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Abstract. We study the uniqueness theorems of meromorphic functions concerning dif-
ferential polynomials sharing a nonzero polynomial IM, and obtain two theorems which will
supplement two recent results due to X.M. Li and L.Gao.
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1. Introduction, definitions and results

In this paper, by meromorphic functions we will always mean meromorphic func-

tions in the complex plane. We adopt the standard notation in the Nevanlinna

theory of meromorphic functions as explained in [7], [14] and [15]. For a nonconstant

meromorphic function h, we denote by T (r, h) the Nevanlinna characteristic of h and

by S(r, h) any quantity satisfying S(r, h) = o{T (r, h)} as r → ∞ possibly outside a

set of finite linear measure. A meromorphic function a(z) (6≡ ∞) is called a small

function with respect to f provided that T (r, a) = S(r, f).

Let f and g be two nonconstant meromorphic functions, and let a be a finite value.

We say that f and g share the value a CM provided that f − a and g − a have the

same zeros with the same multiplicities. Similarly, we say that f and g share a IM

provided that f−a and g−a have the same zeros ignoring multiplicities. In addition,

we say that f and g share∞ CM if 1/f and 1/g share 0 CM, and we say that f and

g share ∞ IM if 1/f and 1/g share 0 IM (see [15]). Throughout this paper, we need

the following definition:

Θ(a, f) = 1 − lim sup
r→∞

N(r, a; f)

T (r, f)
,

where a is a value in the extended complex plane.
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In 1959, W.K.Hayman proved the following theorem:

Theorem A (see [6, Corollary of Theorem 9]). Let f be a transcendental mero-

morphic function, and let n > 3 be an integer. Then fnf ′ = 1 has infinitely many

solutions.

In 1997, C.C.Yang and X.H.Hua proved the following result, which corresponded

to Theorem A.

Theorem B (see [13, Theorem 1]). Let f and g be two nonconstant meromorphic

functions, and let n > 11 be a positive integer. If fnf ′ and gng′ share 1 CM, then

either f(z) = c1e
cz, g(z) = c2e

−cz, where c1, c2 and c are three finite nonzero complex

numbers satisfying (c1c2)
n+1c2 = −1, or f = tg for a finite complex number t such

that tn+1 = 1.

In 2000, M. L. Fang proved the following result:

Theorem C (see [4, Theorem 2]). Let f be a transcendental meromorphic func-

tion, and let n > 1 be a positive integer. Then fnf ′ − z = 0 has infinitely many

solutions.

In 2000, M. L. Fang and H. L.Qiu proved the following result, which corresponded

to Theorem C.

Theorem D (see [5, Theorem 1]). Let f and g be two nonconstant meromorphic

functions, and let n > 11 be a positive integer. If fnf ′ − z and gng′ − z share 0

CM, then either f(z) = c1e
cz2

and g(z) = c2e
−cz2

, where c1, c2 and c are three

finite nonzero complex numbers satisfying 4(c1c2)
n+1c2 = −1, or f = tg for a finite

complex number t such that tn+1 = 1.

In 2003, W.Bergweiler and X.C. Pang proved the following result:

Theorem E (see [3, Theorem 1.1]). Let f be a transcendental meromorphic func-

tion, and let R 6≡ 0 be a rational function. If all zeros and poles of f are multiple,

except possibly finitely many, then f ′ − R = 0 has infinitely many solutions.

Now the following question arises:

Q u e s t i o n 1. Similarly to Theorem B and Theorem D, does there exist a unicity

theorem corresponding to Theorem E?

Recently X.M. Li and L.Gao proved the following uniqueness theorems dealing

with Question 1.
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Theorem F (see [11, Theorem 1.1]). Let f and g be two transcendental mero-

morphic functions, let n > 11 be a positive integer, and let P 6≡ 0 be a polynomial

with its degree γP 6 11. If fnf ′ − P and gng′ − P share 0 CM, then either f = tg

for a complex number t satisfying tn+1 = 1, or f = c1e
cQ and g = c2e

−cQ, where c1,

c2 and c are three nonzero complex numbers satisfying (c1c2)
n+1c2 = −1, and Q is

a polynomial satisfying Q =
∫ z

0 P (η) dη.

Theorem G (see [11, Theorem 1.2]). Let f and g be two transcendental mero-

morphic functions, let n > 15 be a positive integer, and let P 6≡ 0 be a polynomial.

If (fn(f −1))′−P and (gn(g−1))′−P share 0 CM and Θ(∞, f) > 2/n, then f = g.

Naturally one may ask the following question which is the motivation of the present

paper.

Q u e s t i o n 2. Can one obtain IM-analogues of Theorem F and Theorem G?

We will prove the following results, which deal with Question 2.

Theorem 1. Let f and g be two transcendental meromorphic functions, let

n (> 23) be a positive integer, and let P 6≡ 0 be a polynomial with its degree

γP 6 23. If fnf ′ − P and gng′ − P share 0 IM, then either f = tg for a complex

number t satisfying tn+1 = 1, or f = c1e
cQ and g = c2e

−cQ, where c1, c2 and c are

three nonzero complex numbers satisfying (c1c2)
n+1c2 = −1, and Q is a polynomial

satisfying Q =
∫ z

0
P (η) dη.

Theorem 2. Let f and g be two transcendental meromorphic functions, let n, m

be two positive integers, and let P 6≡ 0 be a polynomial. If (fn(f − 1)m)′ − P and

(gn(g − 1)m)′ − P share 0 IM, then each of the following assertions hold:

(i) when m = 1, n > 30 and Θ(∞, f) + Θ(∞, g) > 4/n, then f = g;

(ii) when m > 2 and n > 4m+26, then either f = g or f and g satisfy the algebraic

equation R(f, g) = 0, where

R(w1, w2) = wn
1 (w1 − 1)m − wn

2 (w2 − 1)m.

We now explain some definitions and notations which are used in the paper.

Definition 1 [9]. For a ∈ C∪{∞} we denote byN(r, a; f |= 1) the counting func-

tions of simple a-points of f . For a positive integer p we denote by N(r, a; f |6 p) the

counting function of those a-points of f (counted with proper multiplicities) whose

multiplicities are not greater than p. By N(r, a; f |6 p) we denote the corresponding

reduced counting function. In an analogous manner we define N(r, a; f |> p) and

N(r, a; f |> p).
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Definition 2 [8]. Let k be a positive integer or infinity. We denote by Nk(r, a; f)

the counting function of a-points of f , where an a-point of multiplicity m is counted

m times if m 6 k and k times if m > k. Then

Nk(r, a; f) = N(r, a; f) + N(r, a; f |> 2) + . . . + N(r, a; f |> k).

Clearly N1(r, a; f) = N(r, a; f).

Definition 3. Let a be any value in the extended complex plane, and let k be

an arbitrary nonnegative integer. We define

δk(a, f) = 1 − lim sup
r→∞

Nk(r, a; f)

T (r, f)
.

R em a r k 1. From the definitions of δk(a, f) and Θ(a, f), it is clear that

0 6 δk(a, f) 6 δk−1(a, f) 6 δ1(a, f) 6 Θ(a, f) 6 1.

Definition 4 [1], [2]. Let f and g be two nonconstant meromorphic functions

such that f and g share the value 1 IM. Let z0 be a 1-point of f with multiplicity

p and also a 1-point of g with multiplicity q. We denote by NL(r, 1; f) the reduced

counting function of the 1-points of f and g with p > q, by N
1)
E (r, 1; f) the counting

function of the 1-points of f and g with p = q = 1, by N
(2

E (r, 1; f) the reduced

counting function of the 1-points of f and g with p = q > 2. In the same manner we

can define NL(r, 1; g), N
1)
E (r, 1; g) and N

(2

E (r, 1; g).

2. Lemmas

Lemma 1 [12]. Let f be a transcendental meromorphic function, and let Pn(f)

be a differential polynomial in f of the form

Pn(f) = anfn(z) + an−1f
n−1(z) + . . . + a1f(z) + a0,

where an (6= 0), an−1, . . . , a1, a0 are complex numbers. Then

T (r, Pn(f)) = nT (r, f) + O(1).
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Lemma 2 [7]. Let f be a nonconstant meromorphic function, k a positive integer,

and let c be a nonzero finite complex number. Then

T (r, f) 6 N(r,∞; f) + N(r, 0; f) + N(r, c; f (k)) − N(r, 0; f (k+1)) + S(r, f)

6 N(r,∞; f) + Nk+1(r, 0; f) + N(r, c; f (k)) − N0(r, 0; f (k+1)) + S(r, f),

where N0(r, 0; f (k+1)) denotes the counting function which counts only the points

such that f (k+1) = 0 but f(f (k) − c) 6= 0.

Lemma 3 [16]. Let f and g be two nonconstant meromorphic functions, and let

p, k be two positive integers. Then

Np(r, 0; f (k)) 6 Np+k(r, 0; f) + kN(r,∞; f) + S(r, f).

Lemma 4 [7], [14]. Let f be a transcendental meromorphic function, and let

a1(z), a2(z) be two distinct meromorphic functions such that T (r, ai(z)) = S(r, f),

i = 1, 2. Then

T (r, f) 6 N(r,∞; f) + N(r, a1; f) + N(r, a2; f) + S(r, f).

Lemma 5. Let f and g be two transcendental meromorphic functions such that

f (k)−P and g(k)−P share 0 IM, where k is a positive integer, P 6≡ 0 is a polynomial.

If

(2.1) ∆1 = (2k + 4)Θ(∞, f) + (2k + 3)Θ(∞, g) + Θ(0, f) + Θ(0, g)

+ 3δk+1(0, f) + 2δk+1(0, g) > 4k + 13

and

(2.2) ∆2 = (2k + 4)Θ(∞, g) + (2k + 3)Θ(∞, f) + Θ(0, g) + Θ(0, f)

+ 3δk+1(0, g) + 2δk+1(0, f) > 4k + 13,

then either f (k)g(k) = P 2 or f = g.

P r o o f. Since f and g are two transcendental meromorphic functions, f (k) and

g(k) are also two transcendental meromorphic functions. Let

F =
f (k)

P
, G =

g(k)

P
,
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and let

(2.3) H =
(F ′′

F ′
−

2F ′

F − 1

)

−
(G′′

G′
−

2G′

G − 1

)

.

Let z0 6∈ {z : P (z) = 0} be a common simple zero of f (k) −P and g(k) −P . Then z0

is a common simple zero of F − 1 and G − 1. Substituting their Taylor series at z0

into (2.3), we see that z0 is a zero of H . Thus we have

(2.4) N
1)
E (r, 1; F ) 6 N(r, 0; H) 6 T (r, H)+ O(1) 6 N(r,∞; H)+S(r, F ) +S(r, G).

Let z1 6∈ {z : P (z) = 0} be a pole of H . Then z1 possibly is a zero of f or of g,

possibly a pole of f or of g, possibly a common 1-point of F and G which has different

multiplicities related to F and G, or possibly a zero of F ′ or of G′, which is neither

a zero of f(F − 1) nor a zero of g(G − 1). Hence we have

(2.5) N(r,∞; H) 6 N(r,∞; f) + N(r,∞; g) + N(r, 0; f) + N(r, 0; g) + NL(r, 1; F )

+ NL(r, 1; G) + N0(r, 0; F ′) + N0(r, 0; G′) + O(log r),

where N0(r, 0; F ′) denotes the counting function of those zeros of F ′ which are not

the zeros of f(F − 1), N0(r, 0; G′) is similarly defined. Since f is a transcendental

meromorphic functions we have

(2.6) T (r, P ) = o{T (r, f)}.

By Lemma 2, we have

(2.7) T (r, f) 6 N(r,∞; f) + Nk+1(r, 0; f) + N(r, 1; F ) − N0(r, 0; F ′) + S(r, f).

Similarly,

(2.8) T (r, g) 6 N(r,∞; g) + Nk+1(r, 0; g) + N(r, 1; G) − N0(r, 0; G′) + S(r, g).

Since f (k) − P and g(k) − P share 0 IM, using (2.4) and (2.5) we obtain

(2.9) N(r, 1; F ) + N(r, 1; G) = 2N
1)
E (r, 1; F ) + 2NL(r, 1; F )

+ 2NL(r, 1; G) + 2N
(2

E (r, 1; F )

6 N
1)
E (r, 1; F ) + N(r,∞; f) + N(r,∞; g)

+ N(r, 0; f) + N(r, 0; g) + 3NL(r, 1; F )

+ 3NL(r, 1; G) + N0(r, 0; F ′) + N0(r, 0; G′)

+ 2N
(2

E (r, 1; F ) + S(r, f) + S(r, g).
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Obviously

(2.10) N
1)
E (r, 1; F ) + 2N

(2

E (r, 1; F ) + NL(r, 1; F ) + 2NL(r, 1; G)

6 N(r, 1; G) + S(r, f) + S(r, g)

6 T (r, G) + S(r, f) + S(r, g)

6 T (r, g) + kN(r,∞; g) + S(r, f) + S(r, g).

Also, by Lemma 3 we have

(2.11) NL(r, 1; F ) 6 N(r, 1; F ) − N(r, 1; F )

6 N
(

r,∞;
F

F ′

)

6 N
(

r,∞;
F ′

F

)

+ S(r, f)

6 N(r, 0; F ) + N(r,∞; f) + S(r, f)

6 Nk+1(r, 0; f) + (k + 1)N(r,∞; f) + S(r, f).

Similarly,

(2.12) NL(r, 1; G) 6 Nk+1(r, 0; g) + (k + 1)N(r,∞; g) + S(r, g).

From (2.7)–(2.12), we obtain

(2.13) T (r, f) 6 (2k + 4)N(r,∞; f) + (2k + 3)N(r,∞; g) + N(r, 0; f) + N(r, 0; g)

+ 3Nk+1(r, 0; f) + 2Nk+1(r, 0; g) + S(r, f) + S(r, g).

Similarly,

(2.14) T (r, g) 6 (2k + 4)N(r,∞; g) + (2k + 3)N(r,∞; f) + N(r, 0; g) + N(r, 0; f)

+ 3Nk+1(r, 0; g) + 2Nk+1(r, 0; f) + S(r, f) + S(r, g).

Suppose that there exists a subset I ⊆ R
+ satisfying mes I = ∞ such that T (r, g) 6

T (r, f), r ∈ I. Hence from (2.13) we have

∆1 = (2k + 4)Θ(∞, f) + (2k + 3)Θ(∞, g) + Θ(0, f) + Θ(0, g)

+ 3δk+1(0, f) + 2δk+1(0, g) 6 4k + 13,

contradicting (2.1). Similarly, if there exists a subset I ⊆ R
+ satisfying mes I = ∞

such that T (r, f) 6 T (r, g), r ∈ I, from (2.14) we obtain

∆2 = (2k + 4)Θ(∞, g) + (2k + 3)Θ(∞, f) + Θ(0, g) + Θ(0, f)

+ 3δk+1(0, g) + 2δk+1(0, f) 6 4k + 13,
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contradicting (2.2). We now assume that H = 0. That is,

(F ′′

F ′
−

2F ′

F − 1

)

−
(G′′

G′
−

2G′

G − 1

)

= 0.

Integrating both sides of the above equality twice we get

(2.15)
1

F − 1
=

A

G − 1
+ B,

where A (6= 0) and B are finite complex constants. We now discuss the following

three cases.

C a s e 1. Let B 6= 0 and A = B. If B = −1, we obtain from (2.15) FG = 1, i.e.,

f (k)g(k) = P 2.

If B 6= −1, from (2.15) we get

1

F
=

BG

(1 + B)G − 1
and G =

−1

b(F − (1 + B)/B)
.

So by Lemma 3 we obtain

(2.16)
N

(

r,
1

1 + B
; G

)

6 N(r, 0; F ) 6 Nk+1(r, 0; f) + kN(r,∞; f)

+ O(log r) + S(r, f)

and

(2.17) N
(

r,
1 + B

B
; F

)

6 N(r,∞; g) + O(log r).

Using Lemma 2, (2.16) and (2.17) we obtain

(2.18) T (r, g) 6 Nk+1(r, 0; g) + N
(

r,
1

1 + B
; G

)

+ N(r,∞; g)

− N0(r, 0; G′) + S(r, g)

6 Nk+1(r, 0; g) + Nk+1(r, 0; f) + kN(r,∞; f)

+ N(r,∞; g) + S(r, f) + S(r, g)

and

(2.19) T (r, f) 6 Nk+1(r, 0; f) + N
(

r,
1 + B

B
; F

)

+ N(r,∞; f)

− N0(r, 0; F ′) + S(r, f)

6 Nk+1(r, 0; f) + N(r,∞; f) + N(r,∞; g) + S(r, f).
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Suppose that there exists a subset I ⊆ R
+ satisfying mes I = ∞ such that T (r, f) 6

T (r, g), r ∈ I. So from (2.18) we obtain

kΘ(∞, f) + Θ(∞, g) + δk+1(0, f) + δk+1(0, g) 6 k + 2,

which by (2.1) gives

(k+4)Θ(∞, f)+(2k+2)Θ(∞, g)+Θ(0, f)+Θ(0, g)+2δk+1(0, f)+δk+1(0, g) > 3k+11,

a contradiction with Remark 1. If there exists a subset I ⊆ R
+ satisfying mes I = ∞

such that T (r, g) 6 T (r, f), r ∈ I, by the same argument we obtain a contradiction

from (2.1) and (2.19).

C a s e 2. Let B 6= 0 and A 6= B. If B = −1, from (2.15) we obtain F =

−A/(G − (a + 1)).

If B 6= −1, from (2.15) we obtain F − (1 + B)/B = −A/B2(G + (A − B)/B).

Using the same argument as in case 1 we obtain a contradiction in both the cases.

C a s e 3. Let B = 0. Then from (2.15) we get

(2.20) g = Af + (1 − A)P1,

where P1 is a polynomial of degree γP1
> k. If A 6= 1, by Lemma 4 and (2.20) we

get

(2.21) T (r, g) 6 N(r, 0; g) + N(r,∞; g) + N(r, (1 − A)P1; g) + S(r, g)

6 N(r, 0; g) + N(r,∞; g) + N(r, 0; f) + S(r, g).

Since f and g are transcendental meromorphic functions, from (2.20) we have

T (r, f) = T (r, g) + O(log r).

So from (2.21) we obtain

Θ(0, f) + Θ(0, g) + Θ(∞, g) 6 2,

which by (2.1) gives

(2k + 4)Θ(∞, f) + (2k + 2)Θ(∞, g) + 3δk+1(0, f) + 2δk+1(0, g) > 4k + 11,

a contradiction with Remark 1. Thus A = 1 and so f = g. This proves the lemma.

�
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Lemma 6 [11]. Let f and g be two transcendental meromorphic functions, let

n > 2 be a positive integer, and let P be a nonconstant polynomial with its degree

γP 6 n. If fnf ′gng′ = P 2, then f and g are expressed as f = c1e
cQ and g =

c2e
−cQ respectively, where c1, c2 and c are three nonzero complex numbers satisfying

(c1c2)
n+1c2 = −1, and Q is a polynomial satisfying Q =

∫ z

0
P (η) dη.

Lemma 7. Let f and g be two transcendental meromorphic functions, let n, m

be two positive integers and let P be a nonconstant polynomial. If m = 1, n > 6 or

if m > 2, n > m + 3, then

(fn(f − 1)m)′(gn(g − 1)m)′ 6= P 2.

P r o o f. On the contrary, assume

(2.22) (fn(f − 1)m)′(gn(g − 1)m)′ = P 2.

We discuss the following two cases.

C a s e 1. Let m > 2. Then from (2.22) we obtain

(2.23) fn−1(f − 1)m−1(cf − d)f ′gn−1(g − 1)m−1(cg − d)g′ = P 2,

where c = n + m and d = n.

Let z0 6∈ {z : P (z) = 0} be a 1-point of f with multiplicity p0 (> 1). Then from

(2.23) it follows that z0 is a pole of g. Suppose that z0 is a pole of g of order q0

(> 1). Then we have mp0−1 = (n+m)q0 +1, i.e., mp0 = (n+m)q0 +2 > n+m+2,

and so

p0 >
n + m + 2

m
.

Let z1 6∈ {z : P (z) = 0} be a zero of cf − d with multiplicity p1 (> 1). Then from

(2.23) it follows that z1 is a pole of g. Suppose that z1 is a pole of g of order q1

(> 1). Then we have 2p1 − 1 = (n + m)q1 + 1, and so

p1 >
n + m + 2

2
.

Let z2 6∈ {z : P (z) = 0} be a zero of f with multiplicity p2 (> 1). Then it follows

from (2.23) that z2 is a pole of g. Suppose that z2 is a pole of g of order q2 (> 1).

Then we have

(2.24) np2 − 1 = (n + m)q2 + 1.
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From (2.24) we get mq2 +2 = n(p2 − q2) > n, i.e., q2 > (n − 2)/m. Thus from (2.24)

we obtain np2 = (n + m)q2 + 2 > (n + m)(n − 2)/m + 2, and so

p2 >
n + m − 2

m
.

Let z3 6∈ {z : P (z) = 0} be a pole of f . Then it follows from (2.23) that z3 is a zero

of g(g − 1)(cg − d) or a zero of g′. So we have

N(r,∞; f) 6 N(r, 0; g) + N(r, 1; g) + N
(

r,
d

c
; g

)

+ N0(r, 0; g′)

+ S(r, f) + S(r, g)

6

( m + 2

n + m + 2
+

m

n + m − 2

)

T (r, g) + N0(r, 0; g′)

+ S(r, f) + S(r, g),

where N0(r, 0; g′) denotes the reduced counting function of those zeros of g′ which

are not zeros of g(g − 1)(cg − d).

By the second fundamental theorem of Nevanlinna we get

(2.25) 2T (r, f) 6 N(r, 0; f) + N(r, 1; f) + N
(

r,
d

c
; f

)

+ N(r,∞; f)

− N0(r, 0; f ′) + S(r, f)

6

( m + 2

n + m + 2
+

m

n + m − 2

)

{T (r, f) + T (r, g)}

− N0(r, 0; f ′) + N0(r, 0; g′) + S(r, f) + S(r, g).

Similarly,

(2.26) 2T (r, g) 6

( m + 2

n + m + 2
+

m

n + m − 2

)

{T (r, f) + T (r, g)}

+ N0(r, 0; f ′) − N0(r, 0; g′) + S(r, f) + S(r, g).

Adding (2.25) and (2.26) we obtain

(

1 −
m + 2

n + m + 2
−

m

n + m − 2

)

{T (r, f) + T (r, g)} 6 S(r, f) + S(r, g),

contradicting the fact that n > m + 3.

C a s e 2. Let m = 1. Then from (2.22) we obtain

(2.27) fn−1(af − b)f ′gn−1(ag − b)g′ = P 2,

where a = n + 1 and b = n.
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Let z4 6∈ {z : P (z) = 0} be a pole of f . Then it follows from (2.27) that z4 is a

zero of g(ag − b) or a zero of g′. Then proceeding in a manner similar to Case 1 we

obtain
(

1 −
2

n − 1
−

4

n + 3

)

{T (r, f) + T (r, g)} 6 S(r, f) + S(r, g),

which contradicts the fact that n > 6. This proves the lemma. �

Lemma 8. Let f and g be two nonconstant meromorphic functions such that

Θ(∞, f) + Θ(∞, g) >
4

n
,

where n(> 3) is an integer. Then

fn(af + b) ≡ gn(ag + b)

implies f ≡ g, where a, b are two nonzero constants.

P r o o f. We omit the proof since it can be carried out following the lines of

Lemma 6 [10]. �

3. Proofs of the theorems

P r o o f of Theorem 1. We consider F1(z) = fn+1/(n + 1) and G1(z) =

gn+1/(n + 1). Then we see that F ′

1 − P and G′

1 − P share the value 0 IM. Us-

ing Lemma 1, we have

(3.1) Θ(0, F1) = 1 − lim sup
r→∞

N(r, 0; F1)

T (r, F1)

= 1 − lim sup
r→∞

N(r, 0; f)

(n + 1)T (r, f)

> 1 − lim sup
r→∞

T (r, f)

(n + 1)T (r, f)

>
n

n + 1
.

Similarly,

(3.2) Θ(0, G1) >
n

n + 1
.
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(3.3) Θ(∞, F1) = 1 − lim sup
r→∞

N(r,∞; F1)

T (r, F1)

= 1 − lim sup
r→∞

N(r,∞; f)

(n + 1)T (r, f)

> 1 − lim sup
r→∞

T (r, f)

(n + 1)T (r, f)

>
n

n + 1
.

Similarly,

(3.4) Θ(∞, G1) >
n

n + 1
.

(3.5) δ2(0, F1) = 1 − lim sup
r→∞

N2(r, 0; F1)

T (r, F1)

= 1 − lim sup
r→∞

N2(r, 0; fn)

(n + 1)T (r, f)

> 1 − lim sup
r→∞

2T (r, f)

(n + 1)T (r, f)

>
n − 1

n + 1
.

Similarly,

(3.6) δ2(0, G1) >
n − 1

n + 1
.

Using (2.1), (2.2) and (3.1)–(3.6) we obtain

∆1 >
18n− 5

n + 1
and ∆2 >

18n− 5

n + 1
.

Since n > 23, we get ∆1 > 17 and ∆2 > 17. So by Lemma 5 we obtain either

F ′

1G
′

1 = P 2 or F1 = G1. Suppose that F ′

1G
′

1 = P 2, i.e., fnf ′gng′ = P 2. Hence by

Lemma 6 we obtain f = c1e
cQ and g = c2e

−cQ, where c1, c2 and c are three nonzero

complex numbers satisfying (c1c2)
n+1c2 = −1, and Q is a polynomial satisfying

Q =
∫ z

0
P (η) dη.

If F1 = G1, then f = tg for a complex number t such that tn+1 = 1. This

completes the proof of Theorem 1. �
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P r o o f of Theorem 2. Let F2(z) = fn(f − 1)m and G2(z) = gn(g − 1)m. Then

F ′

2 − P and G′

2 − P share the value 0 IM. Using Lemma 1, we obtain

(3.7) Θ(0, F2) = 1 − lim sup
r→∞

N(r, 0; F2)

T (r, F2)

= 1 − lim sup
r→∞

N(r, 0; fn(f − 1)m)

(n + m)T (r, f)

> 1 − lim sup
r→∞

2T (r, f)

(n + m)T (r, f)

>
n + m − 2

n + m
.

Similarly,

(3.8) Θ(0, G2) >
n + m − 2

n + m
.

(3.9) Θ(∞, F2) = 1 − lim sup
r→∞

N(r,∞; F2)

T (r, F2)

= 1 − lim sup
r→∞

N(r,∞; f)

(n + m)T (r, f)

> 1 − lim sup
r→∞

T (r, f)

(n + m)T (r, f)

>
n + m − 1

n + m
.

Similarly,

(3.10) Θ(∞, G2) >
n + m − 1

n + m
.

(3.11) δ2(0, F2) = 1 − lim sup
r→∞

N2(r, 0; F2)

T (r, F2)

= 1 − lim sup
r→∞

N2(r, 0; fn(f − 1)m)

(n + m)T (r, f)

> 1 − lim sup
r→∞

(m + 2)T (r, f)

(n + m)T (r, f)

>
n − 2

n + m
.

Similarly,

(3.12) δ2(0, G2) >
n − 2

n + m
.
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Using (2.1), (2.2) and (3.7)–(3.12) we obtain

∆1 >
18n + 13m − 25

n + m
and ∆2 >

18n + 13m− 25

n + m
.

Since n > 4m + 26, we get ∆1 > 17 and ∆2 > 17. In view of Lemma 5 and Lemma

7 we conclude that F2 = G2, i.e.,

(3.13) fn(f − 1)m = gn(g − 1)m.

Let m = 1. Then from (3.13) we get

fn(f − 1) = gn(g − 1),

which gives f = g, together with Lemma 8.

Let m > 2. Then from (3.13) we obtain

(3.14) fn[fm + . . . + (−1)i mCif
m−i + . . . + (−1)m]

= gn[gm + . . . + (−1)i mCig
m−i + . . . + (−1)m].

Let h = f/g. If h is a constant, then substituting f = gh in (3.14) we obtain

gn+m(hn+m − 1) + . . . + (−1)i mCig
n+m−i(hn+m−i − 1)

+ . . . + (−1)mgn(hn − 1) = 0,

which implies h = 1. Hence f = g.

If h is not a constant, then from (3.14) we see that f and g satisfy the algebraic

equation R(f, g) = 0, where

R(w1, w2) = wn
1 (w1 − 1)m − wn

2 (w2 − 1)m.

This completes the proof of Theorem 2. �

A c k n ow l e d g em e n t s. The author is grateful to the referee for his/her valu-

able suggestions and comments towards the improvement of the paper.
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