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Abstract. The paper discusses some aspects of the adjoint definition of two-scale conver-
gence based on periodic unfolding. As is known this approach removes problems concerning
choice of the appropriate space for admissible test functions. The paper proposes a modified
unfolding which conserves integral of the unfolded function and hence simplifies the proofs
and its application in homogenization theory.

The article provides also a self-contained introduction to two-scale convergence and gives
ideas for generalization to non-periodic homogenization.
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1. Introduction

Two-scale convergence was introduced by Nguetseng [16] and further developed

by Allaire [1] and others. For further detailed information on two-scale convergence

e.g. the survey papers [13], [7] can be recommended.

In this paper we discuss classical two-scale convergence and the adjoint approach

based on periodic unfolding called also dilation operator or two-scale transform,

especially modification of the unfolding which conserves the integrals, see Section 4.

*This research was supported by Grant No 201/08/0874 of the Grant Agency of Czech
Republic.

The editor learnt with great sorrow that Nils E M Svanstedt, Professor of Mathematics
at Chalmers University of Technology and the University of Gothenburg, unexpectedly
passed away at the age of 53 on April 28, 2012.
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The two-scale convergence enables to overcome the following problem:

Let {un} and {vn} be two weakly converging sequences.
What is the limit of their product {unvn}?

In general, the weak limit lim(unvn) differs from the product limun lim vn as is

illustrated by the following simple example: In L2(0, 2π) the sequences {un} and
{vn} given by un(x) = vn(x) = sin(nx) both have weak limit 0 by the Riemann-

Lebesgue lemma, but the weak limit of the sequence of products {unvn} is equal
to 1

2 . The phenomenon is caused by the fact that in the process of taking the weak

limit the information about the local behavior (like oscillations or concentrations) of

the sequences {un} and {vn} is lost.
The problem introduced appears e.g. in homogenization theory which studies be-

havior of the solutions uε to a sequence of differential equations with periodic coef-

ficients aε(x) while the period ε of the coefficients goes to 0. In the typical model

problem a sequence {uε} of solutions to the following problems is studied

(1) − div(aε(x)∇uε) = f in Ω, uε = 0 on ∂Ω, ε = 1,
1

2
,
1

3
,
1

4
, . . . ,

where the relation aε(x) = a(x/ε) for a periodic a(y) > α > 0, a ∈ L∞(RN ) defines

a weakly converging sequence {aε} of coefficients. For a domain Ω ⊂ R
N with a

“good” boundary and f ∈ L2(Ω) the unique weak solution uε ∈ V = W 1,2
0 (Ω) exists.

Since the sequence {uε} is bounded, it contains a weakly converging subsequence of
gradients {∇uε′}. The proof of the main result of homogenization, i.e. convergence
of the solutions uε to the solution u∗ of the so-called homogenized problem, starts

with the weak formulation of the problem

(2) Find uε ∈ V such that

∫

Ω

(∇v)Taε∇uε dx =

∫

Ω

vf dx ∀ v ∈ V.

We now have to pass to the limit as ε′ → 0. The left-hand side integral contains

a product of two weakly converging sequences {aε′} and {∇uε′}. As the previous
counterexample shows, it is not possible to pass directly to the limit.

This crucial problem in homogenization theory was first solved by a special choice

of the sequence of weakly converging periodic test functions, see e.g. the book [3]

by Bensoussan, Lions and Papanicolaou. Its substance was generalized to the non-

periodic case by F. Murat and L. Tartar [14] in their “div-curl” lemma.

A straightforward approach to periodic homogenization problems appeared in

two-scale convergence introduced by G. Nguetseng [16] and further developed by
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e.g. G. Allaire [1]. A sequence {uε} of the variable x has the limit u0 of double vari-

ables x and y, the local behavior is conserved in the second variable y. According to

the classical definition the sequence {uε} two-scale converges to the limit u0 if the

convergence
∫

Ω

uε(x)ϕ
(

x,
x

ε

)

dx→
∫

Ω

∫

Y

u0(x, y)ϕ(x, y) dy dx

holds for the so-called admissible test functions ϕ(x, y) from a space V of functions
being periodic in the variable y, see Definition 3.1. The space V cannot be the whole
space Lp(Ω×Y ) of functions periodic in y, it also cannot be too small, see Section 3.

The adjoint approach is based on the so-called periodic unfolding. In contrast to

Definition 3.1, where the x, y-variable test function ϕ is transformed into x-variable

function and the limit analysis takes place in Lp(Ω), in the adjoint approach the

sequence of x-variable functions uε is transformed into a sequence of x, y-variable

functions Tεu
ε and the limit analysis is carried out in Lp(Ω × Y ), see Definition 4.1

and 4.3.

The major advantage of this approach is that there are no problems with the so-

called admissibility, i.e. regularity of the test functions. Also the strong two-scale

convergence can be defined in a natural way. In addition, compactness and limit

passage theorems will follow directly from the Lp-theory.

The periodic unfolding called also dilation appeared in [2], [5], the two-scale con-

vergence based on periodic unfolding was introduced in [6], [8], [7] and [15]. The

unfolding works well on the whole space RN , but in the case of a domain Ω with

“incomplete” boundary cells the unfolding is not defined in these incomplete cells.

Thus in [8], [7] the unfolding was modified by extending functions by zero in the

incomplete cells, see Section 4. But this unfolding does not conserve the integrals.

Extension of the unfolding (11) in [10], [11] solves the problem, simplifies the proofs

and removes several difficulties and the necessity of introducing “unfolding criterion

for integrals”, see Section 4. For sequences bounded in Lp(Ω) the definitions of

two-scale convergence are equivalent.

The paper aims also to give a self-contained introduction to two-scale convergence

and its properties including proofs which can be simplified using integral conserving

property. In the end ideas of generalization to non-periodic homogenization based

on the integral conserving property are outlined.

361



2. Preliminaries

We start with formulation of notions used in periodic homogenization and two-

scale convergence which are implicitly assumed but usually not explicitly specified.

Scale. A sequence E = {εn}∞n=1 of small positive numbers εn tending to zero

is called the scale. In this paper instead of a subscript n ∈ N all sequences will be

denoted with a superscript εn from the scale E, but the n in εn is usually omitted and

the sequences are denoted e.g. by {aε}, only. The notation comes from the periodic
homogenization, where the sequence of problems with coefficients aε is studied and

the parameter ε denotes magnitude of the period. Although in the literature it

is usually not stated, the two-scale convergence is always defined with respect to

a fixed scale E and speaking about a converging subsequence {uε′}, its two-scale
convergence is taken with respect to a corresponding subscale E′ ⊂ E.

Domain Ω, period Y and Y -periodic functions. In the following Ω will be a

bounded domain in R
N with points x = (x1, . . . , xN ) and with a “good” boundary,

e. g. with a Lipschitz boundary ∂Ω.

In the periodic homogenization Y denotes the basic period in R
N called also the

unit cell with points y = (y1, . . . , yN). It can be any parallelepiped Y for the sake

of simplicity of unit measure having the “paving property”: the space RN can be

written as a union of disjoint Yξ = Y + ξ which are the cells Y shifted by vectors ξ

from a countable set Ξ in R
N , i.e. RN =

⋃

ξ∈Ξ

Yξ. In the model problem the basic

cell Y is the N -dimensional unit cube Y = 〈0, 1)N , and the set of shifts Ξ is ZN .

We shall say that a function a(y) is Y -periodic, if it is defined on RN and satisfies

a(y+ ξ) = a(y) for each ξ ∈ Ξ and all y ∈ R
N . In the model problem a(y) is periodic

in each variable yi with period 1. If the function a depends, in addition, on another

variable, say x, it is said to be Y -periodic in y.

Let us recall that taking a bounded measurable Y -periodic function a(y) and the

scale E, relation aε(x) = a(x/ε) ≡ a(x1/ε, . . . , xN/ε) defines a sequence of periodic

functions with diminishing period. It converges in Lp(Ω) weakly if 1 6 p < ∞ and
weakly-∗ if p = ∞ to a constant function a, which is the integral average of a(y):

a(x) =
∫

Y
a(y) dy. In the case when the unit cell Y does not have unit measure,

the integral yielding the limit is, in addition, divided by the measure |Y |, i.e. a =

|Y |−1
∫

Y
a(y) dy. Let us remark that the mapping x 7→ x/ε is a special case of the

so-called action on R
N , see [17].

Spaces of periodic functions. The standard Lebesgue spaces of functions inte-

grable in the pth power are denoted by Lp(Ω), W k,p(Ω) means the Sobolev space of
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functions having partial derivatives up to order k in Lp(Ω) and Ck(Ω) denotes the

space of functions with continuous derivatives up to order k in Ω.

Function spaces of Y -periodic functions will be denoted by Xper(Y ). Its ele-

ments a(y) are defined on R
N and are periodic in y with period Y , their restriction

to any bounded domain G ⊂ R
N is in X(G), although the norm is taken over the

cell Y only. The space Xper(Y ) can be “smaller” than functions of X(Y ) extended

to RN by periodicity. While Lp
per(Y ) can be identified with Lp(Y ), the space C1

per(Y )

is a closed subspace of C1(Y ), since its functions, in addition, have equal values and

gradients on the opposite sides of the cell Y . A similar assertion holds for W 1,p
per(Y ).

Finally, spaces of abstract functions will be used. Let us remark that the Banach

spaces Lp(Ω, Lp
per(Y )), Lp

per(Y, L
p(Ω)) and Lp

per(Ω × Y ) can be identified.

3. Classical definition of two-scale convergence

The two-scale convergence in L2(Ω) was introduced in [16] and further worked out

in [1]. In Lp(Ω), p ∈ (1,∞), see e.g. in [13], it is defined as follows:

Definition 3.1. A sequence of functions uε in Lp(Ω) two-scale converges to a

limit u0 ∈ Lp(Ω × Y ) with respect to the scale E if

(3) lim
ε→0

∫

Ω

uε(x)ϕ
(

x,
x

ε

)

dx =

∫

Ω

∫

Y

u0(x, y)ϕ(x, y) dy dx

for each test function ϕ(x, y) ∈ V = Lq(Ω;Cper(Y )), where q = p/(p− 1).

For the space V of admissible functions the space C0(Ω, Lp
per(Y )) can be also used.

If the definition requires that the sequence {uε} is bounded in Lp(Ω), then the space

V = C∞
0 (Ω) ⊗ C∞

per(Y ) of functions with compact support in Ω is sufficient. Some

authors say that the sequence converge two-scale strongly if moreover ‖uε‖Lp(Ω) →
‖u0‖Lp(Ω×Y ).

Problem of the space V of admissible test functions. The space V of test
functions in the definition cannot be the whole Lp(Ω × Y ), since the test func-

tion ϕ(x, y) is transformed into one variable function ϕ(x, x/ε), i.e. it is a trace

which for integrable and therefore only measurable function ϕ(x, y) ∈ Lp(Ω × Y ) is

not defined. Thus some continuity of the test functions must be assumed.

The Banach space of admissible test functions V is usually supposed to contain
functions satisfying Carathéodory conditions (measurability in one variable and con-

tinuity in the other variable) and two additional conditions

∥

∥

∥
v
(

·, ·
ε

)
∥

∥

∥

Lp(Ω)
6 ‖v‖V ,

∥

∥

∥
v
(

·, ·
ε

)
∥

∥

∥

Lp(Ω)
→ ‖v‖Lp(Ω×Y ).
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The first of these conditions is a consequence of the Scorza-Dragoni Theorem, see

e.g. [9] and the second condition is proved in e.g. [1] for V = L2(Ω;Cper(Y )) and

in [17] for the extension to the almost periodic and general deterministic cases. It

turns out that the space V cannot be too small. E.g. in case of the space V =

C∞
0 (Ω × Y ), the definition admits even sequences unbounded in Lp(Ω). Indeed, the

sequence uε(x) = ε−11(0,ε)(x), where 1A(x) = 1 for x ∈ A, otherwise 1A(x) = 0,

see [18], satisfies the convergence (3) for all test functions, but is not bounded in

Lp((0, 1)), p > 1.

Thus some authors add to the definition the condition that the sequence {uε} is
bounded in Lp(Ω). This condition solves the problem—it is a consequence of an

important lemma:

Let the sequence {uε} be bounded in a Banach space X of integrable functions
on Ω and let it converge to u∗ in the sense of distributions, i.e.

∫

Ω
(uε −u∗)ϕdx→ 0

for each ϕ ∈ C∞
0 (Ω). Then {uε} converges to u∗ weakly in X.

4. Dual definitions based on the periodic unfolding

The alternative approach is based on the so-called periodic unfolding called also

two-scale transform Tε. Each function u
ε of x-variable is transformed into a func-

tion Tεu
ε of both x and y variables by the relation

(4) (Tεu
ε)(x, y) = uε(tε(x, y)),

where the mapping tε : Ω × Y → Ω will be described later. Then weak convergence

of Tεu
ε is tested in Lp(Ω × Y ), see [6], [8], [7], [15], [10], [11]:

The sequence {uε} ⊂ Lp(Ω) two-scale converges to u0 in Lp(Ω) with respect to the

scale E, if Tεu
ε converge to u0 weakly in Lp(Ω × Y ).

This approach removes difficulties with the space of test functions: both the limit

and the test function can be taken from the maximal spaces: u0 ∈ Lp(Ω;Lp
per(Y ))

and ϕ in its dual space Lq(Ω;Lq
per(Y )). We need not take care of the space V ,

admissibility and compatibility of the test functions as in the classical definition.

The definitions in various papers differ in the unfolding near the boundary.

Periodic unfolding. The idea of periodic unfolding appeared in [2] and [5]. Since

the system {Yξ : ξ ∈ Ξ} of disjoint ξ-shifted cells Y covers RN , each point x ∈ R
N

can be uniquely split into two parts x = [x]Y + {x}Y , where [x]Y ∈ Ξ is the shift ξ

of the cell Yξ containing x and {x}Y ∈ Y is the relative position of x with respect

to the cell.
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In case of the unit cube period Y = 〈0, 1)N , both vectors [x]Y = ([x1], . . . , [xN ])

and {x}Y = ({x1}, . . . , {xN}) are vectors of integer and fraction parts of the coordi-
nates xi, i.e. xi = [xi] + {xi} ∈ R, where [xi] ∈ Z and {xi} ∈ 〈0, 1).

Using the decomposition defined above to ε-scaled cells Y ε
ξ = εYξ

x = ε
[x

ε

]

Y
+ ε

{x

ε

}

Y
,

the unfolding can be defined by (4) with the so-called two-scale mapping tε :

R
N × Y → R

N

(5) tε(x, y) = ε
[x

ε

]

Y
+ εy.

The unfolding defined by (5) was used in [6], [15]. It works well in case of Ω = R
N

or if the domain Ω can be written as the interior of a union of cells εYξ. Then, in

addition, the unfolding has an important property: it conserves the integral of the

functions:

(6)

∫

Ω

f(x) dx =

∫∫

Ω×Y

(Tεf)(x, y) dxdy.

But in general the domain Ω cannot be written in this way and in Ω around its

boundary ∂Ω “incomplete” cells remain. In these cells the unfolded function Tεu is

not defined, since the range of the mapping tε overlaps Ω. Also the equality (6) does

not hold, namely equality in Proposition 1 of [6] is not true.

Unfolding extended by zero. To remove the problem in [8] and [7] the unfold-

ing was modified. Using the ε-scaled system {Y ε
ξ = ε(Y + ξ), ξ ∈ Ξ} the domain Ω

was split into part Ωε containing the “complete” cells Y
ε
ξ and the remainder part Λε

containing the “incomplete” cells:

(7) Ω = Ωε ∪ Λε where Ωε =
⋃

{Y ε
ξ : ξ ∈ Ξ, Y ε

ξ ⊂ Ω} and Λε = Ω \ Ωε.

Then in [8], [7] outside of Ωε the unfolding (4) extends function u on Λε by zero

(8) (Tεu)(x, y) =

{

u
(

ε
[x

ε

]

Y
+ εy

)

for x ∈ Ωε,

0 for x ∈ Λε.

The unfolding Tε is now well defined in Ω, nevertheless the important integral con-

servation equality (6) is lost. In [7] the problem was solved by introducing a new

property: The sequence fε is said to satisfy unfolding criterion for integrals if

(9) lim
ε→0

∫

Λε

fε(x) dx = 0.
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This property requires the difference
∫

Ω
fε(x) dx −

∫∫

Ω×Y
Tε(f

ε)(x, y) dxdy to go

to zero, i.e. the integral conservation equality (6) holds in the limit. In [8], [7] this

unfolding is used to define two-scale convergence for any domain Ω:

Definition 4.1. The sequence {uε} ⊂ Lp(Ω) two-scale converges to u0 in Lp(Ω)

with respect to the scale E if Tεu
ε defined by (8) converge to u0 weakly in Lp(Ω×Y ).

The new unfolding extended by identity. In this paper a modified exten-

sion of the unfolding operator Tε is proposed, see also [10], [11], which removes the

problems cited above: In the incomplete cells Λε we define the two-scale mapping by

putting tε(x, y) = x, i.e.

(10) tε(x, y) =

{

ε
[x

ε

]

Y
+ εy for x ∈ Ωε,

x for x ∈ Λε,

and thus the unfolding Tε is extended by the identity:

(11) (Tεu)(x, y) =

{

u
(

ε
[x

ε

]

Y
+ εy

)

for x ∈ Ωε,

u(x) for x ∈ Λε.

Let us survey its properties.

Lemma 4.2. Let Tε be the unfolding defined by (11). Then for each ε > 0 we

have:

(a) The unfolding Tε is linear and multiplicative, i.e. for α, β ∈ R and u, v : Ω → R

(12) Tε(αu + βv) = αTε(u) + βTε(v), Tε(uv) = Tε(u)Tε(v).

(b) The unfolding Tε conserves the integral, i.e. for f ∈ L1(Ω) there is

(13)

∫∫

Ω×Y

(Tεf)(x, y) dxdy =

∫

Ω

f(x) dx,

which implies that it is an isometry between Lp(Ω) and Lp(Ω × Y ), i.e. for

u ∈ Lp(Ω)

(14) ‖Tεu‖Lp(Ω×Y ) = ‖u‖Lp(Ω).

In case of |Y | 6= 1 the unfolding operator Tε multiplies the integrals by the

measure |Y |.
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P r o o f. The first equality follows directly from (11). The second equality is

a consequence of the measure conserving property of tε defined by (10): The full

inverse image (tε)
−1(M) ≡ {(x, y) ∈ Ω × Y : tε(x, y) ∈ M} of M ⊂ Ω in tε has the

same Lebesgue measure, i.e. |(tε)−1(M)| = |M |, since this holds for both the inner
and the boundary parts of M ∩ Y ε

ξ . �

The new modified definition. The unfolding Tε modified by (11) enables to

introduce a new (see also [10], [11]), “the most convenient” definition of the two-scale

convergence and also the strong two-scale convergence:

Definition 4.3. Let Tε be the unfolding given by (11). Let E be a scale, {uε} a
sequence in Lp(Ω) and u0 ∈ Lp(Ω × Y ).

(a) The sequence uε (weakly) two-scale converges to u0 in Lp(Ω) with respect to

the scale E if Tε(u
ε) converge to u0 weakly in Lp(Ω × Y ).

(b) The sequence uε strongly two-scale converges to u0 in Lp(Ω) with respect to

the scale E if Tε(u
ε) converge to u0 strongly in Lp(Ω × Y ).

Comparison of the definitions. The unfoldings (8), (11) and thus Defini-

tions 4.1, 4.3 differ in the boundary stripe Λε only, thus in the case when Λε has

zero measure both definitions coincide. In case of a general domain Ω when |Λε| > 0

and |Λε| → 0 if the sequence uε is bounded in Lp(Ω), then the integral of uε over Λε

goes to zero and thus both definitions are equivalent. Nevertheless, for the sequence

uε(x) = |Λε|−11Λε
(x)

(which is unbounded in Lp(Ω) for p > 1) the unfolding Tε given by (8) yields Tεu
ε ≡ 0

and the convergence in Definition 4.1 is satisfied. In the unfolding given by (11)

we have Tεu
ε = uε and

∫∫

Ω×Y
Tεu

ε dxdy = 1. Thus uε does not converge by

Definition 4.3.

For a Y -periodic function ψ the unfolding of ψε(x) = ψ(x/ε) yields in Ωε × Y

Tεψε(x, y) = ψε

(

ε
[x

ε

]

+ εy
)

= ψ
([x

ε

]

+ y
)

= ψ(y).

For previous bounded ψ and uniformly continuous ϕ ∈ C0(Ω) the functions

Tε(ϕψε)(x, y) converge uniformly to ϕ(x)ψ(y) in Ωε × Y . Using this fact one

can prove that for uε bounded in Lp(Ω) Definitions 3.1, 4.1, and 4.3 are equivalent,

see e.g. [7], Proposition 2.14.
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E x am p l e 4.4.

(a) Let f, g ∈ Lp(Ω), 1 < p < ∞ and ψ ∈ L∞(Yper), such that
∫

Y
ψ(y) dy = 0.

Then

uε(x) = f(x)ψ
(x

ε

)

+ g(x)

is bounded in Lp(Ω). Since its unfolding Tεu
ε yields (Tεu

ε)(x, y) = f(x)ψ(y) +

g(x) in Ωε × Y , uε strongly two-scale converges in Lp(Ω) with respect to the

scale E to the limit

u0(x, y) = f(x)ψ(y) + g(x).

The sequence converges to g(x) in Lp(Ω) weakly, but not strongly (unless f(x) ≡
0 or ψ(y) ≡ 0). The example shows that the local oscillations of uε, which are

lost in the usual weak Lp(Ω) limit, are conserved in the strong two-scale limit.

(b) In the previous example the sequence was strongly two-scale converging. This

was caused by the fact that the period of ψ(x/ε) was “in resonance” with the

scale E = {ε}. Considering a modified sequence uε(x) = f(x)ψ(2x/ε) + g(x)

and the same scale E, the sequence also strongly two-scale converges but the

limit is u0(x, y) = f(x)ψ(2y) + g(x). The weak Lp(Ω) convergence and its limit

is unchanged.

(c) If the period of the function ψ is not “in resonance” with the scale E, i.e. their

ratio is irrational: e.g. uε(x) = f(x)ψ(x/
√

2ε) + g(x), then the sequence {uε}
does not converge two-scale strongly but only two-scale weakly and its limit

u0(x, y) = g(x) is independent of y, i.e. in the limit the local oscillations are

again lost.

5. Properties of the two-scale convergence

The following results follow directly from the definition and the theory of Lp

spaces.

Lemma 5.1. Let E be a scale, {uε} a sequence in Lp(Ω) and u0 ∈ Lp(Ω × Y ).

Then:

(a) Any sequence uε two-scale converging in Lp(Ω) is bounded in Lp(Ω).

(b) If the two-scale limit u0 exists (weak or strong), then it is unique (as an element

of Lp(Ω × Y ), i.e. up to a zero measure set).

(c) If a sequence {uε} two-scale converges (weakly or strongly) to u0 with respect

to the scale E, then any subsequence {uε′} of it two-scale converges (weakly or
strongly) to the same limit u0 with respect to the corresponding subscale E′.
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(d) If the sequence {uε} converges to u0 two-scale strongly, then it also converges

two-scale (weakly) to the same limit u0.

(e) If the sequence {uε} converges to u0(x, y) two-scale (strongly or weakly), then it

also converges in Lp(Ω) weakly to u∗ ∈ Lp(Ω) defined by u∗(x) =
∫

Y
u0(x, y) dy.

(f) If the sequence uε converges (strongly) to u∗ in Lp(Ω), then it also converges

two-scale (weakly and strongly) to u0(x, y) = u∗(x) with respect to any scale E.

(g) The relation between the convergences and two-scale convergences in Lp(Ω) can

be expressed in the following diagram of implications:

strongly =⇒ two-scale strongly =⇒ two-scale (weakly) =⇒ weakly.

For applications the following compactness result is fundamental.

Theorem 5.2 (Compactness). Let E = {ε} be a scale and {uε} be a bounded
sequence in Lp(Ω). Then there exists a subscale E′ = {ε′} ⊂ E and a limit

u0 ∈ Lp(Ω × Y ) such that uε′

converge to u0 two-scale weakly with respect to

the subscale E′.

P r o o f. Since the modified unfolding given by (11) satisfies Lemma 4.2 the proof

is simple. For uε bounded in Lp(Ω), the unfolded Tεu
ε is bounded in Lp(Ω×Y ) and

thus there exists a subsequence—subscale E′ ⊂ E and a function u0 ∈ Lp(Ω × Y )

such that Tε′uε′

converge weakly in Lp(Ω×Y ) to u0. According to the Definition 4.3,

{uε′} converge to u0 two-scale (weakly) with respect to the subscale E′. �

In many cases the following result enables to solve the problem mentioned in the

introduction: passage to the limit in product of two weakly converging sequences if

one of them is converging two-scale strongly and the second two-scale weakly.

Theorem 5.3 (Limit of the product of sequences). Assume the sequence {uε}
converges to u0 two-scale strongly and the sequence {vε} converges to v0 two-scale

(weakly), both with respect to the same scale E, the former in Lp(Ω) and the latter

in Lq(Ω). The exponents p, q, r ∈ (1,∞) are supposed to satisfy 1/p+1/q = 1/r < 1.

Then the product uεvε converges to the limit u0v0 ≡ u0(x, y)v0(x, y) two-scale

(weakly) in Lr(Ω).

In particular, for any ϕ ∈ Ls(Ω) with s ∈ (1,∞) satisfying 1/p+1/q+1/s = 1 we

have:

(15)

∫

Ω

uε(x)vε(x)ϕ(x) dx −→
∫∫

Ω×Y

u0(x, y)v0(x, y)ϕ(x) dxdy.

369



P r o o f. Thanks to the equalities of Lemma 4.2 the value of the left-hand side

of (15) is not changed under the unfolding:

L =

∫

Ω

uε(x)vε(x)ϕ(x) dx =

∫∫

Ω×Y

Tεu
ε(x, y)Tεv

ε(x, y)ϕ(x) dxdy.

Adding and substracting the term u0Tεv
ε, the last integral can be split into

L =

∫∫

Ω×Y

(Tεu
ε − u0)(x, y)Tεv

ε(x, y)ϕ(x) dxdy

+

∫∫

Ω×Y

u0(x, y)Tεv
ε(x, y)ϕ(x) dxdy.

The first integral tends to zero, since it can be estimated by

‖Tεu
ε − u0‖Lp(Ω×Y ) · ‖Tεv

ε‖Lq(Ω×Y ) · ‖ϕ‖Ls(Ω),

where Tεv
ε is bounded and Tεu

ε converges to u0 strongly. Since Tεv
ε converge weakly

to v0 and v 7→
∫

u0ϕv acts as a continuous linear functional on Lq(Ω×Y ), the second

integral tends to the right-hand side of (15). �

6. Unfolding of gradients and homogenization

In the homogenization problem (1) a sequence of gradients {∇uε} appears. Due
to (11) for v ∈ W 1,p(Ω) we have:

Tε(∇v) =







1

ε
∇y(Tε(v)) on Ωε × Y,

∇v = ∇x(Tε(v)) on Λε × Y.

Since Tε(v) is independent of x in each cell of Ωε, the equality can be rewritten by

means of the characteristic function 1A of a set A (1A(x) = 1 for x ∈ A, otherwise

1A(x) = 0)

(16) Tε(∇v) =
1

ε
∇y(Tεv) + ∇x(Tεv)1Λε

.

Each sequence bounded in W 1,p(Ω) has gradient bounded in Lp(Ω,RN ), thus using

Theorem 5.2 the following compactness result can be proved:

Lemma 6.1. Let E be a scale and {uε} be a sequence bounded inW 1,p(Ω). Then

there exists a subscale E′ ⊂ E, function u∗ ∈ W 1,p(Ω) and u0 ∈ Lp(Ω;H1
per(Y )) such

that:

(a) uε′

converge to u∗ weakly in W 1,p(Ω) and strongly in Lp(Ω) and

(b) ∇uε′

converge to ∇u∗ + ∇yu
0 two-scale weakly in Lp(Ω).
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R em a r k 6.2. The previous results can be applied to the homogenization prob-

lem (1). Passing to the limit as ε′ → 0 in (2) is possible due to Theorem 5.3 since

aε is converging two-scale strongly to a(y) and ∇uε is converging two-scale weakly

thanks to Theorem 6.1.

7. Two-scale transform and general Σ-convergence

A key property in the construction of the unfolding operator or two-scale transform

is the measure and integral conservation. The point of departure for general two-scale

convergence, see [12] or [18], is a measure conserving map

τε : V ⊂ Lp(Ω × Y ) −→ W ⊂ Lp(Ω)

and general two-scale convergence is the sequential convergence with doubling of

variables

〈uε(x), τεv(x)〉〈Lp(Ω),Lq(Ω)〉 −→ 〈u0(x, y), v(x, y)〉〈Lp(Ω×Y ),Lq(Ω×Y )〉.

The adjoint description introduces the inverse measure conserving map, where the

doubling of variables takes place prior to the limit analysis, called unfolding or two-

scale transform:

Tε : W → V .

The sequential convergence is then the usual weak convergence in Lp(Ω × Y ), i.e.

〈Tεu
ε(x, y), v(x, y)〉〈Lp(Ω×Y ),Lq(Ω×Y )〉 → 〈u0(x, y), v(x, y)〉〈Lp(Ω×Y ),Lq(Ω×Y )〉.

By the measure conservation these two convergences are equivalent via the bilinear

identity

〈Tεu
ε(x, y), v(x, y)〉〈Lp(Ω×Y ),Lq(Ω×Y )〉 = 〈uε(x), τεv(x)〉〈Lp(Ω),Lq(Ω)〉.

With this description there is now no periodicity restriction for the unfolding opera-

tor. The action on the second scale by the unfolding operator must obey the measure

preserving property but the focus can now be put on fundamental properties for this

map. We recall that the map

τε : V → W

maps elements in Lp(Ω × Y ) into a sequence of parameterized traces parameterized

by ε > 0 in Lp(Ω), where we need to impose regularity in the variables (x, y) of
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Carathéodory type in order to obtain test functions that work. Indeed, one needs

the following two conditions to hold (see Section 3 above):

‖τεv‖Lp(Ω) 6 ‖v‖V , ‖τεv‖Lp(Ω) → ‖v‖Lp(Ω×Y ).

The case when τεv is of the form τεv(x) = v(x,Hε(x)) and Hε is a group action

on R
N is studied under the label λ-scale convergence in [19] and under the label of

Σ-convergence in a series of papers by Nguetseng et al. see e.g. [17] and the references

therein. If we choose v such that v(x, ·) belongs to a suitable Banach algebra with
mean value, then all the results from periodic homogenization carry over mutatis

mutandis to a general deterministic setting. The first work on homogenization in

algebras with mean values is due to Zhikov and Krivenko [20]. By considering the

adjoint map Tε one can avoid some measurability difficulties but the problem still

remains to characterize Tε for more general classes of admissible functions. For the

periodic case an explicit characterization is possible. The crucial part here is to

define a group action H∗
ε on R

N ×T
N . For simplicity we expose the one-dimensional

case. As in Section 4, the symbol [x] means the integer part of x ∈ R. In the same

way and notation as in (10) we define the group action H∗
ε :

(17) H∗
ε (x, y) =

{

ε
[x

ε

]

+ εy for x ∈ Ωε-inner cells and for y ∈ T
1,

x for x ∈ Λε-boundary cells and for y ∈ T
1.

This action called the dilation action defines explicitly the two-scale transform

(unfolding)

Tε : W → V

given by Tεu
ε(x, y) = uε(H∗

ε (x, y)) being the adjoint map to

τε : V → W

given by τεv(x) = v(x, x/ε) where V = L2(Ω;Cper(Y )).

The choice of the action Hε is crucial. Hε associates to algebras with mean value

or ergodic algebras. For the deterministic case, see e.g. [17], Hε is constructed as

follows:

Let H = (Hε) be an action group of the multiplicative group of positive re-

als (R+, ∗) on the numerical space RN satisfying the group properties

(i) Hε1
◦Hε2

= Hε1ε2
for all ε1, ε2 ∈ R

+,

(ii) Hε for ε = 1 is the identity mapping on R
N .

We assume now that H has the following additional properties:
(H)1 Each Hε maps continuously R

N into itself.
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(H)2 lim
ε→0

|Hε(x)| = ∞ for any x ∈ R
N \ {0}.

(H)3 The Lebesgue measure λ on R
N is quasi-invariant under H, i.e. to each ε > 0

there is a γ(ε) > 0 such that Hε(λ) = γ(ε)λ.

It is not trivial in what way to construct a dual action corresponding to H = (Hε)

with desired properties. We give the following example:

E x am p l e 7.1. For each fixed ε > 0 and x ∈ R
N let Hε(x) = x/ε. This gives

an action H = (Hε) of the group (R+, ∗) on R
N . Further let H∗

ε (x, y) = ε[x/ε] + εy

for x ∈ Ωε-inner cells and for y ∈ T
1. This gives the corresponding dual action

H∗ = (H∗
ε ).

Let uε(x) = u(Hε(x)) for a given ε > 0 and all x ∈ R
N . For a function u from the

space of bounded continuous complex functions on R
N denoted by B(RN) we have

the following definition:

Definition 7.2. A function u ∈ B(RN) is said to have a mean value property

if there exists a complex number M(u) such that uε → M(u) in L∞(RN )-weak∗ as
ε→ 0. This class is denoted by Π∞.

E x am p l e 7.3. We have Cper(Y ) ≡ C(T1) ⊂ Π∞. Other important subsets

of Π∞ are the class of almost periodic functions or the class of functions with finite

limit at infinity. See e.g. [17].

E x am p l e 7.4. If v ∈ Lp(Ω;Cper(Y )) ≡ Lp(Ω;C(T1)) ⊂ Lp(Ω; Π∞) then the

mean value property of v yields the two-scale convergence

〈uε(x), v(x,Hε(x))〉〈Lp(Ω),Lq(Ω)〉 → 〈u0(x, y), v(x, y)〉〈Lp(Ω×Y ),Lq(Ω×Y )〉,

where u0 ∈ Lp(Ω;Lp(T1)). By the construction above Tεu
ε = uεH∗

ε ∈ Lp(Ω;Lp(T1)).

The mean value property of u∗ε now yields

〈(uεH∗
ε )(x, y), v(x, y)〉〈Lp(Ω×Y ),Lq(Ω×Y )〉 → 〈u0(x, y), v(x, y)〉〈Lp(Ω×Y ),Lq(Ω×Y )〉.

Here we have just indicated a few duality properties between two-scale convergence

and periodic unfolding. It should be stressed that the explicit unfolding operator for

general deterministic (non-periodic) structures is not known yet. In connection to

this we like to point out that the two-scale convergence is also developed for the case

of stochastic structures under the name of stochastic two-scale convergence in the

mean by Bourgeat et al. in [4] but a corresponding stochastic unfolding method is

not yet developed.
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8. Conclusion

For bounded sequences in Lp(Ω), p ∈ (1,∞), all the three definitions of two-scale

convergence 3.1, 4.1, and 4.3 are equivalent. The new modified Definition 4.3 intro-

duces naturally also strong two-scale convergence and thus in many cases it enables

to pass to the limits of a product of weakly converging sequences, see Theorem 5.3,

particularly in the homogenization problems, where the coefficients aε converge two-

scale strongly and the bounded solution gradients ∇uε converge two-scale weakly.

The alternative approach in Definition 4.3 removes the restriction on test functions

and simplifies the proofs. In comparison to [7] the notion of unfolding criterion for

integrals is redundant.

Moreover, using the idea of two-scale mapping or two-scale transform only, the two-

scale convergence can be generalized to non-periodic or even stochastic cases and in

this way it extends homogenization even to non-periodic and stochastic media.
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