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Abstract. In the present work, using a formula describing all scalar spectral functions of a
Carleman operator A of defect indices (1, 1) in the Hilbert space L2(X, µ) that we obtained
in a previous paper, we derive certain results concerning the localization of the spectrum
of quasi-selfadjoint extensions of the operator A.
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1. Preliminaries

Let A be a closed symmetric operator with a dense domain D(A) in a separable

Hilbert space H endowed with an inner product (·, ·).

LetMλ denote the range of the operator (A−λI), then its orthogonal complement

in H

Nλ = H ⊖ Mλ

coincides with the eigenspace corresponding to the eigenvalue λ of the operator A∗.

The sets D(A), Nλ and Nλ (Imλ 6= 0) are linearly independent, hence according

to von Neumann (see [1], [11]), the domain of the adjoint operator A∗ admits the

representation

(1.1) D(A∗) = D(A) ⊕ Nλ ⊕ Nλ,

and

(1.2) A∗f = Af0 + λϕλ + λϕλ

The work was supported by the NADUR (National Agency for the Development of
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with f0 ∈ D(A), ϕλ ∈ Nλ and ϕλ ∈ Nλ. The numbers m = dimNλ and n = dim Nλ

do not change when λ belongs to the half-plane Imλ > 0. Then A is said to be of

defect indices (m,n). The formulas (1.1) and (1.2) show that A is selfadjoint iff it is

of defect indices (0, 0).

Further, letM and M̃ be two subspaces of H such thatM ⊂ M̃ . The number n is

called the dimension of M̃ modulo M (denoted dimM M̃ , i.e. dim M̃ = n (modM))

if there is n, and no more than n vectors f1, f2, . . . , fn in M̃ such that

α1f1 + α2f2 + . . .+ αnfn ∈M

implies that

α1 = α2 = . . . = αn = 0.

A quasi-selfadjoint extension of A of defect indices (m,m) (m <∞) is an arbitrary

linear operator B which satisfies the conditions

A ⊂ B ⊂ A∗,

dimD(B) = m (modD(A))

but is not a selfadjoint extension of the operator A.

For simplicity we restrict ourselves to the case of operators of defect indices (1, 1).

We shall assume that the operator A is simple (i.e. there exists no subspace invariant

under A such that the restriction of A to this subspace is selfadjoint).

We recall that a number λ is called a regular point of the operator A if the operator

(A− λI)−1 (I denotes the identity operator in H) exists, is bounded, and is defined

in the whole space. The spectrum of the operator A is defined as the complement

of the set of its regular points. In ([1], Appendix I, Section 5), it is proved that

the spectrum of a quasi-selfadjoint extension B of a simple symmetric operator A of

defect indices (1, 1) consists of the spectral kernel (i.e., the complement of the set of

all points of regular type) of A and the eigenvalues, and the set of the eigenvalues

lies wholly either in the upper or in the lower half-plane.

2. Carleman operators of second class

One can find necessary information about Carleman operators, for example, in

[7], [13], [18], [19], [20]. Let X be an arbitrary set, µ a σ-finite measure on X (µ is

defined on a σ-algebra of subsets of X , we do not indicate this σ-algebra), L2(X,µ)

the Hilbert space of square integrable functions with respect to µ. For short, instead

of writing ‘µ-measurable’, ‘µ-almost everywhere’ and ‘dµ(x)’ we write ‘measurable’,

‘a.e.’ and ‘dx’.
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A linear operator A : D(A) −→ L2(X,µ), where the domainD(A) is a dense linear

manifold in L2(X,µ), is said to be integral if there exists a measurable function K

on X ×X , a kernel, such that, for every f ∈ D(A),

(2.1) Af(x) =

∫

X

K(x, y)f(y) dy a.e.

A kernel K on X ×X is a Carleman kernel if K(x, y) ∈ L2(X,µ) for almost every

fixed x, that is to say ∫

X

|K(x, y)|2 dy <∞ a.e.

The integral operator A defined by (2.1) is called a Carleman operator if K is a

Carleman kernel. Since the closure of a Carleman operator always exists and is itself

a Carleman operator [20], we can suppose also that A is closed.

Now we consider the Carleman integral operators (2.1) of second class that were

introduced in [7], [3] generated by symmetric kernels of the form

K(x, y) =

∞∑

p=0

apψp(x)ψp(y),

where the overbar denotes complex conjugation. Here {ψp(x)}
∞
p=0 is an orthonormal

sequence in L2(X,µ) such that

∞∑

p=0

|ψp(x)|
2 <∞ a.e.,

and {ap}
∞
p=0 is a real number sequence verifying

∞∑

p=0

a2
p|ψp(x)|

2 <∞ a.e.

We call {ψp(x)}
∞
p=0 a Carleman sequence (we refer for instance to [20], Section 6.2).

Moreover, we assume that there exists a number sequence {γp}
∞
p=0 6= 0 such that

(2.2)

∞∑

p=0

γpψp(x) = 0 a.e.

and

(2.3)

∞∑

p=0

∣∣∣ γp
ap − λ

∣∣∣
2

<∞.
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Under the conditions (2.2) and (2.3), the symmetric operator A = (A∗)∗ is of defect

indices (1, 1) (see [3]) with

A∗f(x) =

∞∑

p=0

ap(f, ψp)ψp(x),

D(A∗) =

{
f ∈ L2(X,µ) :

∞∑

p=0

ap(f, ψp)ψp(x) ∈ L2(X,µ)

}
.

Moreover, in [4], we saw that





ϕλ(x) =
∞∑

p=0

γp
ap − λ

ψp(x) ∈ Nλ, λ ∈ C, λ 6= ak, k = 1, 2, . . . ,

ϕak
(x) = ψk(x)

with Nλ the defect space of A.

We denote by Lψ the sub-space of L
2(X,µ) generated by the sequence {ψp(x)}

∞
p=0.

It is clear that the orthogonal complement L⊥

ψ = L2(X,µ)⊖Lψ is contained in D(A)

and cancels the operator A. As Lψ is reduced by A (see [1]), we consider A on Lψ.

Then we have (see [4]) for all f ∈ Lψ and for almost all x ∈ X :

f(x) =

∫ +∞

−∞

(f, ϕσ)ϕσ(x)

(σ2 + 1)|(ϕσ,
◦

ϕi)|
d̺(σ),(2.4)

‖f‖2 =

∫ +∞

−∞

|(f, ϕσ)|
2

(σ2 + 1)|(ϕσ,
◦

ϕi)|
d̺(σ),(2.5)

with
◦

ϕi =
ϕi

‖ϕi‖
(ϕi ∈ N−i),

and

(2.6) ̺(σ) =
1

π

lim
τ→+0

∫ σ

0

ℜ
1 + ω(t+ iτ)C(t + iτ)

1 − ω(t+ iτ)C(t + iτ)
dt,

were ω(λ) is an analytical function on the upper half-plane Π+ with |ω(λ)| 6 1

(Imλ > 0) (Imλ the imaginary part of λ) and C(λ) is the function

C(λ) =
[1 − ω(λ)](f, ϕλ)

[ω(λ)χ(λ) − 1](λ+ i)(ϕλ, ϕi)
(Imλ > 0)

with χ(λ) the characteristic function of A (see [4], [1]).
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Let P be the set of all functions ̺(σ) defined by (2.6) (see [5]). We call such a

function ̺(σ) the scalar spectral function of the operator A. This function character-

izes the spectrum of the quasi-selfadjoint extension Aω of the operator A associated

with the analytic function ω(λ). The spectrum of this extension is the set of points of

growth of ̺(σ). We recall here (see [5]) that ̺(σ) is called orthogonal scalar spectral

function if it corresponds to a constant function ω(λ) with |ω| ≡ 1.

Now let us look more closely at the function ̺(σ) given by (2.6). It is clear that

the homographic function (1 + z)/(1 − z) transforms the circle |z| = 1 into the real

line R. So if

(2.7) ω(λ) = κ

with |κ| = 1, then

ℜ
1 + κC(σ)

1 − κC(σ)
= 0

for all σ ∈ R except at points σ satisfying

1 − κC(σ) = 0.

We infer that the function ̺(σ) associated with κ has jumps at points of the spectrum

of the selfadjoint extension Aκ associated with κ. This spectrum is formed by the

zeros of the equation C(σ) = κ.

We denote by G0 the convex hull of these functions:

G0 =

{
̺(σ) =

n∑

k=1

αk̺κk
, αk > 0,

n∑

k=1

αk = 1

}
,

and G = G0, for the convergence at each point of continuity.

For any function ̺(σ) ∈ G0 we have:

̺(σ) =
1

π

lim
τ→+0

∫ σ

0

ℜ

[ n∑

k=1

αk
1 + κkC(λ)

1 − κkC(λ)

]
dt(2.8)

=
1

π

lim
τ→+0

∫ σ

0

ℜ
[1 + ω(λ)C(λ)

1 − ω(λ)C(λ)

]
dt (λ = σ + iτ)

where ω(λ) is the analytical function corresponding to ̺(σ) ∈ P.

Let now M be the set of all analytic functions ϕ(z) on the unit disc K = {z ∈

C : |z| < 1} satisfying, |ϕ(z)| 6 1, z ∈ K and admitting the representation

(2.9) ϕ(z) =

∫ 2π

0
eit(1 − zeit)−1 dS(t)

∫ 2π

0 (1 − zeit)−1 dS(t)
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where S(t) is a monotonic nondecreasing function with total variation equal to one,

i.e.
∫ 2π

0 dS(t) = 1. We denote by M0 the set of all functions ϕ(z) ∈ M with S(t) a

step function with a finite number of jumps. Consequently, from (2.8) and (2.9), we

find easily that

ω(λ) =

∑n

k=1 αkκk(1 − κkC(λ))−1

∑n

k=1(1 − κkC(λ))−1
(2.10)

=

∫ +∞

−∞
eit(1 − C(λ)eit)−1 dS(t)

∫ +∞

−∞
(1 − C(λ)eit)−1 dS(t)

= ϕ(C(λ)),

with ϕ(z) ∈ M0.

3. Description of the spectrum of quasi-selfadjoint extensions

of a Carleman operator

In this section we will study the spectrum of the quasi-selfadjoint extension Aω of

the Carleman operator A which equals the set of all points of growth of its spectral

scalar function ̺(t) ∈ G (see [1], [19]).We recall ([5], Theorem 2.1) that for all ̺ω(t) =

̺(t) ∈ G there corresponds an analytic function ω(λ) = ϕ(C(λ)) with ϕ(z) ∈ M.

In the previous section we have observed that the spectrum of a selfadjoint exten-

sion Aκ of the Carleman operator A associated with κ (|κ| = 1) coincides with the

set of all solutions of the equation

(3.1) C(σ) = κ.

Let ∆p = [ap, ai(p)] (p = 1, 2, . . .) be the interval of the real line R such that ap and

ai(p) be consecutive (i.e., exist no other ak between ap and ai(p)). The characteristic

function C(λ) applies to each interval, namely, for every p, k and ζ ∈ ∆p there exists

a unique η ∈ ∆k such that

C(ζ) = C(η).

We denote by Γ the spectrum of the quasi selfadjoint extension Aω of the Carleman

operator A whose scalar spectral function is

̺ω(t) = ̺(t).
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Theorem 1. (1) If ̺(t) ∈ G0, then for all p (p = 1, 2, . . .) Γ contains only a finite

number n of points in each interval ∆p, i.e.

Γ ∩ ∆p = {σ1
p, σ

2
p, . . . , σ

n
p }.

(2) If ̺(t) ∈ G, we have for all p (p = 1, 2, . . .)

(3.2) {z : z = eit, t ∈ Γ ∩ ∆p} = {z : z = eit, t ∈ Γ}.

If ̺(t) ∈ G, we have for all p (p = 1, 2, . . .)

(3.3) {z : z = eit, t ∈ Γ ∩ ∆p} = {z : z = eit, t ∈ Γ}.

P r o o f. Let ̺(t) ∈ G0. Then ω(t) associated with ̺(t) is the rational function

(2.10). Therefore the equation

ω(λ)C(λ) = 1

admits only n solutions in each interval ∆p = [ap, ai(p)], (p = 1, 2, . . .). Indeed,

as noted earlier in this section, for each p, q and σq ∈ ∆q, there is a single point

σqp ∈ ∆p such that

C(σqp) = C(σq).

By applying the function ϕ to this equality we obtain, using (2.10), that

ω(σqp) = ω(σq).

By (2.7), we have also

ω(σq) = κq.

Hence

ω(σqp) = κq.

Now by the equality (3.1) it follows that

C(σqp) = κq.

Then

ω(σqp)C(σqp) = |κq|
2 = 1 (q = 1, 2, . . . , n; p = 1, 2, . . .),

and so

Γ ∩ ∆p = {σ1
p, σ

2
p, . . . , σ

n
p }.

This proves the first assumption. To see the second point, we argue as follows.

⊲ First, if ̺(t) ∈ G0, then equality (3.3) follows from the bijection established by

the characteristic function C(t) between ∆p’s.

⊲ Now if ̺(t) ∈ G and ̺(t) /∈ G0, then there is a sequence of scalar spectral

functions ̺n(t) ∈ G0 wich converges to ̺(t). Since equality (3.3) is true for

̺n(t) for any n, it is also true for ̺(t). �
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Theorem 2. Let E be a closed set contained in the interval ∆p = [ap, ai(p)].

Then there is ̺(t) ∈ G such that the spectrum Γ of the quasi-selfadjoint extension

Aω of the Carleman operator A having ̺(t) as the scalar spectral function satisfies

the equality

Γ ∩ ∆p = E.

P r o o f. We choose a countable set

Ω = {σ1
p, σ

2
p, . . .} ⊂ ∆p,

dense in E. It is clear that if we denote

Ωn = {σ1
p, σ

2
p, . . . , σ

n
p },

then

Ω =

∞⋃

n=1

Ωn.

Let

C(σkp ) = κk (k = 1, 2, . . . , n),

and for all n (n = 1, 2, . . .), let us form the spectral function by setting

̺n(t) =

n−1∑

k=1

1

2k
̺κk

(t) +
1

2n−1
̺κn

(t),

where ̺κk
(t) denotes the orthogonal spectral function associated with κk (k =

1, 2, . . . , n).

Clearly, ̺n(t) ∈ G0.We will show that ̺n(t) converges pointwise as n tends to ∞.

We start by introducing the function

Sn(t) =

∫ t

−∞

d̺n(σ)

σ2 + 1
.

According to the formula (2.5) Sn(t) is a distribution function, i.e.,

Sn(+∞) = lim
t→+∞

Sn(t) =

∫ +∞

−∞

d̺n(σ)

σ2 + 1
= ‖

◦

ϕi‖
2 = 1

and

Sn(−∞) = lim
t→−∞

Sn(t) = 0.
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Since

Sn(t) =

n−1∑

k=1

1

2k
Sκk

(t) +
1

2n−1
Sκn

(t),

we have

|Sn+n0
(t) − Sn(t)| =

∣∣∣∣
n+n0−1∑

k=n

1

2k
Sκk

(t) +
1

2n+n0−1
Sκn+n0

(t) −
1

2n−1
Sκn

(t)

∣∣∣∣

6

n+n0−1∑

k=n

1

2k
+

1

2n+n0−1
−

1

2n−1
.

It is clear that this quantity tends to 0 as n tends to ∞. Therefore, at each point t,

Sn(t) converges to a limit, denoted by S(t).

Thus ̺n(t) converges to ̺(t) as n tends to ∞ and

S(t) =

∫ t

−∞

d̺(σ)

σ2 + 1
.

The spectrum of ̺n(t) is {σ
1
̺, σ

2
̺, . . . , σ

n
̺ } = Ωn , consequently the spectrum of ̺(t)

is Ω = E. �
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