ann(sM) = {0s}, O(s M) = P(s M) = {0y} and S - Opr = Oy = Os - M

(2) S contains the bi-absorbing element og, Ann(sM) = {os}, Q(s M) = P(s M) =
={omyland S - oy = oy = 05 - M.

Proof. We have M = Sx for any x € M \ Q(s M). The rest is clear from 5.4 and
11.4.4. o

5.6 Lemma. Let s M be a finite minimal semimodule such that Q(s M) = 0.
(1) If M(+) is idempotent then M(+) has an absorbing element 0.

(11) If opr € M then gM = oy for at least one q € S.

(iii) If S is congruence-simple then q is uniquely determined, q is both additively
and left multiplicatively absorbing in S and q is not right multiplicatively
absorbing (consequently, S has no right multiplicatively absorbing element
at all).

Proof. (1) We have oy, = >, x, x € M.
(i1) We have Sx = M forevery x € M, and so g.x = oy forsome g, € S. If ¢ = 3 q.,
x € M, then gM = oy,.
(i11) By 11.4.3(1) and 11.4.3(v), ¢ is both additively and left multiplicatively absorbing
in S. In particular, ¢ is uniquely determined. On the other hand, it follows from
[1.4.5(i1) that S has no right multiplicatively absorbing element. O

5.7 Lemma. Ler S be a congruence-simple semiring. Then at least one of the
following two cases holds:
(1) O(sM) # 0 for every finite minimal left semimodule s M ;
(2) O(Ns) # 0 for every finite minimal right semimodule Ng.

Proof. Let ¢ M be a finite minimal left semimodule with Q(s M) = 0. Since M(+)
is a finite (commutative) semigroup, the set I of idempotent elements of M(+) is non-
empty. Moreover, I is a subsemimodule of ¢ M. Now, if / = {w} is one-element then
Sw=wandw € Q(sM) = 0, a contradiction. Thus |/| > 2 and we get I = M, since
M is minimal. That is, M(+) is idempotent and it follows from 5.6 that S has a left
multiplicatively absorbing element but no right one. The rest is clear. o

5.8 Lemma. (i) IfS is a finite semiring then every minimal (left, right) semimodule
is finite.
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(ii) If S is a congruence-simple semiring such that there exists a non-quasitrivial
finite (left, right) semimodule then S is finite.

Proof. See 1.5.10 and 1.5.9. O

5.9 Classification. Now, (finite congruence-simple) semirings S will be divided
into the following four pair-wise disjoint classes:
(A) There exists at least one non-quasitrivial minimal left S -semimodule and at
least one non-quasitrivial minimal right S -semimodule.
(B) There exists at least one non-quasitrivial minimal left semimodule and all
minimal right semimodules are quasitrivial.
(C) There exists at least one non-quasitrivial minimal right semimodule and all
minimal left semimodules are quasitrivial.
(D) All minimal left or right semimodules are quasitrivial.
(Notice that the classes (B) and (C) are dual via forming the opposite semirings.)

5.10 Proposition. Let S be a finite congruence-simple semiring of type (A). Then:
(i) S is neither left nor right quasitrivial.
(ii) S contains the multiplicatively absorbing element q such that either q = Og
is additively neutral or q = oy is bi-absorbing.
(iii) If ¢ = Os then either S is additively idempotent or S is a ring.
(iv) If g = os then either S is additively idempotent or S + S = {os}.
(v) If sM (Ng, resp.) is a non-quasitrivial minimal left (right, resp.) semimodule
then M (N, resp.) is finite and Q(s M) # @ (Q(Ns) # 0, resp.) (see 5.5 and
11.4.4).

Proof. First, it follows from 1.5.8(i1) (and its dual) that S is neither left nor right
quasitrivial. Now, let s M (N, resp.) be a non-quasitrivial minimal left (right, resp.)
seminodule. By 5.8(1), M (N, resp.) is finite. Moreover, taking into account 5.7,
we can assume that Q(s M) # 0 (the other case being dual). Now, by 5.4, S has the
multiplicatively absorbing element ¢ such that either ¢ = Oy is additively neutral or
q = os 1s bi-absorbing.

Assume that ¢ = Og and that ¢ M is congruence-simple (see 1.6.3). By 5.5(1), we
have Oy € M and S0y = Oy = OsM. Define a relation k on M by (x,y) € « if
x+u =myandy+v = nxfor some u,v € M and positive integers m,n. It is easy
to check that « is a congruence of s M and (z,2z) € « for every z € M. If x = idy
then z = 2z and M(+) is idempotent. On the other hand, if x # idy then k = M X M,
(z.0p) € k for every z € M and this fact easily implies that M(+) is a group, i.e., M is
amodule. However, by 11.4.1(v), the semiring S is isomorphic to a subsemiring of the
(finite) semiring End(M(+)) and we conclude that either S is additively idempotent
or it is a ring.

Next, assume that ¢ = og and that s M is congruence-simple (see 1.6.3). By 5.5(2),
Soy = oy = osM. Consider the congruence x of M. If kx = idy then M(+) is
idempotent and the same is true for S(+). If x = M X M then, for every z € M,
(z.0u) € «, and so mz = oy for a positive integer m. The set J = {z]|2z = op}
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is a subsemimodule of M. If [J| = 1 then J = {oyn} and 2w # oy for every
w € M\ {oym}. Now, if n is the smallest positive integer with nw = oy then w > 3,
(n—= 1w # oy and (n — 1)w € J, a contradiction. Thus |/| > 2 and we have J = M,
since M is minimal. We have shown that 2x = o0y, for every x € M. Further, put
0=((M+M)x(M+ M))Uidy. Again, 6 is a congruence of ¢ M. If § = idy then
M+ M={oy}and S +S = {os} by IL.4.1(v). If 0 = M x M then M + M = M and
M(+) 1s a non-trivial commutative nil-semigroup of index 2 and without irreducible
elements. However, any such semigroup is infinite, a contradiction.

Finally, if Q(Ng) = 0 then, proceeding similarly as in the proof of 5.7, we can
show that N(+) is idempotent and S has no left multiplicatively absorbing element,
a contradiction. O

5.11 Remark. Let S be a finite congruence-simple semiring of type (A) (see 5.10).
(1) If S 1s aring then S is a copy of a matrix ring over a (finite) field (use 1.5.7
and the fact that S is not quasitrivial). Non-quasitrivial minimal semimodules
are just the usual simple modules.
(i) If S +S = {og} then the multiplicative semigroup S (-) is congruence-simple.
(iti) Let S be additively idempotent. Then S has the multiplicatively absorbing
element g and either g = Og is additively neutral or ¢ = os is bi-absorbing.
Assume that ¢ = Os (the subtype (Al)). If ¢ M (Ns, resp.) is a non-quasitrivial
minimal semimodule then Oy € M (Oy € N, resp.) and S - 0y = {Oy} = 05 - M
(Oy - S = {0y} = N - Og, resp.). Moreover, s M (Ns, resp.) is additively idempotent.
Now, assume that ¢ = og (the subtype (A2)). If ¢ M (N, resp.) is a non-quasitrivial
minimal semimodule then oy € M (oy € N, resp.) and S - oy = {oy} = 05 - M
(on - S ={on} = N - o0s, resp.). Moreover, s M (N, resp.) is additively idempotent.

5.12 Proposition. Ler S be a finite congruence-simple semiring of type (B). Then:
(1) S is not left quasitrivial.
(i1) If S is right quasitrivial then S = K‘fp.
(ii1) If|S| = 3 then S is neither left nor right quasitrivial.
(iv) S contains the additively absorbing element g such that q is left multiplica-
tively absorbing.
(v) S has no right multiplicatively absorbing element.
(vi) S is additively idempotent.
(vii) If §M is a non-quasitrivial minimal left semimodule then M is finite and
O(sM) = 0.
(viii) S°Pis of type (C).

Proof. First, it follows from 1.5.8(ii) that S is not left quasitrivial. If S is right
quasitrivial then S is not commutative and it follows from the right-hand form of 1.5.7
that § = K(l)p. Combining this with the right-hand form of 1.7.5, we conclude that §
has no right multiplicatively absorbing element. Now, let ¢ M be a non-quasitrivial
minimal left semimodule. By 5.8(i), M is finite. By 1.6.3, there is a congruence o
of ¢ M such that ¢ N = ¢M/o is non-quasitrivial, minimal and congruence-simple. If
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O(sM) # 0 then Q(sN) # 0. On the other hand, it follows from I1.4.4 that Q(s N) = 0.
Thus Q(sM) = 0 as well. Moreover, proceeding similarly as in the proof of 5.7,
we can show that M(+) and N(+) are idempotent. Then, of course, S is additively
idempotent (use 11.4.1(v)). We have proved the assertions (i), (ii), (iii), (v), (vi) and
(vii). Finally, (iv) follows from 5.6 and (viii) is clear. o

5.13 Remark. Let S be a finite congruence-simple semiring of type (B) (see 5.12).
Then S is additively idempotent and S has the additively absorbing element g such
that ¢ 1s left multiplicatively absorbing but not right muliplicatively absorbing. More-
over, there exists a non-quasitrivial congruence-simple minimal left semimodule ¢ M
with Q(s M) = 0; we have Sx = M for every x € M (i.e., S acts transitively on M).
Further, if S is not isomorphic to ]Kf;p then, according to 1.7.3 (and 1.4), there ex-
ists a non-quasitrivial congruence-simple almost minimal right semimodule Ns. Both
semimodules ¢ M and Ny are additively idempotent.

5.14 Proposition. Let S be a finite congruence-simple semiring of type (D). Then
S is commutative, quasitrivial and either S is isomorphic to one of K;, K3, K4 or S
is a zero multiplication ring of prime order (see 1.5.7).

Proof. Assume that S is not left quasitrivial. Let ¢ M be a non-quasitrivial finite
semimodule with minimal |M] (see 1.6.8). Since S is of type (D), the semimodule s M
is not minimal. Then, by 1.6.8(i) and 1.6.8(iv), we see that g M is congruence-simple
and P(sM) = Q(s M) ~ Q) s. Moreover, using 1.7.3 and its proof, we conclude that
s M 1s almost minimal. Now, by 3.3, S contains the additively absorbing element Og
such that O is also right multiplicatively absorbing. Consequently, applying the dual
of I.7.5, we see finally that S is right quasitrivial. The rest is clear from 1.5.7 and its
dual. =]

5.15 Remark. Let S be a finite additively idempotent congruence-simple semir-
ing. The element oy = ) x, x € §, 1s additively absorbing. If og is neither left nor
right multiplicatively absorbing then Og € S and Oy is multiplicatively absorbing.
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