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Do �nite Bru
k loops behave like groups?B. BaumeisterAbstra
t. This note 
ontains Sylow's theorem, Lagrange's theorem and Hall'stheorem for �nite Bru
k loops. Moreover, we explore the subloop stru
ture of�nite Bru
k loops.Keywords: �nite loops, �nite Bru
k loops, �nite Bol loops, �nite Ar-loops, 
las-si
al theorems for �nite loopsClassi�
ation: 20N05, 20B051. Introdu
tionLet (X; Æ) be a �nite loop; that is a �nite set together with a binary operationÆ on X , su
h that there exists an element 1 2 X with 1 Æ x = x Æ 1 = x for allx 2 X and su
h that the left and right translations�x : X ! X; y 7! x Æ y; �y : X ! X; x 7! x Æ yare bije
tions. Loops 
an be thought of as groups without the asso
iativity law.Though loops are a generalisation of groups, general loops 
an be very wilddue to the missing asso
iativity. For instan
e left and right inverses may not beidenti
al, the powers of elements may not be de�nable in the usual way.Bol [Bo37℄ introdu
ed the so 
alled (right) Bol identity :((x Æ y) Æ z) Æ y = x Æ ((y Æ z) Æ y) for all x; y; z 2 Xand a loop is 
alled a (right) Bol loop if it satis�es this identity. A 
onsequen
eof the identity is that the subloop generated by one element is a (
y
li
) group.Therefore powers and inverses of elements are well de�ned.Nagy [N℄ showed that general Bol loops behave still very di�erently fromgroups. While groups of odd order are soluble due to work of Feit and Thompson,there are simple Bol loops of odd non-prime order [N℄.Bol loops whi
h satisfy the automorphi
 inverse property AIP:(x Æ y)�1 = x�1 Æ y�1 for all x; y 2 Xare 
alled Bru
k loops . Groups satisfy (AIP) if and only if they are abelian. ThusBru
k loops generalise abelian groups.There are general similarities between loops and groups: In every loop X theorder of every normal subloop T , i.e. T is the kernel of some homomorphism �



338 B. Baumeisterfrom X to another loop, divides the order of X , see [AA43, Theorem 4℄. ThusLagrange`s theorem holds for normal subloops. Moreover, the theorem on homo-morphisms X=T �= �(X) holds, see [AA43, Theorem 4℄. See also the isomorphismtheorems for loops in [AA43℄, [S44℄ and the Jordan-H�older Theorem in [Ba45℄.There are 
ertainly huge di�eren
es between Bru
k loops and groups. In thisnote we will see that some basi
 
lassi
al group theoreti
al theorems 
an be ex-tended to the theory of �nite Bru
k loops. We will fo
us on the similaritiesbetween groups and Bru
k loops by extending Lagrange's theorem and to someextent Sylow's theorem and Hall's theorem to �nite Bru
k loops. Thus Bru
kloops are more general than abelian groups | they are neither asso
iative norabelian nor soluble in general | but behave nevertheless ni
ely. Note also thework of Gagola [Ga11℄ on similarities between 
ertain Moufang loops and groupsas well as the paper by Jedli�
ka, Kinyon and Vojt�e
hovsk�y showing Cau
hy'stheorem, Lagrange's theorem and the odd order theorem for 
ommutative auto-morphi
 loops [JKV11℄. Here, we study the subloop stru
ture of the �nite Bru
kloops as well.This paper is organized as follows. After �xing the notation in the next se
tion,we re
all the general stru
ture theorem of �nite Bru
k loops. In the fourth se
tionwe dis
uss Sylow's theorem and in the �fth the subloop stru
ture. In the last twose
tions we present Lagrange's and Hall's theorems. Some parts of the paperalready have been proven in [G64℄, [G68℄ or in [BS11℄ and some are new.2. Notation and de�nitionsHere we follow the notation of As
hba
her [A05℄ and [AKP06℄. Given a loop X ,let G := h�x : x 2 Xi � Sym(X), whi
h is usually 
alled right multipli
ationgroup and by As
hba
her enveloping group of X . The set K := f�x : x 2 Xg is atransversal to H := StabG(1), the right inner mapping group, in G, and (G;H;K)is 
alled the Baer envelope of X .The following easily veri�ed properties hold.(1) 1 2 K and K is a right transversal to all 
onjugates of H in G.(2) H is 
ore free.(3) G = hKi.Baer [Ba39℄ observed that whenever (G;H;K) is a triple with G a group,H � G and K � G satisfying 
ondition (1), then we get a loop on K by settingx Æ y = z, x; y 2 K whenever z is the element in K su
h that Hxy = Hz. Thisloop is 
alled the loop related to (G;H;K).The triple (G;H;K) with G a group, H � G and K � G is 
alled a loopfolder , faithful loop folder or loop envelope if (1), (1) and (2) or (1) and (3) hold,respe
tively. In general there are many di�erent loop folders for a given loop.If X is a Bol loop and (G;H;K) the Baer envelope of X , then K is a twistedsubgroup, that is 1 2 K and whenever x; y 2 K, then x�1 and xyx is in K. If,moreover, X is a Bru
k loop, then H a
ts on K by 
onjugation, [A05, 4.1℄.



Do �nite Bru
k loops behave like groups? 339Subloops, homomorphisms, normal subloops, fa
tor loops and simple loops arede�ned as usual in universal algebra: A subloop is a nonempty subset whi
h is
losed under loop multipli
ation and is itself a loop with that operation.Homomorphisms are maps between loops whi
h 
ommute with loop multi-pli
ation. The map de�nes an equivalen
e relation on the loop, su
h that theprodu
t of equivalen
e 
lasses is again an equivalen
e 
lass. Normal subloops arepreimages of 1 under a homomorphism and therefore subloops. A normal subloopde�nes a partition of the loop into blo
ks (
osets), su
h that the set of produ
tsof elements from two blo
ks is again a blo
k. Su
h a 
onstru
tion gives fa
torloops as homomorphi
 images with the blo
k 
ontaining 1 as the kernel. Simpleloops have only the full loop and the trivial loop as normal subloops.For instan
e if (G;H;K) is a loop folder de�ning a loop X and G0 a normalsubgroup of G whi
h 
ontains H , then (G0; H;G0 \ K) is a loop folder for anormal subloop X0 of X .A loop X is soluble if there exists a series 1 = X0 � � � � � Xn = X of subloopswith Xi normal in Xi+1 and Xi+1=Xi an abelian group.3. The general stru
ture theoremIn this and the following se
tions X always is a �nite Bru
k loop and (G;H;K)always denotes the Baer envelope of X .In this se
tion we re
all the fundamental theorem on Bru
k loops proved in[BS11℄. We need some more notation. As usual a 2-element is an element whoseorder is a power of 2. Moreover, for G a group O(G) is the biggest normalsubgroup of G of odd order, O2(G) the biggest normal subgroup of G whoseorder is a power of 2 and O20(G) is the smallest normal subgroup of G su
h thatG=O20(G) is a group of odd order, see for instan
e [A86℄.ForX a loop, O(X) is the largest normal subloop ofX of odd order and O20(X)is the subloop of X whi
h is generated by all the 2-elements of X , see [AKP06℄.Theorem 1 ([BS11, Theorem 1℄). Let X be a �nite Bru
k loop. Then thefollowing holds.(a) X = O(X)�O20(X).(b) O20(X) is the set of 2-elements of X .(
) Let G be the enveloping group of X . Then G = O(G) �O20(G).(d) A loop envelope (G;H;K) of O20 (X) where H a
ts on K and K is atwisted subgroup 
onsisting of 2-power elements satis�es the following.(1) G := G=O2(G) �= D1 �D2 � � � � �De with Di �= PGL2(qi), qi � 5 aFermat prime or qi = 9 and e a non-negative integer.(2) Di \H is a Borel subgroup in Di.(3) F �(G) = O2(G).(4) K is the set of involutions in G nG0.Remark to Theorem 1. In parti
ular, in a �nite Bru
k loop the set of 2-elements forms a subloop.



340 B. BaumeisterThe theorem implies that if X is a Bru
k loop of 2-power exponent, then itsorder is very restri
ted. Re
all that for n a natural number and p a prime np isthe p-part of n, i.e. n = npx, p does not divide x and np is a power of p.Lemma 3.1 ([BS11, Corollary 3.6℄). Let X be a Bru
k loop of 2-power exponent.Then jX j = 2a eYi=1(qi + 1)for some e 2 N [ f0g, where qi = 9 or qi � 5 a Fermat prime. Moreover, jX j2 =2a+e. If (G;H;K) is the Baer envelope of X , then 2a = jO2(G) : O2(G) \H j.Remark. If X is a Bru
k loop of 2-power exponent whi
h is not soluble, thene � 1. If e = 1 and q1 = 5, then a � 4, see [BS10, Theorem 3℄.4. Sylow's theoremIn order to be able to formulate Sylow's or later Hall's theorem we need furthernotation: Let � be a set of primes. A natural number n is a �-number if n = 1or n is the produ
t of powers of primes in �. Assume that X is a loop su
h thatevery element of the loop generates a group. We say that X is a �-loop if theorder of X is a �-number. Noti
e that this de�nition is di�erent from the onegiven in [G64℄. For Bru
k loops of odd order these two 
on
epts 
oin
ide (see[G64, p. 394, Corollary 2℄), but not for loops of even order (see the As
hba
herloop in [BS10℄).In order to distinguish the two 
on
epts we propose to use the following no-tations: A lo
al �-loop is a loop su
h that the orders of the elements are all�-numbers | for instan
e a loop of 2-power exponent is a lo
al 2-loop | and aglobal �-loop is a loop su
h that the order of the loop is a �-number. In generalwe will simply say �-loop instead of global �-loop.As already mentioned there are lo
al 2-loops whi
h are not global 2-loops: theAs
hba
her loop is of order 96, so not a 2-loop, but every element in that loop isof order 2, see [BS10℄. We say that a subloop Y of X is a Sylow p-subloop of X ,if jY j = jX jp.In this se
tion we dis
uss for �nite Bru
k loops X the following Sylow-proper-ties .(S1) If p divides jX j, then X 
ontains a Sylow p-subloop.(S2) The Sylow p-subloops are all 
onjugate under the a
tion of the right innermapping group H .(S3) Every p-subloop is 
ontained in a Sylow p-subloop.(S4) The number of Sylow p-subloops of X is not divisible by p.In Bru
k loops of even order Sylow's theorem holds for the prime p = 2, see[BS11℄:Theorem 2 ([BS11℄ Sylow's Theorem). Let X be a Bru
k loop of even order.Then the Sylow-properties (S1){(S4) hold for the prime p = 2.



Do �nite Bru
k loops behave like groups? 341Proof: We still need to prove (S4), whi
h was not shown in [BS11℄. By Theo-rem 1 X = Y � Z where Y is the largest normal subloop of X of odd order andZ the subloop of X of 2-elements of X .If T is a Sylow 2-subloop, then, as Y does not 
ontain elements of even order[G64℄, T proje
ts trivially onto Y and is therefore 
ontained in Z. A

ording to[BS11℄, Proof of Corollary 4.10, there is a Sylow 2-subgroup P of the envelopinggroup of Z, su
h that (P; P \H;P \K) is a loop folder for T . We may identifyT with P \ K. By [BS11, Corollary 4.10℄, all the Sylow 2-subloops of X are
onjugate under the a
tion of H . Thus the number of the Sylow 2-subloops ofX is jH : NH(P \ K)j. As P \ H normalises P \ K and as P \ H is a Sylow2-subgroup of H , see [BS11, Lemma 4.8(2)℄, this number is odd. �Remark. We obtain the loop folders to the Sylow 2-subloops as follows: Takea Sylow 2-subgroup Q of H . Then P := NG(Q)O2(G) is in Syl2(G). Moreover,P = (P \H)(P \K) and (P; P \H;P \K) is a loop folder for a Sylow 2-subloopof X , see [BS11, Lemma 4.7℄. In the next se
tion we will des
ribe how to get theSylow 2-subloops dire
tly.Noti
e:Lemma 4.1. Let X be a Bru
k loop of 2-power exponent. Then the only subloopof X of odd order is the trivial subloop f1g.Proof: Burn showed the elementwise Lagrange Theorem for �nite Bol loops, i.e.that the order of every element divides the order of the loop [Bu78℄. Let Y be asubloop of X of odd order. As Y is a Bol loop as well, every element of Y hasodd order. Sin
e X is of 2-power exponent, we get Y = f1g. �If X is a Bru
k loop of odd order, then Sylow's theorem holds in full generality[G64℄. This then yields the following:Theorem 3. Let X be a �nite Bru
k loop and let p be a prime. Then the Sylow-properties (S1){(S4) hold for p if and only if p = 2 or if p is odd and p does notdivide the number of 2-elements of X .In parti
ular if p = 2 or if p is an odd prime di�erent from 5 and not dividingq + 1 for q a Fermat prime, then (S1){(S4) hold.Proof: If X is odd, then by Corollary 3 to Theorem 9 of [G64℄, X satis�es theSylow-properties.Now let X be a Bru
k loop of even order. Then X = Y � Z, where Y is thelargest normal subloop of X of odd order and Z the subloop of X 
onsisting ofall the 2-elements of X . If p = 2 or p divides jY j, but not jZj, then (S1){(S4)hold by Theorem 2 and the �rst paragraph of this proof, respe
tively.Thus assume that p is an odd prime whi
h divides jZj and assume that thereis a Sylow p-subloop T of X . Then a

ording to Lemma 4.1 T proje
ts triviallyonto Z. Therefore, T is 
ontained in Y whi
h is not possible, as Y satis�es (S3),but by assumption jY jp < jT j = jX jp. �



342 B. Baumeister5. More on subloopsThe following result shows that knowing the subloops of the odd order Bru
kloops as well as those of the Bru
k loops of 2-power exponent already gives thefull knowledge of all the subloops.Proposition 5.1. Let T be a subloop of the �nite Bru
k loop X = O(X) �O20 (X). Then T = (T \O(X)) � (T \O20 (X)).Proof: Let x = y Æ z be an element in T with y 2 O(X) and z 2 O20(X).A

ording to [AKP06, Theorem 2℄, y Æ z = z Æ y and �y�z = �yÆz = �z�y. Thisimplies that (y Æ z)2 = y2 Æ z2:(y Æ z)2 = (y Æ z) Æ (y Æ z) = (y�z)�yÆz = (y�z)�y�z = (y�y)�2z = y2�z2 = y2 Æ z2:Thus (y Æ z)2i = y2i Æ z2ifor every i in N. As y is of odd order and the order of z is a 2-power, it followsthat y and z are in hxi = hy Æ zi.Let �o and �e be the proje
tions of X onto O(X) and O20(X), respe
tively.Then T = �o(T )� �e(T ) whi
h is the assertion. �The subloops of the odd order Bru
k loops 
an be extra
ted from Glauberman'spapers [G64℄, [G68℄. So assume that X is a �nite Bru
k loop of 2-power exponent.Then by Lemma 3.1 jX j = 2a eYi=1(qi + 1)for some e 2 N [ f0g, where qi = 9 or qi � 5 a Fermat prime. If e = 0, thenjX j = 2a and X is soluble, see [BS11, Lemma 3.5℄ or [N98, Corollary 3.3℄. In this
ase we will not study the subloops as there are too many.So assume that X is a non-soluble Bru
k loop of 2-power exponent, i.e. thatO(X) = 1 and e � 1. Then, G=O2(G) �= D1�D2� � � � �De with Di �= PGL2(qi)for qi � 5 a Fermat prime or qi = 9, see Theorem 1.We distinguish between the soluble and the non-soluble subloops of X .5.1 Non-soluble subloops. Let I := f1; 2; : : : ; eg and let GJ be the full preim-age of Qj2J Dj in G for J � I .Lemma 5.2. For every J � I we have (GJ ; GJ \H;GJ \K) is a loop folder fora subloop XJ of X .Proof: A

ording to [BS11, Lemma 4.4℄, GJ = (GJ \H)(GJ \K) whi
h yieldsa

ording to [BSS11, Lemma 2.1℄ the assertion. �Lemma 5.3. Let e = 1 and let Y be a non-soluble subloop of the simple loopX = X1. Then Y = X .



Do �nite Bru
k loops behave like groups? 343Proof: Suppose Y < X . Let (S; S\H;S\K) be the subloop folder of (G;H;K)related to Y . Then M := hS \ Ki is as des
ribed in Theorem 1. In parti
ularM=O2(M) is isomorphi
 to a dire
t produ
t of groups isomorphi
 to L2(qi) withqi = 9 or qi � 5 a Fermat prime. Then G=O2(G) 
ontains subgroups isomorphi
 toL2(qi). This implies G=O2(G) �= PGL2(9), M=O2(M) �= PGL2(5) and O2(M) �O2(G). Then HO2(G)=O2(G) �= 32 : 8, but (M \ H)O2(G)=O2(G) �= (M \H)O2(M)=O2(M) �= 5 : 4, whi
h is not possible as the se
ond is a subgroup ofthe �rst group. Thus Y = X . �5.2 Soluble subloops. Let T be a soluble subloop of X . Then by [BS11,Lemma 3.5℄ the order of T is a power of 2. Hen
e T is 
ontained in a Sylow2-subloop of X . Next we des
ribe these subloops T . Let XJ be the subloopde�ned in the previous paragraph.Lemma 5.4 ([BS11, Lemma 4.3℄). There is a subloop Z of X of order 2a withsubfolder (O2(G); O2(G) \H;O2(G) \K).Proof: A

ording to [BS11, Lemma 4.3℄, (O2(G); O2(G) \ H;O2(G) \ K) is afolder for a subloop Z of X and by [BS11, Corollary 3.6℄, jZj = jO2(G) \Kj =2a. �As Gi is the full preimage of Di in G, it follows that Z is a subloop of Xi for1 � i � e. Let x 2 Xi n Z and setMx := Z [ x Æ Z:Lemma 5.5. The following hold.(a) Mx is a subloop of Xi of order 2a+1.(b) If x; y 2 Xi n Z, then Mx =My if and only if y 2Mx.(
) Mx is non-asso
iative.(d) The loops Mx are the Sylow 2-subloops of Xi.(e) Z is a normal subloop of Mx.Proof: Let k 2 K su
h that k = �x. Moreover, let Q be a Sylow 2-subgroup ofHi := H \ Gi su
h that [k;Q℄ � QO2(G). Then P := O2(G)Qhki is in Syl2(Gi)and P\Hi = Q is in Syl2(Hi). Therefore, P\O2(Gi)Hi 2 Syl2(Hi), whi
h impliesthat P = (P\H)(P\K), see [BS11, Lemma 4.7℄. It follows that (P; P \Hi; P\K)is a subfolder for a subloop Ti of Xi by [BSS11, Lemma 2.1℄, whi
h is a Sylow2-loop.Then Z is a normal subloop of Ti, as jTij = 2jZj and the map �i from Tionto Z2 sending every element from Z to 0 and every element in Ti n Z to 1, isa homomorphism with kernel Z. Thus by Theorem 2 of [S44℄ Ti = Mx, whi
hyields (a), (b), (d) and (e).It remains to show (
). Assume that Mx is asso
iative. This is equivalent tothe property that �x�y = �xÆy for all x; y 2 Mx. Thus P \ K is a group. AsMx is a Bru
k loop, this group is then elementary abelian of order 2a+1. Thus



344 B. Baumeister(K \ P )O2(G)=O2(G) �= (K \ P )=(O2(G) \K) is of order 2 in 
ontradi
tion tohK \ P iO2(G)=O2(G) �= D2((q�1)=2). Thus Mx is non-asso
iative. �Corollary 5.6. Let Yi be a soluble subloop of Xi. Then Yi is 
ontained in Mxfor some x 2 Xi n Z.Proof: The assertion follows from [BSS11, Corollary 3.11℄ and Theorem 2 andLemma 5.5(d) of this note. �Moreover, noti
e:Lemma 5.7. The subloop Z is a normal subloop of every Sylow 2-subloop Tof X .Proof: Extend the homomorphisms �i for 1 � i � e to the homomorphism �from T onto (Z2)e. Then we obtain the assertion, as Z = ker�. �ObserveLemma 5.8. Let x; y 2 Xi nZ with x Æ y =2 Z. Then hx; yi is not a soluble loop.Proof: Assume that Y := hx; yi is a soluble loop. Then by [BSS11, Corol-lary 3.11℄ h�x; �yi is a 2-group and Y a 2-loop. Then by Corollary 5.6 Y � Mtfor some t 2 Xi n Z. Thus x = t Æ z1 and y = t Æ z2 for some z1; z2 2 Z. As Z isnormal in Mt, see Lemma 5.5(e), it follows that x Æ y 2 Z in 
ontradi
tion withour assumption. �This lemma together with Lemma 5.3 immediately imply the following:Corollary 5.9. If e = 1 and if x; y 2 Xi n Z with x Æ y =2 Z then hx; yi = X .The following is a helpful observation to write down the Sylow 2-subloops.Lemma 5.10. Let xi 2 Xi for 1 � i � e. Then the expression x1 Æ x2 � � � Æ xe ÆZis independent of the order of the xi's and independent of bra
kets.Proof: There is a Sylow 2-subloop T of X whi
h 
ontains x1; : : : ; xe. ByLemma 5.7 Z is a normal subloop of T and T=Z is an elementary abelian group.This yields the assertion. �Let xi 2 Xi n Z; for 1 � i � e; and set x := (x1; : : : ; xe):By Lemma 5.10 for J � I the following set is well de�ned:xJ Æ Z :=Yj2J xj Æ Z;where the produ
t is that one in the loop X . If J = ;, then xJ Æ Z = Z. SetTx := [J�I xJ Æ Z:



Do �nite Bru
k loops behave like groups? 345Corollary 5.11. The subloops Tx with x = (x1; : : : ; xe) and xi in Xi n Z, for1 � i � e, are the Sylow 2-subloops of X .Proof: By 
onstru
tion and by Lemma 5.7, Tx is a loop. Further,jTxj = 2jIjjZj = 2e2a = 2e+a:So Lemma 3.1 yields jTxj = jX j2, the assertion. �6. Lagrange's theoremHere we summarize the results of [G64℄ and [BS11℄ on Lagrange's theorem.Theorem 4 ([G64℄, [BS11℄ Lagrange's Theorem). Let X be a �nite Bru
k loopand Y � X a subloop. Then jY j divides jX j.Proof: It is a dire
t 
onsequen
e of Theorem 1, Corollary 4, p. 395, in [G64℄ andof Theorem 3 in [BS11℄. �7. Hall's theoremWe say that a subloop Y of X is a Hall �-subloop, if jY j� = jX j�. The Theoremof Hall holds as well:Theorem 5 ([G68℄, [BS11℄ Hall's Theorem). Let X be a �nite Bru
k loop andlet � be the set of primes dividing the order of X . Then X is soluble if and onlyif there is a Hall �-subloop in X for every subset � of �.Proof: This is Theorem 12 of [G68℄ if X is of odd order and Theorem 4 of [BS11℄in the general 
ase. �There is even a stronger version of that theorem:Theorem 6 ([BS11, Theorem 5℄). Let X be a �nite Bru
k loop. Then X issoluble if and only if there is a Sylow subloop in X for every prime dividing jX j.8. Open questionsHere we just want to mention two of the open questions 
on
erning Bru
kloops:(1.) In the known simple Bru
k loop of order 96 the subloop related to O2(G)is a group in fa
t. Does this hold in general?(2.) Is there a simple Bru
k loop with enveloping group G su
h that G=O2(G)�= L2(9) : 2 or L2(q) : 2 with q > 5 a Fermat prime? Let X be su
h aloop. Then X 
ontains a quotient Z whi
h is anM -loop, for the de�nitionsee [AKP06, p. 3062℄. Then jZj = 2a(q + 1) by Lemma 3.1, and byTheorem 3 of [AKP06℄ jZj = n12n(2n�1 + 1) where n1 = jkO2(G) \Kjwith k 2 K n O2(G) and q = 2n + 1. Hen
e 2a = n12n�1 and 2a � 2n�1,whi
h implies a � 2. In fa
t, in su
h an example a would have to be mu
hbigger than 2.
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