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Metrization of function spaces with the Fell topology

Hanbiao Yang

Abstract. For a Tychonoff space X, let ↓ CF (X) be the family of hypographs
of all continuous maps from X to [0, 1] endowed with the Fell topology. It is
proved that X has a dense separable metrizable locally compact open subset
if ↓ CF (X) is metrizable. Moreover, for a first-countable space X, ↓CF (X) is
metrizable if and only if X itself is a locally compact separable metrizable space.
There exists a Tychonoff space X such that ↓CF (X) is metrizable but X is not
first-countable.

Keywords: space of continuous maps, Fell topology, hyperspace, metrizable, hy-
pograph, separable, first-countable

Classification: 54C35, 54E45, 54B20

1. Introduction and main results

For a topological space X , let C(X) denote the set of all continuous maps from
X to the unit closed interval I = [0, 1] with the usual topology. Then we can endow
C(X) with various topologies. For example, the topology of uniform convergence,
the topology of pointwise convergence and the compact-open topology are well
known. In [4]–[10], C(X) is endowed with other natural topologies inherited from
the spaces Cld(X × I) of nonempty closed sets in X × I.

For a space Y , let Cld(Y ) be the set of all nonempty closed sets in Y . For an
open set U in Y , let

U− = {A ∈ Cld(Y ) : A ∩ U 6= ∅} and U+ = {A ∈ Cld(Y ) : A ⊂ U}.

The most well-known topology of Cld(Y ), called the Vietoris topology, is genera-
ted by

{U−, U+ : U is open in Y }.
In this paper, we consider the Fell topology of Cld(Y ), which is generated by

{U−, (Y \K)+ : U is open and K is compact in Y }.

The hyperspaces Cld(Y ) with the above two topologies are denoted by CldV (Y )
and CldF (Y ), respectively. It is well-known that CldV (Y ) (resp. CldF (Y )) is
metrizable if and only if Y is a compact (resp. locally compact and separable)
metrizable space. Obviously, when Y is compact, the Fell topology of Cld(Y ) is
equal to the Vietoris topology.
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For every f ∈ C(X), let

↓f = {(x, s) ∈ X × I : s ≤ f(x)} ∈ Cld(X × I),

which is called the hypograph of f . By identifying each f ∈ C(X) with ↓f ∈
CldV (X × I), we can regard C(X) as the subset

↓C(X) = {↓f : f ∈ C(X)} ⊂ Cld(X × I).

Let ↓ CV (X) and ↓ CF (X) be the spaces with the topologies inherited from
CldV (X × I) and CldF (X × I), respectively. These topologies are different from
the three topologies mentioned previously (see [4, Corollary 1]). In [9, Theorem 1],
it was proved that, for a Tychonoff space X , ↓CV (X) is metrizable if and only
if ↓CV (X) is second-countable if and only if X is compact and metrizable. The
following theorem is our main result.

Theorem 1. For a Tychonoff space X , the following conditions are equivalent:

(a) ↓CF (X) is separable metrizable;
(b) ↓CF (X) is metrizable.

In case X is first-countable, the above two conditions are equivalent to

(c) X is a locally compact and separable metrizable space.

We also prove the following theorem.

Theorem 2. Let
⊕

s∈S Ys be the topological sum of Tychonoff spaces Ys, s ∈ S,
and as ∈ Ys a non-isolated point for every s ∈ S. Let, further, Y be the quotient
space of

⊕
s∈S Ys with the set {as : s ∈ S} identified to a point. Then ↓CF (Y ) is

homeomorphic to a subspace of the product space
∏

s∈S ↓CF (Ys).

Applying this theorem, we show the following.

Corollary 1. There exists a Tychonoff space X such that ↓CF (X) is separable
metrizable but X is not first-countable.

The above corollary shows that the first-countability of X is essential for the
equivalence between (a) and (c) in Theorem 1. The following Theorem 3 tells us
that, the non-compact case is very different from the compact one.

Theorem 3. There exists a countable Tychonoff space X such that ↓CF (X) is
Hausdorff and second-countable but not regular.

In [1, 5.1.2 Proposition], it was proved that, for a Tychonoff space X , the
following conditions are equivalent: (a) CldF (X) is Hausdorff, (b) CldF (X) is
regular, (c) CldF (X) is Tychonoff, and (d) X is locally compact. Theorem 3
shows that we cannot replace CldF (X) by ↓CF (X) in [1, 5.1.2 Proposition].

The following Theorem 4 states that, even for a compact spaceX , the regularity
and the first-countability of ↓CF (X) do not imply the metrizability of it.

Theorem 4. There exists a compact space X such that ↓CF (X) is Tychonoff,
separable and first-countable but not metrizable.
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Finally, we will give a necessary condition for the metrizability of ↓CF (X).

Theorem 5. For a Tychonoff space X , if ↓CF (X) is metrizable, then there exists
a dense, locally compact, open and separable metrizable subspace of X . But the
converse is not true.

2. Preparatory results

In the following, we always assume that X is a Tychonoff space and p : X×I →
X is the projection. For s ∈ I, we use s to denote the constant function from
X to I which maps all elements to s. By R and Q, we denote the sets of all
real numbers and of all rational numbers, respectively. Let clY and intY be the
closure-operator and the interior-operator in a space Y . If Y = X , the subscript
in the above operators will be omitted. And, for a closed set F in Y , let

F ∗ = (Y \ F )+ = {A ∈ Cld(Y ) : A ∩ F = ∅}.

By the definition, the topology of ↓CF (X) is generated, as a base, by the following
sets:

n⋂

i=1

G−
i ∩K∗∩ ↓C(X),

where G1, G2, · · · , Gn are open sets in X × (0, 1] and K is a compact set in
X × (0, 1]. In particular,

{ n⋂

i=1

G−
i ∩ ↓C(X) : G1, · · · , Gn are nonempty open in X × (0, 1]

}

and {K∗∩ ↓C(X) : K is compact in X × (0, 1]}

are neighborhood bases at ↓1 and ↓0 in ↓CF (X), respectively.
To prove our theorems, we need some lemmas. At first, we show the following

lemma.

Lemma 1. For a space X , the following hold:

(1) ↓CF (X) is T1;
(2) ↓CF (X) is Hausdorff if and only if there exists a dense open subset U of

X which is locally compact.

Proof: (1): Let f 6= g ∈ C(X). We may assume that f(x0) < g(x0) for some
x0 ∈ X . Then x0 has an open neighborhood W such that f(x) < a < g(x)

for every x ∈ W , where a = f(x0)+g(x0)
2 . Thus ↓f ∈ ({x0} × [a, 1])∗ 6∋↓g and

↓g ∈ (W × (a, 1])− 6∋↓f .
(2): The “if” part: Take f, g ∈ C(X), x0 ∈ W and a ∈ I as the same as in (1).

Since f and g are continuous, we assume that x0 ∈ U . Because U is locally
compact, we have an open set V in X such that x0 ∈ V ⊂ clV ⊂ U ∩ W and
clV is compact. Since f(x) < a < g(x) for x ∈ clV , (clV × [a, 1])∗∩ ↓C(X) and
(V × (a, 1])−∩ ↓C(X) are disjoint neighborhoods of ↓f and ↓g, respectively.
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The “only if” part: We define an open set

U =
⋃

{intK : K is compact in X} ⊂ X.

Then U is locally compact. We show that U is dense in X . Assume that U
is not dense in X . Then there exists a nonempty open set V in X such that
the interior of every compact subset of V is empty. Because X is Tychonoff,
we can choose f ∈ C(X) such that f(X \ V ) ⊂ {1} and f(x0) = 0 for some
x0 ∈ V . Since ↓CF (X) is Hausdorff, there exist disjoint open sets U and V in
↓CF (X) such that ↓1 ∈ U and ↓f ∈ V . Then we can find nonempty open sets
G1, G2, · · · , Gn, · · · , Gm ⊂ X × (0, 1] and a compact set K ⊂ X × (0, 1] such that

↓1 ∈ G−
1 ∩G−

2 ∩ · · · ∩G−
n∩ ↓C(X) ⊂ U and

↓f ∈ G−
n+1 ∩ · · · ∩G−

m ∩K∗∩ ↓C(X) ⊂ V .

Since f(X \V ) ⊂ {1}, it follows that p(K) ⊂ V , which implies that int p(K) = ∅.
For every i ≤ m, p(Gi)\p(K) 6= ∅ since p(Gi) is a nonempty open set in X . Take
xi ∈ p(Gi) \ p(K). Because X is Tychonoff, we have g ∈ C(X) satisfying

g(xi) = 1 for i ≤ m and g(p(K)) = {0}.

Then ↓g ∈ U ∩ V , which contradicts that U ∩ V = ∅. �

Lemma 2. If ↓CF (X) is first-countable, then there exist compact sets C1 ⊂
C2 ⊂ · · · in X such that every compact set in X is contained in some Cn. In
particular, X =

⋃∞
n=1 Cn.

Proof: Because ↓CF (X) is first-countable, we can find compact sets K1 ⊂ K2 ⊂
· · · in X × (0, 1] such that {K∗

n∩ ↓C(X) : n = 1, 2, . . . } is a neighborhood base of
↓0 in ↓CF (X). Then Cn = p(Kn), n = 1, 2, . . . , are the desired compact sets in X .
We verify that every compact set C in X is contained in some Cn. Otherwise, for
every n, we can choose xn ∈ C \ Cn and define fn ∈ C(X) such that fn(xn) = 1
and fn(Cn) = {0}. Then ↓fn ∈ K∗

n for every n and hence ↓fn →↓0 in ↓CF (X).
But every ↓fn is not contained in the neighborhood (C × {1})∗ of ↓0, which is
a contradiction. �

Lemma 3. If X and ↓CF (X) are first-countable, then X is locally compact.

Proof: Suppose there exists x0 ∈ X , which has no compact neighborhood. Be-
cause X is first-countable, x0 has a countable open neighborhood base {Un :
n = 1, 2, . . .}, where Un ⊃ Un+1 for every n. Since ↓ CF (X) is also first-
countable, we can find compact sets K1 ⊂ K2 ⊂ · · · in X × (0, 1] such that
{K∗

n∩ ↓C(X) : n = 1, 2, . . . } is a neighborhood base at ↓0 in ↓C(X). By the as-
sumption, p(Kn) 6⊃ Un for every n = 1, 2, . . . , hence we can take xn ∈ Un \p(Kn).
Then xn → x0 in X . Since X is Tychonoff, we have fn ∈ C(X) such that

fn(xn) = 1 and fn(p(Kn) ∪ (X \ Un)) = {0}.
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Then ↓fn ∈ K∗
n and hence ↓fn →↓0. On the contrary,

({xn : n = 0, 1, 2, · · · } × {1})∗∩ ↓C(X)

is a neighborhood of ↓0 in ↓CF (X) which does not contain any ↓fn. �
When X is locally compact and non-compact, let αX = X ∪ {∞} be the one-

point compactification of X . Using Lemmas 2 and 3, we may prove the following

Proposition 1. If X and ↓CF (X) are first-countable, then

(1) X is locally compact and αX is also first-countable;
(2) ↓CF (αX) is first-countable;
(3) ↓CF (αX) is second-countable if ↓CF (X) is second-countable.

Proof: The assertion (1) directly follows from Lemmas 2 and 3. To show (2)
and (3), we only consider the case that X is not compact. Let {Un : n = 1, 2, . . . }
be a countable open neighborhood base at ∞ in αX , and let φ : C(αX) → C(X)
be the restriction, that is,

φ(f) = f |X for every f ∈ C(αX).

Then it is not hard to verify that ↓ φ :↓CF (αX) →↓CF (X) is a continuous
injection. Unfortunately, it is not an embedding. However, the following S is a
subbase of ↓CF (αX):

S = {(↓φ)−1(G) : G ∈ G}
∪ {(clαX Un × [r, 1])∗∩ ↓C(αX) : r ∈ Q ∩ (0, 1], n = 1, 2, . . . },

where G is an open base for ↓CF (X). Obviously, S is a subfamily of the topology
of ↓CF (αX). For every open set V in αX × I, V ∩ (X × I) is open in X × I and

V −∩ ↓C(αX) = (↓φ)−1((V ∩ (X × I))−∩ ↓C(αX)).

For every compact set K in αX × (0, 1], if K ∩ ({∞} × I) = ∅, then K is also
compact in X × I and

K∗∩ ↓C(αX) = (↓φ)−1(K∗∩ ↓C(X)).

If K ∩ ({∞} × I) 6= ∅, then for every ↓f ∈ K∗∩ ↓C(αX), using the Wallace’s
Theorem, there exist n and a rational number r ∈ (0, 1] such that

(clαX Un × [r, 1])∩ ↓f = ∅ and

K ∩ (clαX Un × I) ⊂ clαX Un × [r, 1].

Let

K1 = (K ∩ ((αX \ Un)× I)) ∪ (clαX Un × [r, 1]).
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Then K1 is compact in αX × (0, 1], K1 ⊃ K and K1∩ ↓f = ∅. Thus, ↓f ∈ K∗
1 ⊂

K∗. Note that

K∗
1∩ ↓CF (αX) = (↓φ)−1((K ∩ ((αX \ Un)× I)

)∗
)

∩ (cl(Un)× [r, 1]
)∗∩ ↓CF (αX),

that is, K∗
1∩ ↓CF (αX) is an intersection of two elements of S.

As a conclusion, S is a subbase for ↓CF (αX). Therefore, ↓CF (αX) is first-
countable. Moreover, ↓CF (αX) is second-countable if ↓CF (X) is second-count-
able. Hence (2) and (3) hold. �

Lemma 4. We consider the following statements.

(a) ↓CF (X) is first-countable.
(b) ↓CF (X) has a countable neighborhood base at ↓1.
(c) There exists a countable family U of nonempty open sets in X such that

every nonempty open set in X includes an element of U , that is, U is a
countable π-base for X .

(d) ↓CF (X) is separable.

Then the implications (a)⇒(b)⇒(c)⇒(d) hold.
Furthermore, when X is compact, the implication (c)⇒(a) holds and hence

(a), (b) and (c) are equivalent.

Proof: The implication (a)⇒(b) is trivial.
(b)⇒(c): We may assume that

{(Gn
1 )

− ∩ (Gn
2 )

− ∩ · · · ∩ (Gn
k(n))

−∩ ↓C(X) : n = 1, 2, . . . }

is a countable neighborhood base at ↓1 in ↓CF (X). Let

U = {p(Gn
i ) : i = 1, 2, . . . , k(n), n = 1, 2, . . .}.

Then U is a countable family of nonempty open sets in X . We show that every
nonempty open set U in X includes an element of U . Take f ∈ C(X) such that
f(X \ U) ⊂ {1} and f(x0) = 0 for some point x0 ∈ U . Because ↓CF (X) is T1 by

Lemma 1(1), ↓f /∈ ⋂k(n)
i=1 (Gn

i )
− for some n, hence ↓f /∈ (Gn

i )
− for some i ≤ k(n).

Then ↓f ∩Gn
i = ∅. Since f(X \ U) ⊂ {1}, we have U ⊃ p(Gn

i ), as required.
(c)⇒(d): Let U be a countable π-base forX . For every U ∈ U and r ∈ Q∩(0, 1],

we can take a continuous map f(U,r) : X → [0, r] such that f(U,r)(X \ U) ⊂ {0}
and f(U,r)(x) = r for some x ∈ U . Let

D = {max{f(U,r) : U ∈ F , r ∈ F} : F and F are

finite subsets of U and Q ∩ (0, 1], resp.}.

Then ↓D = {↓f : f ∈ D} is a countable subset of ↓C(X). It remains to verify
that ↓D is dense in ↓CF (X). Let f ∈ C(X), K be compact in X × (0, 1] and Gi,
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i ≤ k, open in X × (0, 1], such that

↓f ∈ G−
1 ∩G−

2 ∩ · · · ∩G−
k ∩K∗∩ ↓C(X).

We have x1, · · · , xk ∈ X such that {xi} × [0, f(xi)] ∩ Gi 6= ∅ for each i ≤ k.
Because {xi} × [0, f(xi)] ∩K = ∅, we have an open neighborhood Wi of xi in X
and si < ti such that Wi × (si, ti) ⊂ Gi and Wi × [0, ti] ∩K = ∅. Thus, by (c),
choose ri ∈ Q ∩ (si, ti) and Ui ∈ U such that Ui ⊂ Wi. Then ↓f(Ui,ri) ∈ G−

i ∩K∗

and hence

↓max{f(Ui,ri) : i ≤ k} ∈↓D ∩G−
1 ∩G−

2 ∩ · · · ∩G−
k ∩K∗.

Now, we show (c)⇒(a) under the assumption that X is compact. Let U be a
countable π-base of X . Then, X × I has the following countable π-base:

G = {U × (s, t) : U ∈ U , s < t ∈ Q ∩ (0, 1)}.

For every f ∈ C(X) and n = 1, 2, . . . , let

G(f) = {G ∈ G :↓f ∈ G−}, Kn(f) = {(x, t) ∈ X × I : t ≥ f(x) + n−1}.

For every open set H in X × (0, 1] with H− ∋↓f , there exists x0 ∈ X such that
{x0} × [0, f(x0)] ∩ H 6= ∅. Since f(x0) > 0, we can find an open neighborhood
V of x0 in X and s < t ∈ Q × (0, 1) such that s < f(x0), V × (s, t) ⊂ H and
s < f(x) for every x ∈ V . Since U is a π-base for X , V contains some U ∈ U .
Then we have G = U × (s, t) ∈ G and ↓f ∈ G− ⊂ H−. Moreover, for every
compact set K in X × I with K∗ ∋↓f , by the compactness of X , there exists n
such that Kn(f) ⊃ K and hence ↓f ∈ Kn(f)

∗ ⊂ K∗. Therefore,

{G−
1 ∩ · · · ∩G−

k ∩Kn(f)
∗∩ ↓C(X) : Gi ∈ G(f) for i ≤ k, k, n = 1, 2, . . . }

is a countable neighborhood base at ↓f in ↓CF (X). �
As a consequence of Lemma 4, we have the equivalence between (a) and (b) in

Theorem 1, that is,

Proposition 2. The space ↓CF (X) is metrizable if and only if it is separable
metrizable. �

We need the following two lemmas which were proved in [8], [9], respectively.

Lemma 5. If V is open in X such that clV is compact, then the restriction
φ :↓CF (X) →↓CF (clV ) defined by φ(↓f) =↓f | clV is a continuous open surjec-
tion. �

Lemma 6. If X is compact and ↓CF (X) =↓CV (X) is second-countable, then X
is metrizable. �
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3. Proofs of main results

In this section, we show our main results.

Proof of Theorem 1: The equivalence between (a) and (b) is Proposition 2.
If X is first-countable, then X is locally compact by Proposition 1(1). Using
Proposition 1(3), the condition (b) implies that ↓C(αX) is second-countable. It
follows from Lemma 6 that αX is metrizable. Hence the condition (c) holds. That
is, the implication (b)⇒(c) holds under the assumption that X is first-countable.
The condition (c) implies that CldF (X × I) is metrizable ([1, 5.1.5 Theorem]),
hence so is ↓CF (X), i.e., (b) holds. Therefore, the implication (c)⇒(b) holds. �

Proof of Theorem 2: We may think that every Ys is a subspace of Y . Define
φ : C(Y ) →∏

s∈S C(Ys) by

φ(f) = (f |Ys)s∈S for each f ∈ C(Y ).

Evidently, φ is an injection and its image is

φ(C(Y )) =

{
g ∈

∏

s∈S

C(Ys) : g(s)(as) = g(s′)(as′ ) for s, s
′ ∈ S

}
.

Now we show that ↓φ :↓CF (Y ) → ∏
s∈S ↓CF (Ys) is an embedding. Let ps :∏

s∈S ↓CF (Ys) →↓CF (Ys) be the projection.
To show the continuity of ↓φ, it is sufficient to verify that ps◦ ↓φ is continuous

for every s ∈ S. For every open set G in Ys × (0, 1], G \ ({as} × I) is open in
Y × (0, 1]. Since as is a non-isolated point in Ys,

(ps◦ ↓φ)−1(G−∩ ↓C(Ys)) = (G \ ({as} × I))−∩ ↓C(Y ).

For each compact set K in Ys × (0, 1],

(ps◦ ↓φ)−1(K∗∩ ↓C(Ys)) = K∗∩ ↓C(Y ).

Hence, ps◦ ↓φ :↓CF (Y ) →↓CF (Ys) is continuous for every s ∈ S.
Moreover, for every open set H in Y × (0, 1], if ↓f ∈ H− ↓CF (Y ), then there

exists s ∈ S such that ↓f |Ys ∈ (H ∩ (Ys × I))−. Hence

↓φ(H−∩ ↓CF (Y )) =
⋃

s∈S

(
(H ∩ (Ys × I))− ×

∏

t∈S\{s}
↓C(Yt)

)
∩ ↓φ(↓(C(Y ))).

It shows that ↓φ(H−∩ ↓CF (Y )) is open in ↓φ(↓(CF (Y ))). For every compact set
K in Y ×(0, 1], there exists a finite subset S0 of S such that K ⊂ ⋃s∈S0

Ys×(0, 1].

Then K ∩ Ys × (0, 1] is compact for every s ∈ S0 and

↓φ(K∗∩ ↓C(Y )) =

( ∏

s∈S0

(K ∩ Ys × (0, 1])∗ ×
∏

s∈S\S0

↓C(Ys)

)
∩ ↓φ(↓C(Y )).
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It follows that ↓φ(K∗∩ ↓C(Y )) is open in ↓φ(↓(CF (Y ))). Since φ is one-to-one,
we have that ↓φ maps every open set in ↓CF (Y ) to an open set in ↓φ(↓(CF (Y ))).

Therefore, ↓φ :↓CF (Y ) →∏
s∈S ↓CF (Ys) is an embedding. �

Remark 1. Even for a set S of two points, if as is an isolated point in Ys for some
s, the map ↓φ defined in the above proof needs not be continuous. For example,
let Y1 = {1} × ({0} ∪ [1, 2]), Y2 = {2} × I as subspaces of R2. If we think that
a1 = (1, 0), a2 = (2, 0), then p1◦ ↓φ :↓C(Y ) →↓C(Y1) is not continuous. In fact,
choose fn ∈ C(Y ) such that fn(2, 0) = fn(1, 0) = 0 and fn(x) = 1 for every
x ∈ Y \ ({2} × [0, n−1]). Then ↓fn →↓1 but (p1◦ ↓φ)(↓fn) 6→ (p1◦ ↓φ)(↓1).

Proof of Corollary 1: Let {Yn : n = 1, 2, . . .} be a family of pairwise disjoint
locally compact separable metrizable spaces Yn with a non-isolated point an.
Then, by Theorems 1 and 2, the space Y defined in Theorem 2 is as required. �

Proof of Theorem 3: Let βω be the Čech-Stone compactification of the dis-
crete space ω of non-negative integers and q ∈ βω \ ω. Then the subspace
X = ω ∪ {q} of βω satisfies the conditions in Theorem 3. By Lemma 1(2),
↓CF (X) is Hausdorff.

Before showing that ↓CF (X) is second-countable but not regular, we verify that
every compact subset of X is finite. In fact, let C be an infinite compact subset
of X . Then q ∈ C. Write C = A∪B∪{q} such that A and B are disjoint infinite
subsets of ω. Define a continuous map f : ω → {0, 1} as f−1(0) = A. Then there
exists a continuous extension f : X → {0, 1} since X is a subspace of βω. If
f(q) = 0, then B is closed in X and hence is compact. But it is impossible since

B is infinite discrete. If f(q) = 1, then A is closed in X and hence is compact. It
is also impossible since A is also infinite discrete.

Now, we define a product space Y =
∏

x∈X Ix, where Ix is a copy of the unit
interval [0, 1] with the usual topology for x ∈ ω and Iq is [0, 1] with the topology
generated by {[0, r) : r ∈ [0, 1] ∩ Q} ∪ {[0, 1]}. Then Y is second-countable. We
may regard ↓C(X) ⊂ Y by identifying ↓f with (f(x))x∈X for every f ∈ C(X).
To show that ↓CF (X) is second-countable, it suffices to verify that ↓CF (X) is
the subspace of the space Y . It is easy to see that for each x ∈ X , the map
px :↓CF (Y ) → Ix defined by px(↓f) = f(x) is continuous. Hence the subspace
topology is coarser than the Fell topology on ↓C(X). Conversely, take a compact
set K ⊂ X × (0, 1] and f ∈ C(X). Then p(K) is compact in X . Then p(K) is a
finite set in X and ↓f ∩K = ∅ if and only if f(x) < m(x) = min{s : (x, s) ∈ K}
for every x ∈ p(X). Hence we can identify

K∗∩ ↓C(X) =

( ∏

x∈p(K)

[0,mx)×
∏

x∈X\p(K)

Ix

)
∩ ↓C(X)

is open in the subspace topology of Y . For every open set G in X × (0, 1] and
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f ∈ C(X), ↓f ∩G 6= ∅ if and only if ↓f ∩G \ ({q}× I) 6= ∅ if and only if f(n) > sn
for some n ∈ p(G) ∩ ω, where sn = inf{s : (n, s) ∈ G}. Hence

G−∩ ↓C(X) =

( ⋃

n∈p(G)∩ω

p−1
n (sn, 1]

)
∩ ↓C(X),

where pn : Y → In is the projection, is open in the subspace topology of Y .
Therefore, ↓CF (X) is the subspace of Y .

To show that ↓CF (X) is not regular, we consider an open neighborhood U =
({q}× [ 12 , 1])

∗∩ ↓C(X) of ↓0. For every compact set K in X×(0, 1], p(K) is finite.

Define f ∈ C(X) such that f−1(0) = p(K)∩ω and f−1(1) = X \(p(K)∩ω). Then
↓f ∈ cl↓CF (X)(K

∗ ∩ ↓CF (X)) \ U . In fact, every neighborhood of ↓f in ↓CF (Y )
contains the following neighborhood of ↓f :

G = G−
1 ∩ · · · ∩G−

k ∩G− ∩ C∗ ∩ ↓CF (X),

where Gi = {ni} × (si, ti) for 1 ≤ i ≤ k and G = (A ∪ {q})× (s, t) are open and
C is compact in X × (0, 1]. Then A is an infinite subset of ω and hence we may
choose n0 ∈ A \ p(K ∪ C). Now, define g ∈ C(X) as

g(x) =





0 if x ∈ A ∪ {q} \ {ni : 0 ≤ i ≤ k};
1 if x = n0;

f(x) otherwise.

Then it is easy to verify that ↓g ∈ G ∩K∗. This shows that ↓f ∈ cl↓CF (X)(K
∗ ∩

↓CF (X)). Because f(q) = 1, we have ↓f /∈ U . Hence, cl↓CF (X)(K
∗∩ ↓C(X)) 6⊂ U

for any compact K in X× (0, 1]. Note that the family of all of such K∗∩↓CF (X)
is a neighborhood base at ↓0 in ↓CF (X). Therefore, ↓CF (X) is not regular. �

Proof of Theorem 4: Choose a compact Hausdorff non-metrizable space X
satisfying (c) in Lemma 4, for example, βω or Helly space (see [2, Problem 5.M]).
Then, by Lemma 4, ↓CF (X) is separable and first-countable. By [3] (cf. [1,
5.1.2 Proposition]), CldF (X × I) = CldV (X × I) is Tychonoff and hence so is
↓CF (X). SinceX is compact and non-metrizable, ↓CF (X) is not second-countable
because of Lemma 6. According to Proposition 2, if ↓CF (X) is metrizable, then
↓CF (X) is separable metrizable, hence second-countable. Therefore, ↓CF (X) is
not metrizable. �

Proof of Theorem 5: Assume that ↓CF (X) is metrizable, which means that
↓CF (X) is separable metrizable by Proposition 2. Then ↓CF (X) is second-
countable. By Lemma 1(2), there exists a dense open set U in X such that U is
locally compact. To complete the proof, it remains to verify that U is separable
metrizable. By Lemma 2, there exists a countable family C = {C1, C2, · · · } of
compact sets in X such that every compact set in X is contained in some Cn. For
each n, let Un = int(U ∩ Cn). Then, clUn is compact because clUn ⊂ Cn. By
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Lemma 5, there exists a continuous open surjection from ↓CF (X) onto ↓CF (clUn).
Therefore, ↓CF (clUn) is second-countable, hence clUn is compact and metrizable
by Lemma 6. Thus every Un is also separable metrizable, hence it is second-
countable. Moreover, for every x ∈ U , there exists an open set V such that
x ∈ V , clV is compact and clV ⊂ U . Hence there exists n such that clV ⊂ Cn.
Then, x ∈ V ⊂ int(U ∩ Cn) = Un. It follows that U =

⋃∞
n=1 Un. Therefore, U is

second-countable, hence it is separable metrizable.
As mentioned in proof of Theorem 4, βω is a compact space and ↓CF (βω) is

not metrizable but ω is a dense, locally compact, open and separable metrizable
subspace of βω. Namely, the converse is not true. �

Remark 2. The referee pointed out that McCoy and Ntantu [11] obtained anal-
ogous results in 1992. For example, Theorem 4.12 in [11] is similar to our Theo-
rem 1. Our Theorem 3 for ↓CF (X, I) is true for ↑CF (X,R) using Theorems 3.5,
3.7, 4.11 and Example 3.3 in [11], where ↑CF (X,R) is the subspace of CldF (X×R)
consisting of the epigraphs

↑f = {(x, s) ∈ X × R : f(x) ≤ s} ∈ Cld(X × R),

of all f ∈ C(X,R). However our arguments are quite different from their argu-
ments in [11].
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