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Do finite Bruck loops behave like groups?

B. BAUMEISTER

Abstract. This note contains Sylow’s theorem, Lagrange’s theorem and Hall’s
theorem for finite Bruck loops. Moreover, we explore the subloop structure of
finite Bruck loops.
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1. Introduction

Let (X, o) be a finite loop; that is a finite set together with a binary operation
o on X, such that there exists an element 1 € X with 1oz = 2z 01 = z for all
z € X and such that the left and right translations

A X=X, y—=zo0y, py: X=X, zz0y

are bijections. Loops can be thought of as groups without the associativity law.
Though loops are a generalisation of groups, general loops can be very wild
due to the missing associativity. For instance left and right inverses may not be
identical, the powers of elements may not be definable in the usual way.
Bol [Bo37] introduced the so called (right) Bol identity:

(zoy)oz)oy=wzo((yoz)oy) foral z,y,2eX

and a loop is called a (right) Bol loop if it satisfies this identity. A consequence
of the identity is that the subloop generated by one element is a (cyclic) group.
Therefore powers and inverses of elements are well defined.

Nagy [N] showed that general Bol loops behave still very differently from
groups. While groups of odd order are soluble due to work of Feit and Thompson,
there are simple Bol loops of odd non-prime order [N].

Bol loops which satisfy the automorphic inverse property AIP:

(xoy) ' =z 'oy™! forall z,yeX

are called Bruck loops. Groups satisfy (AIP) if and only if they are abelian. Thus
Bruck loops generalise abelian groups.

There are general similarities between loops and groups: In every loop X the
order of every normal subloop 7', i.e. T' is the kernel of some homomorphism 7
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from X to another loop, divides the order of X, see [AA43, Theorem 4]. Thus
Lagrange‘s theorem holds for normal subloops. Moreover, the theorem on homo-
morphisms X /T 2 7(X) holds, see [AA43, Theorem 4]. See also the isomorphism
theorems for loops in [AA43], [S44] and the Jordan-Hélder Theorem in [Ba45).

There are certainly huge differences between Bruck loops and groups. In this
note we will see that some basic classical group theoretical theorems can be ex-
tended to the theory of finite Bruck loops. We will focus on the similarities
between groups and Bruck loops by extending Lagrange’s theorem and to some
extent Sylow’s theorem and Hall’s theorem to finite Bruck loops. Thus Bruck
loops are more general than abelian groups — they are neither associative nor
abelian nor soluble in general — but behave nevertheless nicely. Note also the
work of Gagola [Gall] on similarities between certain Moufang loops and groups
as well as the paper by Jedlicka, Kinyon and Vojtéchovsky showing Cauchy’s
theorem, Lagrange’s theorem and the odd order theorem for commutative auto-
morphic loops [JKV11]. Here, we study the subloop structure of the finite Bruck
loops as well.

This paper is organized as follows. After fixing the notation in the next section,
we recall the general structure theorem of finite Bruck loops. In the fourth section
we discuss Sylow’s theorem and in the fifth the subloop structure. In the last two
sections we present Lagrange’s and Hall’s theorems. Some parts of the paper
already have been proven in [G64], [G68] or in [BS11] and some are new.

2. Notation and definitions

Here we follow the notation of Aschbacher [A05] and [AKP06]. Given a loop X,
let G := (p, : z € X) < Sym(X), which is usually called right multiplication
group and by Aschbacher enveloping group of X. The set K := {p, :x € X} is a
transversal to H := Stabg(1), the right inner mapping group, in G, and (G, H, K)
is called the Baer envelope of X.

The following easily verified properties hold.

(1) 1 € K and K is a right transversal to all conjugates of H in G.
(2) H is core free.
(3) G = (K).

Baer [Ba39] observed that whenever (G, H,K) is a triple with G a group,
H < G and K C @ satisfying condition (1), then we get a loop on K by setting
roy =z, x,y € K whenever z is the element in K such that Hzy = Hz. This
loop is called the loop related to (G, H, K).

The triple (G, H,K) with G a group, H < G and K C G is called a loop
folder, faithful loop folder or loop envelope if (1), (1) and (2) or (1) and (3) hold,
respectively. In general there are many different loop folders for a given loop.

If X is a Bol loop and (G, H, K) the Baer envelope of X, then K is a twisted
subgroup, that is 1 € K and whenever z,y € K, then z~! and zyz is in K. If,
moreover, X is a Bruck loop, then H acts on K by conjugation, [A05, 4.1].
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Subloops, homomorphisms, normal subloops, factor loops and simple loops are
defined as usual in universal algebra: A subloop is a nonempty subset which is
closed under loop multiplication and is itself a loop with that operation.

Homomorphisms are maps between loops which commute with loop multi-
plication. The map defines an equivalence relation on the loop, such that the
product of equivalence classes is again an equivalence class. Normal subloops are
preimages of 1 under a homomorphism and therefore subloops. A normal subloop
defines a partition of the loop into blocks (cosets), such that the set of products
of elements from two blocks is again a block. Such a construction gives factor
loops as homomorphic images with the block containing 1 as the kernel. Simple
loops have only the full loop and the trivial loop as normal subloops.

For instance if (G, H, K) is a loop folder defining a loop X and Gy a normal
subgroup of G which contains H, then (Go, H,Go N K) is a loop folder for a
normal subloop X of X.

A loop X is soluble if there exists a series 1 = Xy < -+ < X,, = X of subloops
with X; normal in X;1; and X;4+1/X; an abelian group.

3. The general structure theorem

In this and the following sections X always is a finite Bruck loop and (G, H, K)
always denotes the Baer envelope of X.

In this section we recall the fundamental theorem on Bruck loops proved in
[BS11]. We need some more notation. As usual a 2-element is an element whose
order is a power of 2. Moreover, for G a group O(G) is the biggest normal
subgroup of G of odd order, O2(G) the biggest normal subgroup of G whose
order is a power of 2 and 0% (G) is the smallest normal subgroup of G such that
G/0? (G) is a group of odd order, see for instance [A86].

For X aloop, O(X) is the largest normal subloop of X of odd order and 0¥ (X)
is the subloop of X which is generated by all the 2-elements of X, see [AKPO0G].

Theorem 1 ([BS11, Theorem 1]). Let X be a finite Bruck loop. Then the
following holds.
(a) X O(X) x 0% (X).
(b) 0% (X) is the set of 2-elements of X .
(¢) Let G be the enveloping group of X. Then G = O(G) x 0% (G).
(d) A loop envelope (G, H,K) of O% (X) where H acts on K and K is a
twisted subgroup consisting of 2-power elements satisfies the following.
(1) 6 = G/OQ(G) = D1 X DQ X e X De with Dz = PGLQ(ql), Qi 2 5a
Fermat prime or q; = 9 and e a non-negative integer.
(2) D; N H is a Borel subgroup in D;.
(3) F*(G) = 0:2(G).
(4) K is the set of involutions in G \ G.

Remark to Theorem 1. In particular, in a finite Bruck loop the set of 2-
elements forms a subloop.

339



340

B. Baumeister

The theorem implies that if X is a Bruck loop of 2-power exponent, then its
order is very restricted. Recall that for n a natural number and p a prime n,, is
the p-part of n, i.e. n = npx, p does not divide z and n,, is a power of p.

Lemma 3.1 ([BS11, Corollary 3.6]). Let X be a Bruck loop of 2-power exponent.
Then

X =2"](@+1)
i=1
for some e € NU {0}, where ¢; =9 or ¢; > 5 a Fermat prime. Moreover, |X|y =
20%e If (G, H, K) is the Baer envelope of X, then 2° = |05(G) : O2(G) N H.

Remark. If X is a Bruck loop of 2-power exponent which is not soluble, then
e>1. If e=1and ¢ =5, then a > 4, see [BS10, Theorem 3].

4. Sylow’s theorem

In order to be able to formulate Sylow’s or later Hall’s theorem we need further
notation: Let w be a set of primes. A natural number n is a m-number if n = 1
or n is the product of powers of primes in 7. Assume that X is a loop such that
every element of the loop generates a group. We say that X is a w-loop if the
order of X is a m-number. Notice that this definition is different from the one
given in [G64]. For Bruck loops of odd order these two concepts coincide (see
[G64, p.394, Corollary 2]), but not for loops of even order (see the Aschbacher
loop in [BS10]).

In order to distinguish the two concepts we propose to use the following no-
tations: A local w-loop is a loop such that the orders of the elements are all
m-numbers — for instance a loop of 2-power exponent is a local 2-loop — and a
global w-loop is a loop such that the order of the loop is a w-number. In general
we will simply say 7-loop instead of global 7-loop.

Asg already mentioned there are local 2-loops which are not global 2-loops: the
Aschbacher loop is of order 96, so not a 2-loop, but every element in that loop is
of order 2, see [BS10]. We say that a subloop Y of X is a Sylow p-subloop of X,
if V] = | X,

In this section we discuss for finite Bruck loops X the following Sylow-proper-
ties.

(S1) If p divides |X|, then X contains a Sylow p-subloop.

(S2) The Sylow p-subloops are all conjugate under the action of the right inner

mapping group H.

(S3) Every p-subloop is contained in a Sylow p-subloop.

(S4) The number of Sylow p-subloops of X is not divisible by p.

In Bruck loops of even order Sylow’s theorem holds for the prime p = 2, see
[BS11]:

Theorem 2 ([BS11] Sylow’s Theorem). Let X be a Bruck loop of even order.
Then the Sylow-properties (S1)—(S4) hold for the prime p = 2.
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ProoOF: We still need to prove (S4), which was not shown in [BS11]. By Theo-
rem 1 X =Y x Z where Y is the largest normal subloop of X of odd order and
7 the subloop of X of 2-elements of X.

If T is a Sylow 2-subloop, then, as Y does not contain elements of even order
[G64], T projects trivially onto Y and is therefore contained in Z. According to
[BS11], Proof of Corollary 4.10, there is a Sylow 2-subgroup P of the enveloping
group of Z, such that (P,PN H,P N K) is a loop folder for T. We may identify
T with PN K. By [BS11, Corollary 4.10], all the Sylow 2-subloops of X are
conjugate under the action of H. Thus the number of the Sylow 2-subloops of
X is |[H : Ng(PNK)|. As PN H normalises PN K and as PN H is a Sylow
2-subgroup of H, see [BS11, Lemma 4.8(2)], this number is odd. O

Remark. We obtain the loop folders to the Sylow 2-subloops as follows: Take
a Sylow 2-subgroup @ of H. Then P := N¢(Q)O2(G) is in Syl,(G). Moreover,
P=(PNnH)(PNK) and (P,PNH,PNK) is aloop folder for a Sylow 2-subloop
of X, see [BS11, Lemma 4.7]. In the next section we will describe how to get the
Sylow 2-subloops directly.

Notice:

Lemma 4.1. Let X be a Bruck loop of 2-power exponent. Then the only subloop
of X of odd order is the trivial subloop {1}.

PROOF: Burn showed the elementwise Lagrange Theorem for finite Bol loops, i.e.
that the order of every element divides the order of the loop [Bu78]. Let Y be a
subloop of X of odd order. As Y is a Bol loop as well, every element of Y has
odd order. Since X is of 2-power exponent, we get Y = {1}. O

If X is a Bruck loop of odd order, then Sylow’s theorem holds in full generality
[G64]. This then yields the following:

Theorem 3. Let X be a finite Bruck loop and let p be a prime. Then the Sylow-
properties (S1)—(S4) hold for p if and only if p =2 or if p is odd and p does not
divide the number of 2-elements of X .

In particular if p =2 or if p is an odd prime different from 5 and not dividing
q + 1 for ¢ a Fermat prime, then (S1)—(S4) hold.

Proor: If X is odd, then by Corollary 3 to Theorem 9 of [G64], X satisfies the
Sylow-properties.

Now let X be a Bruck loop of even order. Then X =Y x Z, where Y is the
largest normal subloop of X of odd order and Z the subloop of X consisting of
all the 2-elements of X. If p = 2 or p divides |Y|, but not |Z|, then (S1)-(54)
hold by Theorem 2 and the first paragraph of this proof, respectively.

Thus assume that p is an odd prime which divides |Z| and assume that there
is a Sylow p-subloop T of X. Then according to Lemma 4.1 T projects trivially
onto Z. Therefore, T is contained in Y which is not possible, as Y satisfies (S3),
but by assumption Y|, < |T| = | X|,. O
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5. More on subloops

The following result shows that knowing the subloops of the odd order Bruck
loops as well as those of the Bruck loops of 2-power exponent already gives the
full knowledge of all the subloops.

Proposition 5.1. Let T be a subloop of the finite Bruck loop X = O(X) x
02 (X). Then T = (T N O(X)) x (T N 0% (X)).

PROOF: Let = y oz be an element in T with y € O(X) and z € 0% (X).
According to [AKP06, Theorem 2], y o z = zoy and pyp. = pyor = p.py. This
implies that (y o 2)? = y% o 2%

(yoz)?=(yoz)o(yoz)=(yp:)pyo: = (Yp:)pyp- = (Ypy)p: = y*p.2 = y* 0 2%,

Thus

(yo2)” =y* 02”

for every i in N. As y is of odd order and the order of z is a 2-power, it follows
that y and z are in (z) = (y o z).

Let 7, and 7, be the projections of X onto O(X) and 02,(X), respectively.
Then T = 7,(T) X w.(T') which is the assertion. O

The subloops of the odd order Bruck loops can be extracted from Glauberman’s
papers [G64], [G68]. So assume that X is a finite Bruck loop of 2-power exponent.
Then by Lemma 3.1

e
X =2 H(qi +1)
i=1
for some e € NU {0}, where ¢; = 9 or ¢; > 5 a Fermat prime. If e = 0, then
|X| = 2% and X is soluble, see [BS11, Lemma 3.5] or [N98, Corollary 3.3]. In this
case we will not study the subloops as there are too many.

So assume that X is a non-soluble Bruck loop of 2-power exponent, i.e. that
O(X) =lande Z 1. Then, G/OQ(G) = D1 X DQ X X De with Dz = PGLQ((]Z)
for ¢; > 5 a Fermat prime or ¢; = 9, see Theorem 1.

We distinguish between the soluble and the non-soluble subloops of X.

5.1 Non-soluble subloops. Let I := {1,2,...,e} and let G5 be the full preim-
age of [[;c; D;j in G for J C I.

Lemma 5.2. For every J C I we have (G;,G;NH,G;NK) is aloop folder for
a subloop Xy of X.

PROOF: According to [BS11, Lemma 4.4], Gy = (G; N H)(G ;N K) which yields
according to [BSS11, Lemma 2.1] the assertion. O

Lemma 5.3. Let e = 1 and let Y be a non-soluble subloop of the simple loop
X =X;. ThenY = X.
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ProOOF: SupposeY < X. Let (S, SNH,SNK) be the subloop folder of (G, H, K)
related to Y. Then M := (SN K) is as described in Theorem 1. In particular
M/O5(M) is isomorphic to a direct product of groups isomorphic to La(g;) with
gi =9or ¢; > 5 aFermat prime. Then G/O3(G) contains subgroups isomorphic to
L1(g;). This implies G/02(G) =2 PGL3(9), M/O3(M) = PGL(5) and O2(M) <
O2(G). Then HO5(G)/O2(G) = 32 : 8, but (M N H)O5(G)/02(G) = (M N
H)O2(M)/O2(M) = 5 : 4, which is not possible as the second is a subgroup of
the first group. Thus Y = X. O

5.2 Soluble subloops. Let T be a soluble subloop of X. Then by [BS11,
Lemma 3.5] the order of T is a power of 2. Hence T is contained in a Sylow
2-subloop of X. Next we describe these subloops T. Let Xj be the subloop
defined in the previous paragraph.

Lemma 5.4 ([BS11, Lemma 4.3]). There is a subloop Z of X of order 2* with
subfolder (0»(G),02(G) N H,02(G) N K).

PROOF: According to [BS11, Lemma 4.3], (02(G),02(G) N H,O2(G)N K) is a
folder for a subloop Z of X and by [BS11, Corollary 3.6], |Z| = |02(G) N K| =
24, O

As G; is the full preimage of D; in G, it follows that Z is a subloop of X; for
1<i<e Letz € X;\Z and set

M, :=ZUxo Z.

Lemma 5.5. The following hold.

(a) M, is a subloop of X; of order 241,

(b) Ifz,y € X; \ Z, then M, = M, if and only if y € M,.
(¢) M, is non-associative.

(d) The loops M, are the Sylow 2-subloops of X;.

(e) Z is a normal subloop of M,.

PRrOOF: Let k € K such that k = p,. Moreover, let ¢ be a Sylow 2-subgroup of
H; := HNG; such that [k, Q] < QO2(G). Then P := 02(G)Q(k) is in Syl,(G;)
and PNH; = @ is in Syl,(H;). Therefore, PNO»(G;)H; € Syl,(H;), which implies
that P = (PNH)(PNK), see [BS11, Lemma 4.7]. It follows that (P, PNH;, PNK)
is a subfolder for a subloop T; of X; by [BSS11, Lemma 2.1], which is a Sylow
2-loop.

Then Z is a normal subloop of T;, as |T;| = 2|Z| and the map m; from T;
onto Z» sending every element from Z to 0 and every element in T; \ Z to 1, is
a homomorphism with kernel Z. Thus by Theorem 2 of [S44] T; = M,, which
yields (a), (b), (d) and (e).

It remains to show (c). Assume that M, is associative. This is equivalent to
the property that p,py = pzoy for all z,y € M,. Thus PN K is a group. As
M, is a Bruck loop, this group is then elementary abelian of order 2°*!. Thus
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(K NP)O:(G)/02(G) = (KN P)/(0O2(G) N K) is of order 2 in contradiction to
(K N P)O2(GQ)/02(G) = Dy((g—1)/2)- Thus M, is non-associative. O

Corollary 5.6. Let Y; be a soluble subloop of X;. Then Y; is contained in M,
for some z € X; \ Z.

PRrROOF: The assertion follows from [BSS11, Corollary 3.11] and Theorem 2 and
Lemma 5.5(d) of this note. O

Moreover, notice:

Lemma 5.7. The subloop Z is a normal subloop of every Sylow 2-subloop T
of X.

ProoF: Extend the homomorphisms 7; for 1 < i < e to the homomorphism =«
from T onto (Zs2)¢. Then we obtain the assertion, as Z = ker 7. O

Observe
Lemma 5.8. Let z,y € X;\ Z withz oy ¢ Z. Then (x,y) is not a soluble loop.

PROOF: Assume that Y := (z,y) is a soluble loop. Then by [BSS11, Corol-
lary 3.11] {ps, py) is a 2-group and Y a 2-loop. Then by Corollary 5.6 Y < M;
for some ¢t € X; \ Z. Thus x = toz and y =t oz, for some 21,20 € Z. As Z is
normal in M;, see Lemma 5.5(e), it follows that z oy € Z in contradiction with
our assumption. O

This lemma together with Lemma 5.3 immediately imply the following;:
Corollary 5.9. If e=1 and if z,y € X;\ Z withz oy ¢ Z then (z,y) = X.
The following is a helpful observation to write down the Sylow 2-subloops.

Lemma 5.10. Let x; € X; for 1 <i < e. Then the expression 1 0xy---0x, 07
is independent of the order of the x;’s and independent of brackets.

PRrROOF: There is a Sylow 2-subloop T of X which contains z,...,2.. By

Lemma 5.7 Z is a normal subloop of T' and T'/Z is an elementary abelian group.

This yields the assertion. O
Let

x; € X;\Z, for 1<i<e, andset z:= (x1,...,2).
By Lemma 5.10 for J C I the following set is well defined:

xJOZ::ijOZ,
JjeJ

where the product is that one in the loop X. If J =, then z7 o Z = Z. Set

T, = U A
JCI
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Corollary 5.11. The subloops T, with © = (z1,...,z.) and z; in X; \ Z, for
1 < i < e, are the Sylow 2-subloops of X.

PROOF: By construction and by Lemma 5.7, T, is a loop. Further,
|T,| = 21"|Z| = 2°2" = 2°+Fe,
So Lemma 3.1 yields |T;| = | X |2, the assertion. O

6. Lagrange’s theorem
Here we summarize the results of [G64] and [BS11] on Lagrange’s theorem.

Theorem 4 ([G64], [BS11] Lagrange’s Theorem). Let X be a finite Bruck loop
andY < X a subloop. Then |Y| divides | X|.

Proor: It is a direct consequence of Theorem 1, Corollary 4, p. 395, in [G64] and
of Theorem 3 in [BS11]. O

7. Hall’s theorem

We say that a subloop Y of X is a Hall m-subloop, if |Y|; = |X|. The Theorem
of Hall holds as well:

Theorem 5 ([G68], [BS11] Hall’s Theorem). Let X be a finite Bruck loop and

let TI be the set of primes dividing the order of X. Then X is soluble if and only
if there is a Hall w-subloop in X for every subset 7 of II.

PRrOOF: This is Theorem 12 of [G68] if X is of odd order and Theorem 4 of [BS11]
in the general case. O

There is even a stronger version of that theorem:

Theorem 6 ([BS11, Theorem 5]). Let X be a finite Bruck loop. Then X is
soluble if and only if there is a Sylow subloop in X for every prime dividing |X|.

8. Open questions

Here we just want to mention two of the open questions concerning Bruck

loops:

(1.) In the known simple Bruck loop of order 96 the subloop related to O2(G)
is a group in fact. Does this hold in general?

(2.) Is there a simple Bruck loop with enveloping group G such that G/02(G)
&~ T5(9) : 2 or Ly(q) : 2 with ¢ > 5 a Fermat prime? Let X be such a
loop. Then X contains a quotient Z which is an M-loop, for the definition
see [AKPO06, p.3062]. Then |Z| = 2%(¢ + 1) by Lemma 3.1, and by
Theorem 3 of [AKP06] |Z| = ny2"(2"~" + 1) where n; = |kO2(G) N K|
with k € K \ 02(G@) and ¢ = 2" + 1. Hence 2% = n;2"~! and 2% > 2"~1,
which implies @ > 2. In fact, in such an example a would have to be much
bigger than 2.
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