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Abstract. Let E =
∞⋃

n=1
In be the union of infinitely many disjoint closed intervals where

In = [an, bn], 0 < a1 < b1 < a2 < b2 < . . . < bn < . . ., lim
n→∞

bn = ∞. Let α(t)

be a nonnegative function and {λn}
∞
n=1 a sequence of distinct complex numbers. In this

paper, a theorem on the completeness of the system {tλn logmn t} in C0(E) is obtained
where C0(E) is the weighted Banach space consists of complex functions continuous on E

with f(t)e−α(t) vanishing at infinity.
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1. Introduction

Fix a weight α(t), that is a nonnegative continuous function defined on R such

that

(1) lim
|t|→∞

α(t)

log |t|
= ∞.

The weighted Banach space Cα consists of complex continuous functions f defined

on the real axis R with f(t) exp(−α(t)) vanishing at infinity, and normed by

‖f‖α = sup{|f(t) exp(−α(t))| : t ∈ R}

for f ∈ Cα. Denote byM(Λ) the set of functions which are finite linear combinations

of the exponential system {tλ : λ ∈ Λ} where Λ = {λn : n = 1, 2, . . .} is a sequence of
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complex numbers. Condition (1) guarantees that M(Λ) is a subspace of Cα. When

Λ = {λn : n = 1, 2, . . .} are just all of the positive integers, the problem of density

of M(Λ) in Cα in the norm ‖.‖α is the classical Bernstein problem on polynomial

approximation in [3] and [4]. A well-known result which was obtained by S. Izumi

and T.Kawata in 1937 in [9] is described as follows.

Theorem 1.1. Suppose α(t) is an even function satisfying (1) and α(et) is a con-

vex function on R. Then a necessary and sufficient condition for polynomials to be

dense in the space Cα is
∫ +∞

−∞

α(t)

1 + t2
dt = ∞.

Motivated by the Bernstein problem and the Müntz theorem in [3], combining

Malliavin’s uniqueness theorem in [11], by the approach of Fourier transform, in

the papers [5]–[7], a series of intriguing results related to the Berstein polynomial

approximation problem were obtained. When Λ = {λn : n = 1, 2, . . .} are a selected

part of the positive integers, one particularly interesting result in [6] is described

below.

Theorem 1.2. Suppose α(t) is an even function satisfying (1) and α(et) is a con-

vex function on R. Let Λ = {λn : n = 1, 2, . . .} be a sequence of strictly increasing

positive integers and let

Λ(r) = 2
∑

λn6r

1

λn
, if r > λ1; Λ(r) = 0, otherwise,

k(r) = Λ(r) − log+ r, log+ r = max{log r, 0}, k̃(r) = inf{k(r′) : r′ > r}. If

(2)

∫ +∞

0

α(exp{k̃(t) − a})

1 + t2
dt = ∞,

for each a ∈ R, then M(Λ) is dense in Cα.

Conversely, if the sequence Λ contains all of the odd integers, then for M(Λ) to

be dense in Cα, it is necessary that (2) holds for each a ∈ R.

Recently, there arose an interest in the Riesz basis property in L2(E) (see [15]),

where E is the union of finitely many disjoint intervals:

E =

l
⋃

n=1

In, In = (an, bn), 0 < a1 < b1 < a2 < b2 < . . . < bl, l > 2.
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There also arose an interest in approximation in weighted Banach spaces consisting

of functions continuous on a set E which is an infinite union of closed intervals, that

is E =
∞
⋃

n=1
In and In are disjoint closed intervals on R, dist(0, In) → ∞ as n → ∞.

Let C0(E) denote the weighted Banach space consisting of complex functions

f continuous on the union of infinitely many disjoint closed intervals E with

f(t) exp(−α(t)) vanishing at infinity, and normed by

‖f‖E = sup{|f(t) exp(−α(t))| : t ∈ E}

for f ∈ C0(E). Let |In| be the length of the interval In. In [2], the following result

was obtained.

Theorem 1.3. Suppose that

(3) |In| > c(dist(0, In))−M

for some c > 0, M < ∞. The polynomials are dense in C0(E) if and only if

(4)

∫

E

α(t)ω(i, dt,C \ E) = +∞,

where ω(i, dt,C \ E) is the harmonic measure for the domain C \ E as seen from i.

Let Λ1 = {λn, mn}
∞
n=1 where {λn}

∞
n=1 is a sequence of complex numbers and

mn = 0, 1, . . . , µn−1 is the multiplicity of λn. By (1), it is obvious that {t
λn logmn t}

is in C0(E). We say that the system {tλn logmn t} is complete in C0(E) if the closure

of its linear hull M(Λ1) coincides with C0(E) (see [1]–[7], [9]–[10] and [14]–[20]). In

view of the Müntz theorem (see, for example, [3] and [4]) and Theorem 1.2, it is

natural to ask under what conditions can M(Λ1) be complete in C0(E)? In this

paper, sufficient conditions for M(Λ1) to be complete in C0(E) are obtained.

In contrast to the method in [5]–[7] which is a combination of Malliavin’s unique-

ness theorem in [11] and inverse Fourier transformation that cannot be applied in

our situation, we will employ the method in [1] and [16]–[18] from which with a com-

bination of Theorem 1.3 our completeness theorem follows.

Let E be a union of infinitely many disjoint closed intervals

E =

∞
⋃

n=1

In, In = [an, bn],(5)

0 < a1 < b1 < a2 < b2 < . . . < bn → ∞.
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Let α(t) be a nonnegative function satisfying

(6) α(t) = α(a1) +

∫ t

a1

ϕ(ζ)

ζ
dζ

with ϕ(t) > 0 and ϕ(t) ↑ ∞ as t → ∞.

In order to present the completeness theorem, we need some definitions from [21].

We denote by L(c,D) the class of all complex sequences A = {an}, |an| 6 |an+1|

satisfying the following properties: (1) n/|an| → D > 0, (2) for n 6= k one has that

|an − ak| > c|n − k| for some constant c, and (3) sup|arg(an)| < π/2. The following

definition is from [21].

Definition 1.1. Let the sequence A ∈ L(c,D) and a, b be real positive numbers

such that a + b < 1. We say that a sequence B = {bn}
∞
n=1 belongs to the class Aa,b

if for all n ∈ N we have

bn ∈ {z : |z − an| 6 aa
n},

and for all k 6= n one of the following holds

(i) bk = bn.

(ii) |bk − bn| > max{e−|ak|
b

, e−|an|b}.

We may write B in the form of a multiplicity sequence Λ1 = {λn, mn}
∞
n=1, by

grouping together all those terms that have the same modulus, and ordering them

so that |λn| < |λn+1|; this form of B is called {λ, m} reordering (see [21]).

Recall M(Λ1) is the linear hull of the system {tλn logmn t}. The main result of

this paper is as follows.

Theorem 1.4. Suppose α(t) is a nonnegative function satisfying (1), (4) and (6)

where E is defined in (5) and satisfies (3). Moreover, suppose Λ1 = {λn, mn}
∞
n=1 is

a sequence of complex numbers which is a {λ, m} reordering of B = {bn} ∈ Aa,b for

a sequence A = {an} ∈ L(c,D) such that arg(an) → 0 as n → ∞, satisfying

(7) |arg(λn)| < β <
π

2
.

For some positive number λ, let

(8) 1/η = max
0<δ<D cos β

2δ
√

D2 sin2 β + δ2
(D cosβ − δ)(1 − λ).

If

(9)

∫

E

α(t)

t1+η
dt = +∞,

then M(Λ) is complete in C0(E).
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The paper is organized as follows. In Section 2, a useful function which is a gen-

eralization of multiply a function in [16]–[18] and [20] will be constructed. Some

preliminary lemmas will also be provided. In Section 3, the completeness theorem

below will be proved.

2. Some Lemmas

In this section we prove some auxiliary results that are the basic ingredients to

prove our completeness theorem. We will use the arguments similar to [16]–[18] and

[20].

We consider the function

(10) G(z) =
∞
∏

n=1

(

1 −
z2

λ2
n

)µn

where µn denotes the multiplicity of the term 1 − z2/λ2
n and the integral

(11) Kγ(s) =
1

2πi

∫

arg(z)=±γ

e−zs

G(z)
dz, s = u + iv,

where γ satisfies β < γ < π − β while β is defined in (7) satisfying 0 < β < π/2, the

integral being taking first on arg(z) = γ from∞ to 0 and then on arg(z) = −γ from

0 to ∞ (see Figure 2.1).

O x

y

z

γ

β

−β

−γ

Figure 2.1

We fix some notations. Let A denote a positive constant, which may be different

at each occurrence. Let s = u + iv, ε > 0 be a small positive number, and D > 0 be
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defined in Definition 1.1. Let

Dε
γ =

{

{s : −u cosγ + |v| sin γ − πD sin(γ − β) 6 −2ε}, for β < γ 6 π/2;

{s : −u cosγ + |v| sin γ − πD sin(γ + β) 6 −2ε}, for π/2 6 γ < π − β,

and let

Dγ =

{

{s : −u cosγ + |v| sinγ − πD sin(γ − β) < 0}, for β < γ 6 π/2;

{s : −u cosγ + |v| sinγ − πD sin(γ + β) < 0}, for π/2 6 γ < π − β.

We shall establish an analytic function which is related to Kγ(s) and independent

of γ. The first step is to show that Kγ(s) is analytic in Dγ . We need the extension

of a theorem of N. Levinson from [21].

Lemma 2.1. Suppose Λ1 = {λn, mn}
∞
n=1 is a sequence of complex numbers which

is a {λ, m} reordering of B = {bn} ∈ Aa,b for a sequence A = {an} ∈ L(c,D) such

that arg(an) → 0 as n → ∞. Then the entire function defined in (10) satisfies the

following for every ε > 0 as r → ∞:

(12) |G(reiθ)| = O(exp(πr(D| sin θ| + ε))),

and whenever reiθ /∈
∞
⋃

n=1
B(±bn, 1

3e−|an|β ) (where B(z0, r) = {z : |z − z0| < r}),

(13)
1

|G(reiθ)|
= O(exp(πr(−D| sin θ| + ε))).

Furthermore for every ε > 0 as n → ∞:

µn!

|G[µn](λn)|
= O(exp(ε|λn|)).

With the aid of Lemma 2.1, we may begin with a line of investigation on Kγ(s).

Lemma 2.2. For β < γ < π − β, Kγ(s) is analytic in Dγ and bounded in Dε
γ .

P r o o f. Since for β < γ 6 π/2, we have sin γ > sin(γ − β), thus for s ∈ Dε
γ ,

by (13),

(14)
∣

∣

∣

e−sre±iγ

G(re±iγ)

∣

∣

∣
6 Ae(−u cos γ+|v| sin γ−πD sin(γ−β)+ε)r < Ae−εr,

where A is a constant that only depends on γ and ε. The same estimate holds

for s ∈ Dε
γ , π/2 6 γ < π − β. Hence the integral on the right hand side of (11)

converges absolutely and uniformly for s ∈ Dε
γ . From the proof of Lemma 3.2.2 in

[20] we know that Kγ(s) is analytic and bounded in Dε
γ (see, for example, [13], Vol. I,

Theorem 17.20). Since the choice of ε is arbitrary, Kγ(s) is analytic in Dγ . �
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Taking γ = π/2, we have

Lemma 2.3. The function

K
π/2(s) =

1

2πi

∫ 0

∞

e−isr

G(ir)
i dr +

1

2πi

∫ ∞

0

eisr

G(−ir)
(−i) dr

= −
1

2π

∫ ∞

−∞

e−isy

G(iy)
dy

is analytic in

(15) D
π/2 = {s : |v| < πD cosβ}

and bounded in

(16) Dε
π/2 = {s : |v| 6 πD cosβ − 2ε}.

P r o o f. Let γ = π/2 in Lemma 2.2. �

Lemma 2.4. For β < γ1 < γ2 < π − β, we have

Kγ1(s) = Kγ2(s)

in Dε
γ1

∩ Dε
γ2
.

P r o o f. The proof is a method of contour integration similar to Lemma 3.2.4 in

[20], here we write it down for the reader’s convenience. The convergence of Kγ1(s)

and Kγ2(s) follows from Lemma 2.2 immediately. Since (7) is satisfied, the function

e−zs

G(z)

is analytic with respect to z in the domain {z : β < |arg(z)| < π− β}, so we have by

Cauchy’s theorem (see Figure 2.2)

Kγ2(s) − Kγ1(s) = lim
r→∞

1

2πi

(
∫

Γγ2

+

∫

Γ−γ2

+

∫

−Γγ1

+

∫

−Γ−γ1

)

e−zs

G(z)
dz

= − lim
r→∞

1

2πi

(
∫

C−γ1,−γ2

+

∫

Cγ1,γ2

)

e−zs

G(z)
dz

= − lim
r→∞

1

2πi

(
∫ −γ1

−γ2

+

∫ γ2

γ1

)

e−reiθsreiθi

G(reiθ)
dθ.
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O x

y

z

r

C
−γ1,−γ2

Cγ1,γ2

−Γγ1

−Γ
−γ1

γ2

γ1

−γ1

−γ2

Figure 2.2

By (14), we have for γ1 6 γ 6 γ2 and −γ2 6 γ 6 −γ1,

∣

∣

∣

e−sre±iγ

G(re±iγ)

∣

∣

∣
< Ae−εr,

where A is a constant that only depends on γ and ε. Thus

|Kγ1(s) − Kγ2(s)| 6 lim
r→+∞

∫ γ1

γ2

Ae−εrr dθ = 0.

�

It is shown by Lemma 2.4 that Kγ1(s) and Kγ2(s) are analytic continuations of

each other. Letting γ vary continuously in (β, π−β), a function K(s) which is defined

by Kγ(s) and analytic on the domain

F =
⋃

β<γ<π−β

Dγ

is obtained. It is obvious that

Lemma 2.5. In D
π/2, K(s) = K

π/2(s).

For sufficiently small δ > 0, denote

(17) Bδ = {s = u + iv : |v| 6 πD cosβ − δπ}.

368



We shall consider an approximation problem in the strip Bδ which is crucial in the

proof of Theorem 1.4. For fixed δ and Bδ, let ε < (δπ)/2. By (16) and (17), it is not

hard to see that

(18) Bδ ⊂ Dε
π/2.

Let µ be a small positive number, γ1 = π/2 − µπ and γ2 = π/2 + µπ. From the

definition of Dε
γk

(k = 1, 2), it is not hard to verify that for sufficiently small µ and

ε such that

(19) tan(µπ) <
δ

D sin β
,

while Dγ1 and Dε
γ1
must contain the right half strip

(20) B+
δ = {s = u + iv : u > 0, |v| 6 πD cosβ − δπ},

Dγ2 and Dε
γ2
must contain the left half strip

(21) B−
δ = {s = u + iv : u 6 0, |v| 6 πD cosβ − δπ}.

Lemma 2.6. In Bδ, the integral

K(s) = K
π/2(s) = −

1

2π

∫ ∞

−∞

e−isy

G(iy)
dy

is convergent uniformly and absolutely, and the function K(s) = K
π/2(s) is analytic

and bounded.

P r o o f. It is a combination of (18), Lemma 2.3 and Lemma 2.5. �

Let us recall an interesting result in complex analysis (see [10], p. 79) for future

use.

Lemma 2.7. Let f(z) be a function analytic in the disk |z| 6 2eR with |f(0)| = 1

and let τ be an arbitrary small positive number. Then the estimate

log |f(z)| > −A(τ) log Mf (2eR), A(τ) = log
15e3

τ

is valid everywhere in the disk |z| 6 R except on a set of discs with sum of diameters

less than 8τR.
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With the aid of Lemma 2.7, we can prove the following:

Lemma 2.8. If G(z) is an entire function of exponential type with G(0) = 1,

then there exists a sequence {tk} with k > tk > (1 − λ)k, k = 1, 2, . . . , where λ is

a sufficiently small positive number, such that

log |G(tkeiθ)| > −Atk,

where A is a constant not related to tk.

P r o o f. Choosing 8τ = λ < 1 and R = k in the annulus R > |z| > (1 − 8τ)R,

and applying the estimate in Lemma 2.7, the conclusion follows (see, for example,

[20], p. 50). �

By the same method as in [16]–[18] and [20], we get ready to verify the following

estimate which will play an important role in the proof of Theorem 1.4.

Lemma 2.9. There exists a sequence {tk} with k > tk > (1 − λ)k (λ is some

sufficiently small positive number) such that for s = u + iv ∈ Bδ, Re s = u > 0,

(22)

∣

∣

∣

∣

K(s) −
∑

|λn|<tk

µn−1
∑

m=0

an,msme−λns

∣

∣

∣

∣

6 Atke−utk sin(µπ),

and for s = u + iv ∈ Bδ, Re s = u 6 0,

(23)

∣

∣

∣

∣

K(s) −
∑

|λn|<tk

µn−1
∑

m=0

an,msme−λns

∣

∣

∣

∣

6 Atke−utk ,

where A is a constant independent of s and tk, while µ is a small positive number

satisfying (19).

P r o o f. We use the method of contour integration which is similar to [18] and

[20]. From Lemma 2.1, we know that the function G(z) defined in (10) is an entire

function of exponential type with G(0) = 1. By Lemma 2.8, there exists a sequence

{tk} with n > tk > (1 − λ)k (k = 1, 2, . . .) such that

(24)
1

|G(tkeiθ)|
< e−Atk ,

where A is a constant not related to tk and λ is a sufficiently small positive number.
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O x

y

z

tk

CγΓγ

Γ
′

γ

Γ
′

−γ

Γ−γ

K2

−K3

γ

−γ

Figure 2.3

Recall β < γ < π−β. Choose some µ satisfying (19) and let γ = γ1 = π/2−µπ or

γ = γ2 = π/2+µπ. Considering (7), by the residue theorem, we have (see Figure 2.3)

∑

|λn|<tk

µn−1
∑

m=0

an,msme−λns =
∑

|λn|<tk

Res
[ e−zs

G(z)
, tk

]

=
1

2πi

(
∫

Γγ

+

∫

Γ−γ

+

∫

Cγ

)

e−zs

G(z)
dz.

From Lemma 2.2, we know that Kγ(s) converges whenever s ∈ Dγ , thus

Kγ(s) −
∑

|λn|<tk

µn−1
∑

m=0

an,msme−λns =
1

2πi

(
∫

Γ′
γ

+

∫

Γ′
−γ

−

∫

Cγ

)

e−zs

G(z)
dz

=: K1(s) + K2(s) − K3(s),

hence

(25)

∣

∣

∣

∣

K(s) −
∑

|λn|<tk

µn−1
∑

m=0

an,msme−λns

∣

∣

∣

∣

6 |K1(s)| + |K2(s)| + |K3(s)|.
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In the case of s ∈ B+
δ where B+

δ is defined in (20), we know that s ∈ Dε
γ1
. Taking

γ = γ1 = π/2 − µπ, by (14), we have

|K1(s)| <

∫ ∞

tk

Ae(−u cos γ+|v| sin γ−πD sin(γ−β)+ε)r dr(26)

=

∫ ∞

tk

Ae(−u sin(µπ)+|v| cos µπ−πD cos(β+µπ)+ε)r dr

6

∫ ∞

tk

Ae(−u sin(µπ)−(δπ cos µπ−πD sin β sin(µπ)−ε)r dr

< Atke−utk sin(µπ),

where last inequality follows from choosing ε such that

δπ cosµπ − πD sin β sin(µπ) − ε > 0.

Applying the same reasoning to |K2(s)|, a similar estimate can be obtained. From

(24), we have the estimate

(27) |K3(s)| <
tk
2π

∫

π/2−µπ

−(π/2−µπ)

etk(−u cos θ+v sin θ)

|G(tkeiθ)|
dθ < Atke−utk sin(µπ),

where A is a constant independent of tk. Thus (22) follows from (25), (26) and

(27). For s ∈ B−
δ in (21), taking γ = γ2 = π/2 + µπ, choosing ε sufficiently such

that

δπ cosµπ + πD sin β sin(µπ) − ε > 0,

applying the same reasoning, we can get (23). �

To prove Theorem 1.4, we also need other lemmas. The following lemma is so-

called Carleman’s Theorem (see [10], p. 103).

Lemma 2.10. Let log− r = max{− log r, 0}. If g(w) is analytic and bounded in

the half-plane Im(w) > 0 and

∫ +∞

−∞

log− |g(t)|

1 + t2
dt = ∞,

then g(w) ≡ 0.

We also need a result of M.M.Dzhrbasian (see [12], Sect. 10, Lemma 1]).

Lemma 2.11. Suppose α(t) is given as in (6), let

Mn = sup
t>0

e−α(t)tn
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and

Φ(t) = sup
n>1

tn

Mn
.

Then there exists some constant A > 0 such that for t sufficiently large

log Φ(t) > Aα(t).

Let E′ denote the image of E under the transformation ξ = ln t, and let ν denote

a measure supported on E′ satisfying

∫

E′

eα(eξ) d|ν|(eξ) < ∞.

We define a function for s ∈ Bδ by

(28) F (s) =

∫

E′

K(s − ξ) dν(eξ).

Remark 2.12. By Lemma 2.6, when ξ ∈ E′ is fixed K(s − ξ) is analytic for

s ∈ Bδ; when s ∈ Bδ is fixed, K(s − ξ) is both measurable and bounded for ξ ∈ E′.

Thus, it is not hard to prove that F (s) is analytic and bounded in Bδ (see [14],

Chap. 10, Exercise 16; 1, Sect. 3 and [1], p. 8; also [20], Sec. 2.4).

The following lemma will be crucial in our proof of Theorem 1.4.

Lemma 2.13. Let ν denote a measure supported on E′ satisfying

∫

E′

eα(eξ) d|ν|(eξ) < ∞,

whereE′ is the image of E under the transformation ξ = ln t and α(t) is a nonnegative

function satisfying (1), (4) and (6). E is defined in (5) and satisfies (3). If for s ∈ Bδ,

F (s) ≡ 0 where F (s) is defined by (28), then

(29)

∫

E

tn dν(t) = 0, n = 0, 1, 2, . . . .

P r o o f. It is obvious that s − ξ ∈ Bδ for ξ ∈ E′ and s ∈ Bδ. From Lemma 2.6,

we know that the integral

K(s − ξ) = −
1

2π

∫ +∞

−∞

e−i(s−ξ)y

G(iy)
dy
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converges uniformly and absolutely with respect to ξ ∈ E′. Interchanging the order

of the integrations in (28), we have

(30) F (s) = −
1

2π

∫ +∞

−∞

e−isy

G(iy)

[
∫

E′

eiyξ dν(eξ)

]

dy ≡ 0.

Define

k(y) =
1

G(iy)

∫

E′

eiyξ dν(eξ).

By properly choosing the constant ε > 0 such that ε1 = πD − ε > 0, it follows from

Lemma 2.1 and the definition of the measure ν that for some positive constant A,

we have

|k(y)| 6
1

|G(iy)|

∫

E′

d|ν|(eξ) sup
ξ∈E′

|eiyξ|

6 Ae(−πD+ε)|y|

< Ae−ε1|y|.

By the Plancherel Theorem (see [14] Theorem 9.13) and (30), we have

∫ +∞

−∞

|k(y)|2 dy = 0

and for y ∈ R, k(y) = 0, i.e.,

(31)

∫

E′

eiyξ dν(eξ) = 0

follows from the continuity of k(y) in R. Define the function

L(z) =

∫

E′

ezξ dν(eξ),

take the transformation t = eξ, from the theory of transformations (see [8], p. 163),

we have

L(z) =

∫

E

tz dν(t).

We claim that L(z) is analytic in the closed right half plane Re z > 0. Actually, by

the definition of the measure ν, the analyticity of L(z) follows from Fubini’s theorem

and Morera’s theorem. By (31), L(iy) = 0 for any y ∈ R. Thus, L(z) = 0 for

Re z > 0. In particularly, L(n) = 0, n = 0, 1, 2, . . . , i.e.,
∫

E

tn dν(t) = 0, n = 0, 1, 2, . . . .

�
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3. Proof of Theorem 1.4

In this section, we will prove Theorem 1.4.

P r o o f. If M(Λ1) is not complete in C0(E), there exists a non-trivial bounded

linear functional L such that L(tλn logmn t) = 0 for Λ1 = {λn, mn}
∞
n=1 where mn =

0, 1, . . . , µn−1. (For a discussion of the bounded linear functionals in C0(E), we refer

to [18] for more details.) That is, by the Riesz’s representation theorem (see [14],

p. 40), there exists a complex measure ν satisfying

‖ν‖ =

∫

E

eα(t) d|ν|(t) = ‖L‖

and

L(h) =

∫

E

h(t) dν(t), h ∈ C0(E).

Define

L(z) =

∫

E

tz dν(t),

by Fubini’s theorem and Morera’s theorem we know that L(z) is analytic in the

closed right half plane Re z > 0. Taking the transformations t = eξ, from the theory

of transformations (see [8], p. 163), we have

(32) L(mn)(λn) =

∫

E

tλn logmn t dν(t) =

∫

E′

ξmneλnξ dν(eξ) = 0,

where mn = 0, 1, . . . , µn − 1 and E′ is the image of E.

Recall the definition of F (s) in (28). To prove Theorem 1.4, it suffices to prove

that if (32) holds, then F (z) ≡ 0 for s ∈ Bδ. Indeed by Lemma 2.12, it will then

follows that L(n) ≡ 0, and then from Theorem 1.3 that L ≡ 0, proving that M(Λ)

is complete.

For s ∈ Bδ, let {tk} be the sequence defined in Lemma 2.9, with k > tk > (1−λ)k

(λ is a sufficiently small positive number), by (11), Lemma 2.3 and Lemma 2.5, we

have

F (s) =

∫

E′

K(s − ξ) dν(eξ)

=

∫

E′

[

K(s − ξ) −
∑

|λn|<tk

µn−1
∑

m=0

an,m(s − ξ)me−λn(s−ξ)

]

dν(eξ)

+

∫

E′

∑

|λn|<tk

µn−1
∑

m=0

an,m(s − ξ)me−λn(s−ξ) dν(eξ)

=: F1,k(s) + F2,k(s).
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By (32), we have

F2,k(s) = 0.

Hence, for s = u+ iv ∈ Bδ, F (s) = F1,k(s). By (22) and (23) in Lemma 2.9, we have

|F (s)| = |F1,k(s)| 6 Atk

(

e−utk sin(µπ)

∫

E′∩{Re(s−ξ)>0}

|eξ|tk sin(µπ) dν(eξ)

+ e−utk

∫

E′∩{Re(s−ξ)60}

|eξ|tk dν(eξ)

)

,

where A is a constant independent of k and s. Hence for Re s = u > 0,

|F (s)| 6 Atk

(

∫

E
|t|tk sin(µπ)dν(t)

|es|tk sin(µπ)
+

∫

E
|t|tk dν(t)

|es|tk

)

6 Atk
1

∫

E |t|tk dν(t)

|es|tk sin(µπ)
.

Thus, by k > tk > (1 − λ)k,

|F (s)| 6 inf
k>1

Ak
1

∫

E
|t|k dν(t)

|es|(1−λ)k sin(µπ)
6 inf

k>1
Ak

1‖ν‖
supt>0 |t|

ke−α(t)

|es|(1−λ)k sin(µπ)
.

Let

Mn = sup
t>0

e−α(t)tn

and

Φ(t) = sup
n>1

tn

Mn
.

By Lemma 2.11, for Re s > 0, there exists some constant A2 > 0 such that

(33) |F (s)| 6 e−A2α(t),

where t = A1|e
s|(1−λ) sin(µπ). In order to use Lemma 2.10, we transform the domain

Bδ into the upper half-plane Im z > 0.

Let

(34) m = D cosβ − δ,

then Bδ is transformed into an angle |arg z1| 6 mπ by z1 = es, and the angle is

transformed in the right half-plane Re z2 > 0 by z2 = z
1/2m
1 . Finally, let z = iz2, the

domain Bδ is transformed into the upper half-plane Im z > 0. More accurately, we

have

|es| = |z1| = |z2m
2 | = |(−iz)2m| = |z2m|
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and

F (s) = F (log z1) = F (log z2m
2 ) = F (log(−iz)2m).

Define g(z) = F (log(−iz)2m); it is obvious that g(z) is analytic and bounded in

the upper half-plane Im z > 0 (see Remark 2.1). By (33), for Im z > 0 and |z|

sufficiently large, we have

(35) |g(z)| 6 e−A2α(A3|z|
2m(1−λ) sin(µp)) = e−A2α(A3|z|

m′
),

where A3 is some positive constant independent of z, m is given by (34), and

(36) m′ = 2m(1 − λ) sin(µπ) = 2(D cosβ − δ)(1 − λ) sin(µπ).

Let tan(µπ) → δ/D sinβ in (19), then

sin(µπ) →
δ

√

D2 sin2 β + δ2
.

Denote

(37) m′′ =
2δ

√

D2 sin2 β + δ2
(D cosβ − δ)(1 − λ).

By (35), for Im z > 0 and |z| sufficiently large, we have

(38) |g(z)| 6 e−A2α(A3|z|
m′′

).

It is obvious that δ can be chosen such that 0 < δ < D cosβ.

Recall the definition of η,

1/η = max
0<δ<D cos β

m′′.

By (38), for Im z > 0 and |z| sufficiently large, we have

(39) |g(z)| 6 e−A2α(A3|z|
1/η).

Thus, by (39)
∫ ∞ log |g(t)|

t2
dt 6

∫ ∞ −A2α(A3t
1/η)

t2
dt

= −A2
η

A3

∫ ∞ α(w)

(w/A3)1+η
dw

= −A4

∫ ∞ α(w)

w1+η
dw

6 −A4

∫

E

α(w)

w1+η
dw,
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where A4 is some positive constant independent of w. Thus, by (9), we have

∫ ∞ log |g(t)|

t2
dt = −∞.

Hence
∫ ∞ log |g(t)|

1 + t2
dt = −∞.

Let
∫

−∞
mean that the upper limit of the integral is a negative number with suffi-

ciently large magnitude. Similarly, we have

∫

−∞

log |g(t)|

t2
dt 6

∫

−∞

−A2α(A3|t|
1/η)

t2
dt =

∫ ∞ −A2α(A3t
1/η)

t2
dt = −∞.

Hence
∫

−∞

log |g(t)|

1 + t2
dt = −∞.

By Remark 2.1, we know that
∫

log |g(t)|

1 + t2
dt

is bounded near zero, thus

∫ ∞

−∞

log |g(t)|

1 + t2
dt = −∞,

and by Lemma 2.10, g(z) ≡ 0. �
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