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Abstract. In this paper we consider a class of cubic polynomial systems with two invariant
parabolas and prove in the parameter space the existence of neighborhoods such that in
one the system has a unique limit cycle and in the other the system has at most three limit
cycles, bounded by the invariant parabolas.
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1. Introduction

A polynomial system is a real autonomous system of ordinary differential equations

on the plane with polynomial nonlinearities

(1) ẋ = P (x, y) =

n
∑

i+j=0

aijx
iyj , ẏ = Q(x, y) =

n
∑

i+j=0

bijx
iyj with aij , bij ∈ R.

The problem of analyzing periodic solutions has been widely studied and, conse-

quently, there is extensive literature on them. This activity reflects the breadth of

interest in Hilbert’s 16th problem and the fact that such systems are often used in

mathematical models. Suppose that the origin of (1) is a critical point of center-focus

type. We are concerned with the number of limit cycles (that is, isolated periodic

solutions) which bifurcate from a critical point or from a center.

*This work was supported by USM Grant No. 12.09.05 and No. 12.09.06.
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Let us assume that the origin is a critical point of (1) and transform the system

to canonical form

(2) ẋ = λx + y + p(x, y), ẏ = −x + λy + q(x, y),

where p and q are polynomials without linear terms.

Let n = max(∂P, ∂Q), where the symbol ∂ denotes ‘degree of’. A function h is

said to be invariant with respect to (2) if there is a polynomial k(x, y), called the

cofactor, with ∂k < n such that ḣ = hk. Here ḣ = hxP + hyQ is the rate of change

of h along orbits.

It is interesting to note that the existence of algebraic trajectories has been known

to strongly influence the behavior of polynomial systems. For instance, quadratic

systems (n = 2) with an invariant ellipse, hyperbola, or a pair of straight lines can

have no limit cycles other than possibly the ellipse itself. Moreover, if there is an

invariant line, there cannot be more than one limit cycle (see [3]). The case of a

parabola was considered in [5].

For the cubic, there exist different classes of systems in which there may coexist

an invariant curve or straight lines with limit cycles (see [2], [6], [7], [10]).

2. The system as a perturbation of Hamiltonians

We can write system (2) as the perturbation with a small real parameter ε of a

Hamiltonian system

Xµ :















ẋ = −∂H

∂y
+ εf(x, y, ε),

ẏ =
∂H

∂x
+ εg(x, y, ε),

where f(x, y, ε), g(x, y, ε) ∈ R[x, y, ε].

We say that this system with ε = 0 is the unperturbed system and we will impose

for it the existence of a center at the origin. In this way, by the Poincaré-Andronov

Theorem [4], we shall study the bifurcation of limit cycles from the unperturbed

Hamiltonian center.

If the first-order Melnikov function is not identical zero, then the integral on the

orbits of the Hamiltonian system is given by

M0(h) =

∫ T (h)

0

(

f
∂H

∂x
+ g

∂H

∂y

)

dt,

where T (h) is the period of the periodic orbit H(x, y) = h of the unperturbed system

(ε = 0). Then, the form of the functionM0(h) and the result on the relation between
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the number of zeros of M0(h) and the number of limit cycles of the system follows

from [4, Theorem 3.1].

3. Preliminary results

Let us consider the parabolas

c(x, y) = y − x2 + 1 and cb(x, y) = y + x2 − bx − 1

and the cubic system

(3) Xµ :



































































ẋ = L(16 + b2)x − (16 + b2)y − b(b − 8L − b2L)x2

+ (4b − 16L − 3b2L)x3 − b(6 + b2 + 2bL)xy

+ (8 + 3b2 + 8bL)x2y + b(b + 2L)y2 − 4(b + 2L)xy2,

ẏ = (16 + b2)x + L(16 + b2)y + 4b(2 − bL)x2

− (16 + 3b2 − 16bL − 2b3L)x3 + b(5b + 16L)xy

− (4b + 2b3 + 48L + 11b2L)x2y − b(8 − bL)y2

+ 4(4 + 2b2 + 5bL)xy2 − 8(b + 2L)y3,

where µ = (L, b) ∈ R
2.

It is easy to verify that for all µ = (L, b) ∈ R
2

ċ(x, y) =
∂c(x, y)

∂x
ẋ +

∂c(x, y)

∂y
ẏ = c(x, y)k(x, y)

and

ċb(x, y) =
∂cb(x, y)

∂x
ẋ +

∂cb(x, y)

∂y
ẏ = cb(x, y)kb(x, y),

where the cofactors are

k(x, y) = 16x + b2x + 8bx2 − 32Lx2 − 6b2Lx2 + 16Ly + b2Ly

+ 16xy + 6b2xy + 16bLxy − 8by2 − 16Ly2,

kb(x, y) = − 16x − b2x + 16bLx + b3Lx + 8bx2 − 32Lx2

− 6b2Lx2 − 16by − b3y − 16Ly − b2Ly + 16xy + 6b2xy + 16bLxy

− 8by2 − 16Ly2.

Then the parabolas are invariant curves of the system (3).
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Rescaling the parameters L → Lε, b → bε, we can write the system (3) as the

perturbation, with a small real parameter ε, of a Hamiltonian system

Xµ,ε :

{

ẋ = 8(−2 + x2)y + εf(x, y, ε),

ẏ = −16x(−1 + x2 − y2) + εg(x, y, ε),

where the perturbation is given by

f(x, y, ε) = 16Lx + b2ε2Lx − b2εx2 + 8bεLx2 + b3ε3Lx2 + 4bx3 − 16Lx3

− 3b2ε2Lx3 − b2εy − 6bxy − b3ε2xy − 2b2ε2Lxy + 3b2εx2y

+ 8bεLx2y + b2εy2 + 2bεLy2 − 4bxy2 − 8Lxy2,

g(x, y, ε) = b2εx + 8bx2 − 4b2ε2Lx2 − 3b2εx3 + 16bεLx3 + 2b3ε3Lx3

+ 16Ly + b2ε2Ly + 5b2εxy + 16bεLxy − 4bx2y − 2b3ε2x2y

− 48Lx2y − 11b2ε2Lx2y − 8by2 + b2ε2Ly2 + 8b2εxy2

+ 20bεLxy2 − 8by3 − 16Ly3.

Let us denote by Ωµ the region enclosed by the two invariant parabolas. Then

in Ω0 we find an integral factor of the system X0,0 as

ϕ(x) =
1

(2 − x2)3
> 0, x ∈

(

−
√

2,
√

2
)

.

So, the Hamiltonian function H in Ω0 is given by

(4) H(x, y) = h =
4(3 − 2x2 + y2)

(2 − x2)2
, |x| < 1,

satisfying the symmetry H(−x,−y) = H(x, y) and H(0, 0) = 3, H(1, 0) = 4. Conse-

quently, for h ∈ (3, 4), H−1(h) are periodic orbits that extend from the origin to the

invariant parabolas c−1(0) and c−1
0 (0) (see Fig. 1).

x

y

c

c0

1

h

h

H

3

4

Figure 1. Levels of H .
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Then for the system Xµ,ε in Ωµ, we change the time as t → tϕ(x) and for (x, y) ∈
Ωµ we have a C∞-equivalent system

(5) Yµ,ε :















ẋ = −∂H

∂y
+ εf(x, y, ε)ϕ(x),

ẏ =
∂H

∂x
+ εg(x, y, ε)ϕ(x).

Theorem 1 (see [9]). If L = 0, system (3) at the singularity (0, 0) has an at-

tracting weak focus of order one if b > 0 and a repelling weak focus of order one if

b < 0.

Theorem 2 (see [9]). In the parameter space R2 there exists an open set N such
that for all (L, b) ∈ N and Lb 6= 0, system (3) has at least one small-amplitude limit

cycle enclosed by two invariant parabolas.

4. Main results

We show that for system (3), there exist neighborhoods in the parameter space

such that the system has a unique limit cycle and an upper bound of at most three

limit cycles which are bounded by the two invariant parabolas.

The main result of this paper and its proof require the discussion of the existence

of the real roots of the cubic equation.

It is known (see [1]) that the cubic equation a0x
3 +3a1x

2 +3a2x+a3 = 0 has only

one real root if ∆ > 0 and at most three real roots if ∆ < 0, where ∆ = G2 + 4W 3,

W = a0a2 − a2
1, and G = a2

0a3 − 3a0a1a2 + 2a3
1.

In particular we consider a cubic equation whose coefficients depend of the pa-

rameters L, b, and h



































a0 = h(b + 2L),

a1 =
2

3
(28b − 9bh + 8L − 18hL),

a2 = −4

3
(19b − 15bh + 158L − 30hL),

a3 = 4(42b − 14bh + 132L− 28hL).
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Then ∆(L, b, h) = − 1
27256h2(b + 2L)δ(L, b, h), where

δ(L, b, h) = − 390236b4 + 397571b4h − 114444b4h2 + 6480b4h3(6)

− 626752b3L + 396256b3hL − 91296b3h2L + 20736b3h3L

+ 4216416b2L2 − 3882696b2hL2 + 892512b2h2L2 − 31104b2h3L2

+ 2526464bL3 − 3457856bhL3 + 1003392bh2L3 − 165888bh3L3

+ 365632L4 + 5423984hL4 − 462528h2L4 − 145152h3L4.

Theorem 3. There exist h ∈ (0,∞) and an open set N such that

i) For all (L, b) ∈ N ∩ δ−1
L,b,h(−∞, 0) and Lb 6= 0, system (3) has one and only one

limit cycle enclosed by two invariant parabolas.

ii) For all (L, b) ∈ N ∩ δ−1
L,b,h(0,∞) and Lb 6= 0, system (3) has at most three limit

cycles.

P r o o f. The Melnikov integral along the orbits of the Hamiltonian system is

reduced to

M0(h) =

∫ T (h)

0

[

f(x, y, ε)ϕ(x)
∂H

∂x
+ g(x, y, ε)ϕ(x)

∂H

∂y

]

dt,

where h ∈ (3, 4) and T (h) is the time return of the orbit H−1(h).

Equivalently, we can write

M0(h) =

∫ T (h)

0

f(x, y, ε)ϕ(x)dy − g(x, y, ε)ϕ(x) dx.

Then, in the region R(h) ⊆ Ωµ enclosed by the orbits H−1(h), we can use Green’s

Theorem and we have

M0(h) =

∫∫

R(h)

[ ∂

∂x
(f(x, y, ε)ϕ(x)) +

∂

∂y
(g(x, y, ε)ϕ(x))

]

dxdy,

and by Fubini’s Theorem,

M0(h) =

∫ x(h)

−x(h)

∫ y(x,h)

−y(x,h)

(A0(x) + A1(x)y + A2(x)y2) dy dx
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where

y(x, h) = 1
2

√

−12 + 8x2 + h(−2 + x2)2,

A0(x) = (64L + 4b2ε2L + 6b2εx + 64bεLx + 4b3ε3Lx

+ 16bx2 − 4b3ε2x2 − 128Lx2 − 36b2ε2Lx2 − 9b2εx3

+ 16bεLx3 + 4b3ε3Lx3 + 16bx4 + 2b3ε2x4 + 2b2ε2Lx4)/(−2 + x2)4,

A1(x) = b(−44 − 2b2ε2 + 38bεx + 112εLx

− 14x2 − 5b2ε2x2 − 12bε2Lx2 − 4bεx3 − 8εLx3)/(−2 + x2)4,

A2(x) = 2(b + 2L)(−28 + 3bεx + 2x2)/(−2 + x2)4.

It is easy to see that the integral of the linear term y is zero. Moreover, due to the

symmetry of H−1(h) and that of the interval of integration, and considering only

even powers of y, the above integral can be written as

M0(h) = 4

∫ x(h)

0

∫ y(x,h)

0

(Â0(x) + Â2(x)y2) dy dx,

where

Â0(x) = (64L + 4b2ε2L + 16bx2 − 4b3ε2x2 − 128Lx2 − 36b2ε2Lx2

+ 16bx4 + 2b3ε2x4 + 2b2ε2Lx4)/(−2 + x2)4,

Â2(x) = 2(b + 2L)(−28 + 2x2)/(−2 + x2)4,

and integrating with respect to y leads to

M0(h) =
4

3

∫ x(h)

0

(3Â0(x) + Â2(x)y2(x, h))y(x, h) dx.

As the argument of the above integral is an even function in the variable x, by the

Second Mean Value Theorem for Integrals, there is ξ(h) ∈ (0, x(h)) such that

(7) M0(h) =
4

3
[C0 + C2ξ

2(h) + C4ξ
4(h) + C6ξ

6(h)]

∫ x(h)

0

y(x, h)

(−2 + x2)4
dx,

where x(h) is the positive solution of the equation

−12 + 8x2 + h(−2 + x2)2 = 0, |x| < 1, h ∈ (3, 4),

and Ci, i = 0, 1, 2, 3 are polynomials in the parameters h, L, ε, b given by

C0 = 4(42b − 14bh + 132L + 3b2ε2L − 28hL),

C2 = − 4(19b + 3b3ε2 − 15bh + 158L + 27b2ε2L − 30hL),

C4 = 2(28b + 3b3ε2 − 9bh + 8L + 3b2ε2L − 18hL),

C6 = h(b + 2L).
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Let p(h)L,b,ε = C0 +C2ξ
2(h)+C4ξ

4(h)+C6ξ
6(h), be a cubic polynomial in ξ2(h).

In order to study the positive roots of the equation p(h)L,b,ε = 0, we consider in

terms of the parameters the conditions for the existence of roots (see [1]), namely,

for the equation

a0x
3 + 3a1x

2 + 3a2x + a3 = 0, where

a3 = C0, a2 =
C2

3
, a1 =

C4

3
, and a0 = C6.

To simplify the calculations for sufficiently small ε, we assume that the functions f ,

g in (5) are not dependent on ε; then ∆(L, b, h) = 1
27 (−256h2(b + 2L)2δ(L, b, h)),

where δ(L, b, h) is the polynomial given in (6).

(i) If (L, b) ∈ N ∩ δ−1
Lbε(−∞, 0), Lb 6= 0, by Theorem 1 and Theorem 2, system (3)

has a limit cycle. As δ < 0, we have ∆(L, b, h) > 0 and by [1], for ε small

enough, the polynomial p(h)L,b,ε has only one real root ξ(h) ∈ (0, x(h)).

When we apply the Mean Value Theorem to (7), the value of ξ(h) does not neces-

sarily coincide with the real root of the polynomial p(h)L,b,ε = 0, for this reason we

have proved that there is at most one limit cycle bifurcating from the Hamiltonian.

(ii) If (L, b) ∈ N ∩δ−1
Lbε(0,∞), Lb 6= 0, by Theorem 1 and Theorem 2, system (3) has

a limit cycle. As δ > 0, we have ∆(L, b, h) < 0 and by [1], for ε small enough,

the polynomial p(h)L,b,ε has at most three real roots. Therefore, three is an

upper bound for the number of limit cycles of system (3). �

In order to illustrate the result stated in Theorem 3, Part i), Fig. 2 shows a

numerical simulation of the system (3) with L = 0.02 and b = 0.4, which corresponds

to the case of an attracting limit cycle. The simulation was obtained using the

Pplane7 Software with MATLAB [8]

2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

1.5−

1−

0.5−

0

0.5

1

1.5

x

y

Figure 2. Numerical simulation of an attracting limit cycle.
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