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Left MQQs whose left parastrophe is also quadratic

SIMONA SAMARDJISKA, DANILO GLIGOROSKI

Abstract. A left quasigroup (Q, q) of order 2% that can be represented as a vector
of Boolean functions of degree 2 is called a left multivariate quadratic quasigroup
(LMQQ). For a given LMQQ there exists a left parastrophe operation ¢, defined
by: q\(u,v) = w < g(u,w) = v that also defines a left multivariate quasigroup.
However, in general, (Q,q\) is not quadratic. Even more, representing it in a
symbolic form may require exponential time and space. In this work we investi-
gate the problem of finding a subclass of LMQQs whose left parastrophe is also
quadratic (i.e. is also an LMQQ), and in the same time can be easily constructed.
These LMQQs are affine in the second argument, and their left parastrophe can
be easily expressed from the quasigroup operation. We give necessary and suf-
ficient conditions for an LMQQ of this type to have a left parastrophe that is
also an LMQQ. Based on this, we distinguish a special class that satisfies our
requirements and whose construction is deterministic and straightforward.

Keywords: left multivariate quadratic quasigroup, left parastrophe, algebraic de-
gree, matrix of Boolean polynomials

Classification: 20N05, 11T55, 11T71

1. Introduction

The potential and usefulness of quasigroups (or equivalently Latin squares)
in the design of different types of cryptographic primitives and codes has been
addressed in numerous works, beginning with the seminal work of Shannon [21]
more than half a century ago. Since then, quasigroups were incorporated in the
design of many different cryptographic schemes as well as codes. We can mention
some of them:

Secret sharing schemes: Cooper et al. [7] designed a secret sharing scheme
arising from Latin squares,

Block Ciphers: A version of the block cipher DES that uses Latin squares
was proposed by Carter et al. [4],

Hash functions: The need of using quasigroups in the design of crypto-
graphic hash functions was discussed by Schnorr and Vaudenay in [20],
and later, in the SHA-3 hash competition, at least three functions had
quasigroups or left quasigroups in their design (Edon-R [11], NaSHA [14]
and Blue Midnight Wish [12]),

Stream Ciphers: The fast software stream cipher CryptMT by Matsumoto
et al. [15] actually uses quasigroups that belong to the class of polynomial
quasigroups analyzed by Rivest in [17],
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— Hardware stream cipher: A hardware stream cipher Edon80 using four
different quasigroups of order 4 was proposed in [8],

— Coding theory: Latin squares were used for designing LDPC codes in [23],
[16].

Recently, in [9], a new class of quasigroups called Multivariate Quadratic Quasi-
groups (MQQs) was introduced. The distinctive property of these quasigroups is
that when represented as Boolean functions in their algebraic normal form, they
are multivariate quadratic. MQQs have found an application [9], [10] in the field
of Multivariate cryptography, or MQ (multivariate quadratic) cryptography. MQ
schemes have performance advantages over the classical public key schemes based
on integer factorization (RSA) and on the discrete logarithm problem in the addi-
tive group of points defined by elliptic curves over finite fields (ECC). Additionally,
they are considered as one of the post-quantum alternatives to the most popu-
lar RSA and ECC schemes, since there are no known quantum algorithms that
would break MQ schemes. However, they have one disadvantage — the size of the
public/private key pair is much bigger than in the currently used cryptosystems.

The authors of [9] constructed only MQQs of lower orders (up to 2°). In [2],
a randomized algorithm was proposed to generate MQQs of higher orders, but just
up to 2'%. In [5], a method for construction of bilinear MQQs was proposed. A de-
tailed survey on the properties and construction of multivariate quadratic loops
and quasigroups was given in [6]. In [19], an approach was taken to construct
quasigroups based on T-functions defined by Klimov and Shamir [13]. These
quasigroups were called T-multivariate quasigroups, and can be (but are not ex-
clusively limited to be) quadratic. An extension of the algorithms from [5] and
[19] to arbitrary Galois fields F,« was recently given in [18].

In this paper we continue the analysis of MQQs, by investigating the wider class
of Left MQQs (LMQQs), and distinguishing subclasses that are of special interest
for cryptographic use in multivariate public key schemes. More concretely, since
in general a parastrophe of an LMQQ is not quadratic and representing it in a
symbolic form may require exponential time and space, it is a challenging problem
to find a subclass of LMQQs whose parastrophes are also quadratic, and in the
same time can be easily constructed.

1.1 Contribution and organization of the paper. We first introduce and
give a general construction of left multivariate quasigroups (LMQs) of any order
2% and any degree, and afterwards focus on the properties of a subclass of the
class of all LMQs of order 2% that consists of left quasigroups affine in the second
argument, whose left parastrophe can be easily expressed.

We then distinguish a special family of LMQQs and give the necessary and
sufficient conditions for these LMQQs to have a left parastrophe that has degree 2,
i.e., is also an LMQQ. As this characterization does not provide an algorithmic
construction of this type of LMQQs, we further refine the requirements at several
stages, to finally reach very simple sufficient conditions for an LMQQ to have a
quadratic left parastrophe and provide an especially easy construction procedure.
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The paper is organized as follows: The preliminaries are given in Section 2; in
Section 3 we investigate LMQs of several different types, give effective construc-
tions, and determine the relations between them; Section 4 is devoted to finding
and analyzing different sufficient conditions for an LMQQ to have a quadratic left
parastrophe in order to find suitable ones that give a simple and easy algorithmic
procedure for their construction. The conclusions are given in Section 5.

2. Preliminaries

2.1 Quasigroups. The following definitions and basic properties can be found
in classic textbooks on quasigroup theory, such as Belousov’s [3], or Smith’s [22].

Let (Q,q) be a groupoid and let a be a fixed element of (). The mappings
Lga, Rga : Q@ = @, called left and right translations (translation mappings), are
defined by:

LQ,a(x) = q(a,:n), R(La(x) = q(xaa’)v
for every z € Q.

Definition 1. The groupoid (@, q) is called a left (right) quasigroup if the map-
ping L, (Ry.q) is a permutation of @) for every a € Q.
If (Q, q) is both left and right quasigroup, then it is simply called a quasigroup.
If a quasigroup (@, q) has a unit element e, then (@, ¢) is called a loop.

A finite (left/right) quasigroup of n elements is said to be a (left/right) quasi-
group of order n.

Definition 2. Given a (left) quasigroup (@, q) a new (left) quasigroup operation
q\ can be defined on the set Q) by

@\ (u,0) = w & qlu,w) = v,
called a left parastrophe operation. The two operations satisfy the identities
(1) q(u, ¢\ (u,v)) = v, q\(u,q(u,v)) =,

for all u,v € Q.

Let Q,, be a set of all left quasigroup operations over the set @) of n elements,
and let Sg be the symmetric group upon (). Since a left quasigroup from 9,
can be considered as a collection of n permutations from Sg, the definition of
composition of permutations from Sg can be naturally extended to Q.

Let g1,q2 € Qn. A composition of ¢; and gz is defined by:

(@1 0 ¢2)(u,v) = a1(u, ¢2(u,v)), forall u,veQ.
Moreover, it is not hard to see that the following holds.

Proposition 1. (Q,,0) is a group isomorphic to (Sg)". O
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Definition 3. Two (left) quasigroups (@, ¢1) and (Q, g2) are said to be isotopic,
if there exist permutations a, 3,y € Sg such that

7(‘11(“7”)) = q2(a(u),5(v)), for all u,v € Q.

We denote the isotopy by (a, 8,7). If @« = 8 = v we say that the (left) quasigroups
are isomorphic.

Using the definition, we can efficiently construct new (left) quasigroups isotopic
to a known one.

Proposition 2 ([1]). Given a binary (left) quasigroup (Q, q), and permutations
a,B,7v € Sg, the operation ¢' defined by

q' (u,v) =~ (g(a(u), B(v))), forall u,veQ,
defines a (left) quasigroup (Q,q') isotopic to (Q,q). («,3,7) is an isotopy from
(@,q) to (Q,q').

In the rest of the paper we will be mainly interested in properties of finite left
quasigroups.

2.2 Left Multivariate Quasigroups. We will use the following notations.
Let F» denote the Galois field of order 2, and Fy[x;, xo,...,2,] the ring of

polynomials in the variables z1, o, ..., z, over the field F;.

We will call the elements of the quotient ring Fs [x1,x,. .., 2,]/ (2} — 21,23 —
Ty,...,7r2 — x,) Boolean polynomials.

We will consider the elements (uy, ua, ..., u,) € FY as column vectors and use
the notation u = (uy, us,. .., Uy). Furthermore, for (uy, us, ..., uy) € (FY)™ we

denote by u, ; the s-th bit of the J-th component u;.
Let f : (F¥)™ — FY be a mapping, and let f(uj,us,...,uy)s denote the

s-th bit of f(ul,uQ, .. .,um). The function f can be represented as a w-tuple
of Boolean functions as f = (f),f®, ..., f®), where f(*) : (F¥)™ — F,
for every s = 1,...,w, and f(®)(uy,uy,...,u,,) = f(up,us,...,u,,), for every

(111,112, . '7um) € (Féu)m

It is a well known fact that every Boolean function g : (F¥ )™ — Fy can be rep-
resented uniquely by its Algebraic Normal Form (ANF) as a Boolean polynomial
in mw variables ¢ € Fa[211,%2,1,. -+, Tw,1,%1,25 -3 T1,m, - - -, Tw,m]. Hence, 1
can be represented by a polynomial of the form

f(S)(xl,la"'axw,m) = Z a;

i:(i1,17...,iwvm)E]F£"w

Z],k
Tik

w
m

\/\\/\ m

\/\\/\

where a; € Zy, 2§, = 1 and zj, = wj;. The algebraic degree of a Boolean
function g is the number of variables in the longest term of g.

Here, we will be interested in the case when m < 2. For simplicity, we will use
the variables z1, x2, . ..,z for the case of m = 1, and 1, x2, . .., T, Y1, Y2, - - - » Yo
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for the case of m = 2. We will denote by x and y the w x 1 matrices [z;].,x1 and
[Yilwx1 over Ba[xy, ..., Ty, Y1, ., Yuw), respectively.

For better readability, we will also use the notations M(x) and M(x,y) for
matrices over Fo[1,...,Zw, Y1, .., Yw] Whose elements are polynomials in the
variables x1,...,%, and Z1,..., Ty, Y1,. .., Yuw, respectively.

Recall that an n x n matrix M over a commutative ring is called nonsingular
or invertible if there exists an n x n matrix T such that MT = TM = I,,.
Furthermore M is nonsingular if and only if its determinant is invertible. In
the case of a square matrix M(x,y) over the ring Fa[z1,...,Zw, Y1, ..., Y], this
means that M(x,y) is nonsingular if and only if det(M(x,y)) = 1, if and only if
det(M(a,b)) =1 over F, for every a,b € FY.

In the rest of this text, we will not distinguish between a Boolean function g
and its polynomial ANF form g, i.e., we will consider them equivalent, and use
simply the notation g.

Let (@, q) be a left quasigroup of order 2. We fix a bijection ¢ : Q@ — F¥ and
identify u € @ by the Boolean vector ¢(u) = u. Now, the binary operation ¢ on
@ can be viewed as a mapping g4 : F3¥ — F¥ defined by:

qs(u,v) =z <= q(u,v) = 2.

Hence, without loss of generality, all left quasigroups of order 2 can be viewed
as mappings q = (q(l),q@), ceey q(“’)) : F2¥ — FY represented in their ANF form
over Fo[z1,Zo, ... Ty, Y1,Y2,s - - - Yuw)-

We will call these quasigroups Left Multivariate Quasigroups (LMQ). If the
algebraic degree of an LMQ is 2, we will call it Left Multivariate Quadratic Quasi-
group (LMQQ). Note that this is in accordance with the naming convention from
[9] where the notion of Multivariate Quadratic Quasigroups (MQQ) was intro-
duced.

3. Construction of left multivariate quasigroups

In [19], the authors give necessary and sufficient conditions for a T-function

(defined in [13]) to define a permutation or a quasigroup. This characterization
provides a deterministic construction of multivariate quasigroups.

For left multivariate quasigroups it is possible to give a simpler form than the
one in [19]. We will need the following straightforward result.
Theorem 1 ([19]). A mapping p = (p"),p®, ..., p(®)) : F¥ — F¥ such that for
every s = 1,...,w, the component p'*) is a Boolean polynomial of the form

s _ (8) Jds+1, . Js+2 »
P (21, .. 1) = s + Z o T Tl Ty
j:(js+ls---sjw)€]F;)_s
defines a permutation on the set FY . O

It is an easy consequence that the following holds.
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Theorem 2. A mapping q = (¢V,q?,...,¢™)) : F3* — FY¥ such that for every
s=1,...,w, the component ¢'*) is a Boolean polynomial of the form

(2) q(S)(xla"':xw:yla"'ayw)
— (s), k1, ko kw , Js+1, Js+2 Jw
_ys+ Z ak,jwl Lo~ oo Ty ys—l—l ys+2 Y s
k=(k1,..,kw)€EFy
J=(Jst1yeerjuw ) EFy ~°

defines an LMQ of order 2%.

ProOOF: Clearly, for any (ay,...,a,) € FY, ¢ (a1,...,au,y1,...,y0) is a per-
mutation by Theorem 1, hence (2) defines an LMQ. O

The form given in Theorem 2 can be rewritten in an equivalent matrix form.

Theorem 3. Let A(x) = [a;(x)]wx1 and B(x,y) = [b;j(x,y)]wxw be matrices
of Boolean polynomials in the variables 1,...,Zw,Y1,---,Yw, Such that a;(x)
depends only on the variables z1,...,z,, for all i, 1 <i < w, and B(x,y) is an
upper triangular matrix with 1s on the diagonal, and b;;(x,y) depends only on
the variables x1,...,Tw, Yj+1,-+-,Yuw, foralli,j, 1 <i < j < w.

Then the mapping

(3) a(x,y) = A(x) + B(x,y) -y
defines a left multivariate quasigroup of order 2.

ProOOF: We show that the forms (2) and (3) are equivalent.
Let an LMQ ¢ be given by the form (2). Then the component ¢*) is of the
form

° - () k1 k -
q()($1,...,Cﬂw:yl,...,yw)_ Z ak,gxllwgz-.-ﬂ?w +ys+
k= (ki,.. kw)€FY
(s) k1 .k kuw . Js+2 i
+ Z ak,jwllx;...mw Ysyo yfﬂ Ysi1 + o+
k= (ki,.. kw)€Fy
J= (1 Js42s s juw) EFy~°
8) pk kw o Juw
* Z Oég%;xll"'xw Yo' | Yw—1 +
k= (k1,.. ky)€Fy
j=1(0,...,0,1,ju,) EFy"°
(s) k1 kw
+ Z Ty Ty | Y
k= (ki,. kw)€Fy

j=(0,...,0,1)e Fy ~°
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As this is true for every component ¢(*) of ¢, ¢ can be rewritten in the matrix
form (3). O

Form (3) allows creation of left quasigroups of any order and degree. If we take
the Boolean polynomials in A(x) to be of degree d, and the Boolean polynomials
in B(x,y) to be of degree d—1, then the left quasigroup ¢ will have degree d. Using
isotopy we can create new left quasigroups, and if the isotopy is («a, 3,7), such that
a(x) = D1x + c1, 3(x) = Dax + ¢2,77 1 (x) = D3x + c3, where Dy, D2, D3 are
nonsingular w X w matrices over F» and c1,c2,cg € FY, the degree is preserved,
i.e. the newly obtained left quasigroups are again of degree d. Throughout the
rest of the text we will call such isotopies linear.

Finding the parastrophe ¢\ of ¢ for a given LMQ can in general be a task of
great space and time complexity. That is also true for the special class of left
quasigroups defined in Theorem 3. However, if (3) is of the form

can be easily found, using one of the identities (1), to be:

i.e., B(x) depends only on the variables z1, ..., Ty, then the left parastrophe ¢\,

(5) o\ (x,y) =B (x)A(x) + B~ (x) y.
Even more, we have the following.

Proposition 3. Let TLQsw be the set of all left quasigroups of order 2 of the
form (4). Then (T LQaw,0) is a subgroup of (Qzw,o0).

PROOF: Let ¢q1,q2 € TLQow. Then q1(x,y) = A1(x) + B1(x) -y and ¢2(x,y) =
A5 (x) + By(x) -y, for some matrices A;(x), A2(x) of Boolean polynomials, and
some upper triangular matrices By (x), B2(x) of Boolean polynomials, with 1s on
the diagonal. Then,

71(X,¢2(%,y)) = A1(x) + Bi(x) - (A2(x) + Ba(x) - y)
= (A1(x)+B;(x)-As(x)) + B1(x) - Ba(x) - y.

71 °q2(x,y)

Since B (x) and B (x) are upper triangular, their product B, (x) - B2 (x) is again
upper triangular, and has 1s on the diagonal. So ¢; o ¢o € TL£Qsw. The identity
element of (Qaw,0) is e(x,y) =y, and it is clearly in TLQsw as well.

The inverse of a quasigroup g is its left parastrophe ¢\, and from (5) it is clear
that ¢\ € TL£Qaw. Hence, the claim follows. O

Example 1. We give an example of a construction of an LMQQ of order 2*
obtained by applying isotopic transformation to an LMQQ from 7 £Qsa.

We first construct ¢ in the form (4).

Let A(x) be a 4 x 1 matrix of quadratic Boolean polynomials in the variables
Z1,T2,T3,Tyq, given by:
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1+ X3+ 2103 + Tox3z + 104 + ToTa + T374
A(X) _ 14+ 214+ 22+ 23+ 2123+ 2223 + 124
T2+ 2122+ T3 + 2123 + 124 + x324
T1XT2 + 123 + 223 + T4 + T1T4 + T224 + T3T4

Let B(x) be a 4 x 4 upper triangular matrix of linear Boolean polynomials in
the variables x1, x5, 23, 24, with 1s on the diagonal given by:

1 xzao+w3s 14z 1+ 24
_10 1 1+zs 14+z1+o2+23
B(X)_ 0 0 1 Tro + T3
0 0 0 1

Then ¢(x,y) = A(x) + B(x) -y is

1+ X3+ 2123 +Tox3 + 2124 + T2Tg + X324 + Y1+
+T2y2 + T3Y2 + Y3 + T2y3 + Ya + Tays

l+zi+ 22+ 23+ 2123+ 2203 + 21704 + Y2 + Y3+
‘I(Xa Y) = +x4y3 + Ya + T1Ys + T2ya + T3Ya

T2+ 2122 + X3+ T1X3 + X124 + T3T4 + Y3 + Ta2ya + T3Ya

T1T2 + 2123 + T2X3 + T4 + X104 + X224 + T3T4 + Y4

The matrix B~!(x) is given by

1 zo+z3 14+ 23+ z224 + 374 14+22+ 21220 + 2123+
+22x3 + T4 + T2T4 + T3T4
Bfl(x) — 0 1 1+ x4 14+ 21+ 2004 + T324
0 0 1 T2+ x3
0 0 0 1

and the parastrophe ¢\ (x,y) = B™'(x)A(x) + B7'(x) -y by:

1+ T2+ 2122 + 23+ 21203+ 2T2x3 + 12223 + T3T4 + T1X223T4+
+y1 + x2y2 + T3y2 + Y3 + T3ys + 2T4y3 + x3x4Y3 + Y4 + 2ys+
+x122Ya + T123Y4 + T2X3Y4 + TaYa + T2TaY4 + T3TaY4

q (X.y) — 14z +x122 + T12223 + T2 + Y2 + y3 + Tays+
A +yY4+ 21Ys + T2TaYs + T3T4Y4

T2+ 23+ 2124 + 12224 + T3T4 + T1T3T4 + Y3 + T2Y4 + T3Y4
12 + X123 + T2x3 + 24 + X124 + T2Xg + X3T4 + Y4
Next we apply to ¢ a linear isotopy defined by the nonsingular matrices:
1 0 0 1 1 0 0 0 1 1

D1: 1D2: 1D3:

O ==
=)

1
0
1

OO =

1
0
0

_ =

0 0
0 1
0 1

=)

1 0 1
o 1 0}
0 0 0 0

and by the vectors: ¢ = (1,1,0,1), c2 = (0,1,1,0), cg = (0,0,1,1).
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We obtain the left quasigroup
¢ (x,y) = D3(A(D1x+c1) + B(D1x+c¢1) - (D2y + ¢2)) + ¢3 given by
14+ 21+ 2122+ 23+ 2123 + Toxa + T2y1 + T3y1 + xay1 + Yo+
+x3y2 + yYs + ya + Ta2ys + T3y4
1421+ 2122 + Y2 + T2y2 + T3y + Tay2 + Toya + TayYa + Taya

! —_
q(x,y) = To 4+ T1T2 + T1T4 + Y1 + T2y1 + T3y + Tay1 + Y2 + T1y2+
+x2y2 +ys + x3ya + Taya

1+ z1z2 + 23 + T173 + T2T3 + T4 + T2Ta + Y1 + Y2 + T1Y2+
+Toy2 + x3Y2 + Toys + T4Y4
Since the left quasigroups in the class 7TL£Qsw» are quite easy to construct, they
will be our main focus in the next section. In the rest of this section we will point
out the relationship with the bigger class of left quasigroups affine in the second
argument y.

Definition 4. A left multivariate quasigroup (FY,q) is said to be left affine, if
for every a € FY, L, A(y) is an affine mapping.
We denote the set of all LMQs of order 2% that are left affine by £LL£LOow.

Proposition 4. A mapping q : F3¥ — FY is in LLQyw if and only if it has the
form

(6) q(xay) = A(X) + BO(X) "y,

where A (x) = [a;(x)]wx1 Is aw x 1 matrix of Boolean polynomials in the variables
T1,. .., Ty, and Bo(x) = [bij(X)]wxw IS @ w X w nonsingular matrix of Boolean

3

polynomials in the variables x1, ..., Zy.

PRrROOF: If ¢ has the form (6) then clearly it is a left quasigroup, and it is in
LLQow. Conversely, let ¢ € LLOsw. Then, using a vector notation, it can be
represented in the general form: ¢(x,y) = A(x) + A1(x,y) + Ax(y) where the
s-th component is

a9 (x,y) = AP (x) + AES) (x,y) + Aés) (y) = Z afcs)x'flxé” cooxkey
k=(k1,...kw)EFY

() k1 ko , J1 jw (8), k1, k2 kw
+ 6k’jx1 Xyl oyl 4+ E N TH T T
k=(k1,...kw)EFY k=(k1,...kw)EFY
=01, dw ) EFY k#0
k,j#0

Now, for every a € FY,
Lya(y) = A(a) + Ai(a,y) + Ax(y)
is an affine mapping, so

Ai(a,y) + Ax(y) = Bo(a) -y
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has to be a linear mapping, i.e. Bg(a) is a nonsingular w X w matrix for every
a € FY. Hence, ¢ has the form (6). O

Similarly as for Proposition 3 it is straightforward that the following is true.

Proposition 5. (£LLQsw,0) is a subgroup of (Qaw,0), and also (T LQzw,0) is a
subgroup of (LLQsw,o0). O

Proposition 6. Let ¢ € LLOs« be given in the form (6). If Bg(x) can be
decomposed as Bo(x) = Dy - B(x) - D2, where Dq,D2 are w X w nonsingular
Boolean matrices, and B(x) is an upper triangular matrix of Boolean polynomials
in x1,...,%y, with 1s on the diagonal, then q can be constructed using a linear

isotopy from a quasigroup in T LQow with the same degree.

PRrROOF: Let g be as defined. Then

q(x,y) = A(x)+Bo(x)-y=A(x)+D;-B(x) D2y
D;-(D;7'-A(x) +B(x) - (D2 -y))
= D;-(A'(x) +B(x)- (D2 y)).

Let ¢'(x,y) = A'(x) + B(x) - y. Clearly, ¢' € TLQsw». Now, ¢(x,y) = Dy -
¢'(x,Dz - y), i.e., ¢ can be obtained from ¢ using the isotopy (I, Do, Dy *). O

Proposition 7. Let q be a quadratic loop of order 2. Then q € LLOQ3w.

PROOF: First, let ¢ be a quadratic loop of order 2% with a unit element 0 =
(0,0,...,0) € FY. Then from [6],

qx,y) =x+B(xy) +y

where f is a bilinear Boolean map. Clearly, ¢ is left affine i.e., ¢ € LLOQow.

Now, let ¢ be an arbitrary quadratic loop of order 2%. Then, ¢ is linearly
isomorphic to a loop with unit element 0. The linear isomorphism does not
change the degree of y, hence, again ¢ € LLQsw. O

4. LMAQQs whose left parastrophe is also quadratic

In this section we will focus on the left quasigroups from 7 £Qs« that have an
algebraic degree 2, i.e. on LMQQs that can be represented in the form (4). Then
the left parastrophe of the LMQQ ¢ is given by (5).

The possibility of expressing g, using a short formula is a neat property of
these LMQQs. But this does not imply that it is always efficient to use ¢\ in such
a form. In general, although ¢ is quadratic, ¢\ can be of any degree d, 2 < d < 2w
(see Example 1). Hence for a random g, the average number of terms in ¢ is
exponential in the number of variables.

Here, we will focus on finding a class of such LMQQs in the group 7TL£Qsw,
with the additional property of efficient algorithmic construction.

From (5) it is straightforward that:
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Proposition 8. An LMQQ that can be written in the form (4) has a left para-
strophe that is also an LMQQ (i.e., it is also of degree 2) if and only if B~1(x) is
aw X w upper triangular matrix of linear Boolean polynomials, and B! (x)A(x)
is a w x 1 matrix of Boolean polynomials of degree 2. O

Next we want to find under what conditions the elements of B~!(x) are linear
polynomials.

We introduce the following notations.

Let B'(x) be an upper triangular matrix of linear Boolean polynomials in the
variables 1, 2, ..., Ty, with 1s on the diagonal. We denote the elements of the
matrices B(x) and B'(x) by b;;(x) and b;;(x), respectively, and represent them
in the following form:

(8) bij(x) =x" by +b;; and by (%) = x! +bi; + by,

where b;j, bi; € Fy, and byj,b}; € F2. (Note that b;;(x) = b; = 1.)
In other words, we represent the matrices B(x) and B’(x) as sums of upper
triangular matrices

9) B(x) =Bi(x) + By, and B'(x) = B{(x) + Bj,

where the Boolean polynomials xT - b;; and x" - bj; are the elements of By (x)
and Bj(x), respectively, and b;; € F, and b;j € [y are the elements of By and
B), respectively.

It is straightforward to verify the following:

Proposition 9. Let the matrices B(x) and B'(x), given in the form (9), satisfy
the conditions:

1. Bi(x)-Bj(x) =0,

2. Bl(X)BIQ-l-BQB,l(X) :0,

3. B,=B,".
Then, B'(x) = B~!(x). O

The conditions 1., 2., and 3. from Proposition 9 can be rewritten in a simpler

equivalent form given in the next proposition.

Proposition 10. The matrix B(x) given in the form (9), satisfies the condition:
(10) B;(x)-B,! Bi(x)=0

if and only if there exists a matrix B'(x) = B/ (x) + B}, of the form (9) such that
the conditions 1., 2., and 3., are satisfied for B(x) and B'(x).
Furthermore, if B(x) satisfies (10), then B~'(x) = B, - B;(x) - B,! + B, .

PROOF: Let the matrix B(x) satisfy (10). Let B} (x) = B,' - B;(x) - B, ' and
B, = B;l. It is easy to verify that the conditions 1., 2., and 3., from Proposition 9
hold for the matrices B(x) and B’(x) = B (x) + Bj.
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Conversely, let there exist a matrix B’(x) such that 1., 2., and 3. hold. Then
from Proposition 9, B'(x) = B~!(x) and thus B} (x) - B; (x) + B} (x)-By + B, *-
B;(x) = 0. Now

Bi(x) By Bi(x) = Bi(x)(B}(x) - Bi(x) + Bj(x) - Bs) = 0,

i.e., (10) holds.
Now it is clear that if B(x) satisfies (10), then B~ '(x) = B, - B;(x) - B, ' +
B, 0

The next proposition provides an equivalent explicit form of (10).

Proposition 11. The matrix B(x) given in the form (9), satisfies condition (10)
if and only if for every i,j, j —i > 2,

(11) Z bro’l”1b’l”11"2 T brm_zrm—lbf—"rm—ﬂ”m =0.

i=ro<<Tm=j

Furthermore, if (11) holds, then the elements b;;(x) of B~!(x) are linear
!

Boolean polynomials and bj;(x) = x" - b}, + b}, where:

(12) b;] = Z b’"oﬂ”l e 'brtrt+1 te 'brm—lﬂ"m:

i=rg < <rm =3}
te{0,...,m—1}

(13) b;j = Z broribriry = bryy i

i=ro< - <Tm=j

ProoF: We will expand the condition (10). First we need an explicit form for
B;l, i.e. a formula for the elements of the inverse of an upper triangular Boolean
matrix with 1s on the diagonal.

From elementary linear algebra, B, ' = [det(B;;)]wxw, where

Bij = [B4](w-1)x(w—1) is obtained from By by removing its j-th row and i-th
column. Clearly, for i > j det(B;;) = 0, and det(B;;) = 1.
For i < j,
bs.r, for s <j,r<i,
(14) ;Jr — bs+1,r: for s 2 ]:,7“ < ’L:,
bs,r+1: for s < 5T 2 Z,

bsy1pt1, for s>j4,r >

In general, det(Bi;) = Y, cs._, 51{0(1)6;{0(2) ...6371’0(1“71). From (14), the
terms in the sum are 0, except for permutations o € Sy,—1 such that s +1 < o(s),
for every s, 1 < s < w — 1. The permutations that satisfy this condition are
permutations with cyclic decomposition to cycles of the form (s,s —1,...,s —t).
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Again, from (14),

gl — bry1,r41, for i<r<j-—1,
e 0, otherwise.

Hence, det(Bij) = Zi:ro<...<rm:j b7“07’1 bf’17“2 o 'bTm—lﬂ’m'
Now (10) is equivalent to

i t
Z ( Z x by det(By))bsjx =0, for every i< j,
t=i+1 k=i+1

which in turn is equivalent to

J t
> ) bigdet(By)by =0, forevery i< j.
t=i+1 k=i+1

If we expand the last expression using the above formula for det(By;), we obtain

(11).
The rest of the proposition follows directly from Proposition 9 if we apply the
formula for B . O

Having found sufficient conditions for the matrix B(x) to have an inverse that
is a matrix of linear polynomials over Fy, we can state the following.

Proposition 12. Let the matrix B(x) satisfy condition (10). Then an LMQQ
q(x,y) of the form (4) has a left parastrophe of degree 2 if and only if there exists
a w X 1 matrix of homogeneous quadratic Boolean polynomials A} (x) such that
B, (x)AL(x) is aw X 1 matrix of homogeneous quadratic Boolean polynomials.

PRrOOF: Let AL(x) satisfy the given conditions. Let Aj(x) be a w x 1 matrix
of linear Boolean polynomials. Put A(x) = By(Af(x) + AL(x)). From Proposi-
tion 10,

B '(x)A(x) = (By' Bi(x)-By' +B;') By (A}(x)+ Ay(x))

= B;'Bi(x)- A}(x) + A} (x) + Aj(x) + By By (x) - Ap(x),
which is a w x 1 matrix of homogeneous quadratic Boolean polynomials. From
Proposition 8, the left parastrophe of ¢ is of degree 2.

Conversely, let ¢(x,y) have a quadratic left parastrophe. Then from Propo-
sition 8, B~1(x)A(x) is quadratic. Represent A(x) as A(x) = A;(x) + Ax(x)
where A1(x) is w x 1 matrix of linear Boolean polynomials and Ay (x) is w x 1
matrix of homogeneous quadratic Boolean polynomials. Then, it is not hard to
see that the matrix A)(x) = By ' Ay(x) satisfies the conditions. O
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4.1 Algorithms for construction of the matrices B(x) and A(x). Next,
we give a procedure for construction of a matrix B(x) that satisfies the given
requirements.

In fact, we will first describe an algorithm that finds all the possible matrices
B(x) that satisfy the constraints (11), for every i,j, where j — i > 2. The
algorithm is in essence a search algorithm in a tree that uses depth-first search
and backtracking techniques and finds all the possible solutions of the system of
equations (11) for all j — ¢ > 2, with unknowns b, € FY and b, € Fs.

Then we modify this algorithm by randomizing the value (successor) selection
heuristics, to obtain a new but equivalent algorithm. However, the introduction
of the heuristics enables the algorithm to be adapted to find a single matrix B(x)
that satisfies the conditions, and is randomly drawn from the set of all possible
matrices that satisfy the conditions.

First, we create the tree using the next procedure.

TreeSetup:

(1) We define an ordering “<”on the set of indices 7 = {(i,j)| 2 < i+ 1<
j < w} that correspond to the appropriate indices of the matrix B(x) by:

(i) < (&', if j—i<j —i', orif j—i=j —i and i<i'

It is not hard to see that “<” is a total strict ordering.

With every index (7, j) € Z we associate the equation (11).

(2) We define a rooted tree of depth |Z| = (11;72)2& by associating the
indices (i,j) € Z in ascending order to each level of the tree, starting
from the level at depth 0, i.e. starting from the root node. Note that we
do not associate indices to the last level, i.e. to the leafs. We label each
level with the associated index.

The successors of each node are determined by the new unknowns
appearing in (11) associated to the current level. At this point, we are not
interested in the solutions of the associated equations, but rather in the
new unknowns appearing in the equations. All the possible assignments
for the new unknowns define a successor for the node. In more details,
the successors are defined in the following way:

(i) The associated equation to level (1,3) (the root of the tree) is
bl,gb;3 = 0. We assign each possible value of (b 2,bs3) € F3¥ to
a different successor of the root node. Thus, the root node has 22%
successors. We order the successors lexicographically.

(ii) The associated equation to level (2,4) is by 3bs , = 0. The new un-
known appearing in the equation is bz 4. Hence, every possible value
of by s € Fy is assigned to 2% different, lexicographically ordered
successors of each of the nodes in the current level.

(iii) In a similar manner, for each of the nodes in the levels (3, 5), ..., (w—
2,w) we define 2% different, lexicographically ordered successors.
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(iv) For level (1,4), the associated equation is
by 2by 4 + b1 sbg 4 + b1 by sbg, = 0.

The new unknowns appearing in the equation are by 3, by 4 and by 3.
For each of the nodes in the level, we define 22! successors (for
each possible value of (by 3,b24,b23) € IF%“JH) to which we assign
the elements of F5“*! in a lexicographic order.

(v) For each of the levels (i,i + 3),i € {2,...,w — 3}, the associated
equation is

T T T
(15) biit1bii 43 + biitobiis ivg + biivibitiitebis 45 = 0.

The new unknowns are b; 1 ;43 and b;;1 ;2. Hence, for each of the
nodes in the level, we define 2**! successors (for every
(bit1it3,bir1,ir2) € FYT) to which we assign the elements of Fy ™!
in a lexicographic order.

(vi) We continue in the same manner, and for the level (1,1 + k), 3 <
k < w the associated equation is

(16) Z bl,ﬁbf’l?“z T bTmszmf1b7Tm,1,1+k =0.

1=rg<---<rm=1+k

The only new unknowns appearing in the equation are by, bo 41
and bs ;. Every possible value of (b g, bs ri1,bax) € F3¥T! is as-
signed to 22¥+! different lexicographically ordered successors of each
of the nodes in the current level.

(vii) The associated equation for each of the levels (i,i+k), i € {2,...,w—
k},3<k<w-1is

(17) Z bi,ﬁbf’lf’z U bf’mszmf1b:m_17i+k =0.

i=rg<-<rm=i+k

Since the new unknowns appearing are b;;1 ;4% and b1 ;45—1, for
each of the nodes of level (i,i + k), we define 2¥*+! successors (for
each (biy1itr,bivtivk—1) € F¥T) to which we assign the elements
of F¥! in a lexicographic order.

We should point out several properties of the tree we have just constructed.

— There is a one-to-one correspondence between the paths from the root to
the leaves and all the possible assignments to the unknowns appearing in
the system of equations (11) for all j —i > 2.

— An exhaustive search for solutions of the system (11), j — i > 2, corre-
sponds to an exhaustive search through the tree. Thus all the solutions
to the system are present in the tree, in the form of paths.

Trying out all the possible assignments of the unknowns b, ; € Fy’ and b, ; € Fy
appearing in the system of equations (11), j —4 > 2, and checking whether the
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system is satisfied, clearly will lead to finding all the solutions. However, the
procedure can be made more efficient using the constructed tree and introducing
a pruning technique. The pruning can be done based on a test for consistency of
a partial assignment of the unknowns. We define the following depth-first search
algorithm.

Find AllSolutions:

(1) Initiate an empty “history list” to keep track of the visited nodes. We
assume that the list is being maintained throughout the algorithm. In
essence it contains all the predecessors of the current node.

(2) At the root node solve the associated equation bl,gb;3 = 0. Create a
lexicographically ordered list of all the solutions (b 2, ba3) € F3* of the
equation. Prune all the successors that are not in the list of solutions.
Move to the leftmost successor, i.e. the one that corresponds to the first
solution in the list of solutions. Update the history list by adding the
chosen solution of the current equation.

(3) Move depth-first throughout the tree. At each node that is not a leaf

— If the node is being visited for the first time (i.e. there is no list of
solutions associated to it), use the history list to assign the values of
b, : € FY and b,; € F, chosen in the previous steps in the equation
that is associated to the current level. Solve the current equation,
and put the solutions in a lexicographically ordered list. Prune all
the successors that are not in the list of solutions.

e If the list of solutions is not empty, move to the successor that
corresponds to the first solution in the list of solutions, i.e. to
the leftmost successor. Update the history list by adding the
chosen solution to the current equation.

e If the list of solutions is empty, go up to the predecessor.

— If the node has been visited before, the current visit is due to moving
up the tree. Read the last entry from the history list, and locate it
in the solution list.

e If it is not the last in the solution list, move to the succes-
sor node that is next in the solution list. Update the history
list by deleting the last entry, and adding the solution that
corresponds to the chosen successor node.

e If the read entry is last in the solution list, go up to the pre-
decessor. Update the history list by deleting the last entry.

(4) When the algorithm reaches a leaf, save the history list as one solution of
the system (11), j —i > 2 in a list Sol. Go up to the predecessor.

(5) The algorithm ends when the root is reached again and the current so-
lution list has been exhausted. In fact, at this point there are no more
possible moves.

(6) Output the list Sol.
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It is clear that since the algorithm Find AllSolutions traverses all the nodes
that satisfy the equations associated to them, the list Sol contains all the solutions
of the system (11), j —i > 2.

Note that, not all by, and bs, that define the elements of the matrix B(x)
appear in the equations (11). In particular, by ;, b; W, 1 < i < w, as well as by 4
do not appear in (11). This means that there are no special constraints for them
and can take any value.

The algorithm FindAllSolutions can be modified to an equivalent one by
changing the successor selection heuristics. In FindAllSolutions, at each first
visit of a node a solution list is created with solutions to the associated equations.
The solutions are ordered lexicographically, and this list is used for choosing the
successors in this visit and all other subsequent visits of the node.

Let Find AllSolutionsRand be an algorithm that is the same as Find AllSo-
lutions, except the solutions in the solution list at each node are being permuted
using a random permutation once at the time of creation of the solution list. Af-
ter that, this list is used in the same manner as in FindAllSolutions, and is
not being permuted again. The output of the algorithm is a list SolRand that
contains all the solutions of the system (11), j —i > 2.

It is not hard to see that the two algorithms are equivalent and in the same
number of steps find all the solutions of the system (11), 7 —¢ > 2. The only
difference is that SolRand is a permutation of the entries in Sol.

We introduce the algorithm Find AllSolutionsRand because it can be natu-
rally modified for the purpose of finding a single random solution of the system
(11), j —i > 2. Let FindOneSolutionRand be the subalgorithm of FindAll-
SolutionsRand that contains all the steps of FindAllSolutionsRand from the
beginning until the first entry is written down in SolRand. In other words, we
run Find AllSolutionsRand until one solution is found, and then we terminate
the algorithm.

We note that a similar modification to FindAllSolutions is not useful in
this setting, since the first solution that this algorithm finds is always the same.
Instead, if we want to use Find AllSolutions to find a random solution, we would
have to find all solutions first, i.e. run the complete algorithm, and then pick one
based on some probability distribution, for example the uniform distribution.
This is, however, a highly inefficient method of finding a random solution.

We should point out that the random solution the algorithm FindOneSolu-
tionRand finds is not uniformly distributed in the set of all solutions. Indeed,
at each node the solution list is permuted using a random permutation, thus all
solutions have an equal probability to be first after the permutation is applied.
However, if the pruned subtree of the node is not balanced, then some of the
partial solutions in the solution list will yield more global solutions than others.
As a consequence, the random permutation actually creates bias in the process.

This can be overcome if the permutation used at each node is not drawn from
the uniform distribution, but rather from the distribution of the partial solutions
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of the successors with regards to the global solutions. However, without the
knowledge of the nature of the pruned tree, or equivalently the set of global
solutions SolRand, this can not be done. Characterizing completely the solutions
SolRand is an interesting but nontrivial open problem.

Next, we present a procedure for constructing the w x 1 matrix A(x) once the
matrix B(x) is known.

We will use Proposition 12, and first construct a w x 1 matrix of homogeneous
quadratic Boolean polynomials A (x) such that By (x)A%(x) is a w x 1 matrix of
homogeneous quadratic Boolean polynomials.

Let the elements of Aj(x) be denoted by aj(x) = 3, <, aﬁf)wixj, where
1<k <w.

ConstructA(x):

(1) For a given B(x) = B, (x) + Bs, calculate T(x) = B;(x)A}(x).

(2) Represent T(x) as T(x) = Ta(x) + T3(x) where T2 (x) consists of homo-
geneous quadratic polynomials, and T3(x) consists of homogeneous cubic
polynomials.

(3) Solve T3(x) = 0 in the unknowns agf), 1<i,j,k <w. Let SolA be the
set of solutions.

(4) For s € SolA construct Ab(x).

(5) Let A)(x) be a w x 1 matrix of linear Boolean polynomials.
(6) Construct A(x) = Ba(A](x) + Ab(x)).

4.2 Efficient construction of LMQQs whose parastrophe is also qua-
dratic. Although the algorithms FindAllSolutions and FindAllSolutions-
Rand find all matrices B(x) with the desired properties, they are extremely
inefficient. Even the algorithm FindOneSolutionRand requires solving equa-
tions of the form (11) at least (““2)2& times (at least once for every level),
that are in essence systems of equations over Fy, and possibly many backtracking
steps.

Next we present a very simple sufficient condition for a matrix B(x) to satisfy
the conditions (11). This result provides a very simple, straightforward algorith-
mic construction of the matrix B(x), that does not require solving systems of
equations, nor backtracking strategy, nor any kind of tests during the construc-
tion. Thus, it is very suitable for implementation.

Proposition 13. Let for i < j, the elements b;;(x) = x' -b;; + b;; of the w x w
upper triangular matrix B(x) of linear Boolean polynomials satisty the conditions:
(18) bok, 1,2k +1 = 0, b2k, 422k, +1 = 0, b2k, 42.28,42 = 0, and

(19) bok, +2,2k,+1 = 0,

where ki, ks € {0,..., %] — 1}, and b;(x) = 1.
Then, the elements of B~1(x) are linear Boolean polynomials.
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The vectors baog,+1,2k,+2, and the constants bog,41,2k,+1; D2k, +1,2k0+2;
bok, +2,2k,+2 can be chosen at random.

PROOF: We prove the lemma formally, i.e. we show that the condition from
Proposition 11 holds.

First, let ¢ be even, i.e., let i = 2k; + 2, for some k; € {0,..., L%J — 1}. Then
b;; = 0, for any j, and (11) is clearly satisfied.

Similarly, for j odd, b;; = 0 for any 4, and again (11) holds.

What is left is to analyze the case when ¢ = 2ky + 1 and j = 2ks + 2, for some
ki, ko € {0,...,|%] —1}. Using the same argument as for the previous two cases,
(11) turns into:

T
E b7"07”1 b7”11"2 e brm—zrm—lbrm,lrm

i=r0< - <Tm=j

(20) = Z b""O’"l b1"17”2 n 'b’l”m—y"m—lb:m,lrm'

i=rg<r1 < < Pme1 <Tm =17
r0, Tm—1 — odd,r1, Ty, — even

Now, in any of the terms in the sum (20), the product b,y by, _op.._, is such
that ry is even and rp,_1 is odd. No matter the parity of r, ..., 7,m—2, there exists
by 11 <5 <t < rp_1, such that rg is even and r; is odd. But then, b, ., =0,
and the term in question is equal to 0. Since this holds for every term, the sum
(20) is equal to 0.

Again, we conclude that (11) holds.

Hence, from Proposition 11, the elements of B~!(x) are linear Boolean poly-
nomials. O

We now turn to finding a similar procedure for the construction of the vector
A(x), such that B~!(x)A(x) is a vector of Boolean polynomials of degree 2.
We first need to find the form of B~1(x).

Lemma 1. Let the elements of the w X w upper triangular matrix B(x) of
linear Boolean polynomials satisfy the conditions (18) and (19). Then the matrix
B~!(x) has the same form as B(x), i.e. fori < j, the elements bj;(x) = x " -b};+b};
of B71(x) satisfy:

! _ ! _ ! —

(21) b2k1+172k2+1 - 07b2k1+2,2k2+1 - 07b2k1+2,2k2+2 - 07
!

(22) b2k1+2,2k2+1 =0
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ProOOF: From Proposition 11,

(23) b;'j = Z bror Brors  br
i=rg < <rTm =3
te{0,...,m—1}

(24) b;'j = Z broribriry = bry i

i=ro< -+ <Tm=j

First we prove (21).

Let ¢ and j be both odd. We analyze one term by p +bppyy o bp i,
from (23).

If every 5, 0 < s < m is odd, then r; and r;41 are odd as well, and from
(18), by,r,,, = 0. Hence, by, == by - by, = 0. If there is at least
one 7 that is even, 0 < I < m, then either [ = ¢, when from (18), b,,,,,, = 0,
or I # t and 741 is odd, when from (19), b, ,, = 0. In both cases, again,
brori Brryy ey r,, = 0. Hence by; = 0.

Let ¢ and 7 be both even. Again we look at one term from (12). If every rs,
0 < s < m is even, then r; and r;y; are even, and thus from (18), b,,,,,, = 0.
If at least one r; is odd, 0 < I < m, then either I = ¢ 4+ 1, when from (18),
b,y =0,0rl #t+1and r;_; is even, when from (19), b,,_,,, = 0. Again, all
the cases infer b,y ;.\ ** br,pyy - by, = 0. Hence b}, = 0.

Let ¢ be even and j be odd. Then there exists rs, 0 < s < m such that ry is
even, and 7,y is odd. If s = ¢, from (18), b,,,,,, = 0, and if s # ¢, then from
(19), br,r,;, = 0. Similarly as above, we conclude that b}; = 0.

From the above it follows that (21) holds.

The last reasoning can also be directly applied to conclude that b;ﬂ. = 0 when
i is even and j is odd, i.e. that (22) holds. O

Let the elements of the vector A(x) of Boolean polynomials be denoted by
a;(x), 1 <i < w. For the vector A(x) we have the following lemma.

Lemma 2. Let for all odd i, a;(x) be a quadratic Boolean polynomial, and for all
even i let a;(x) be a linear Boolean expression. Let B(x) be an upper triangular
matrix of linear Boolean polynomials with 1s on the diagonal, such that (18) and
(19) are satisfied.

Then B™!(x)A(x) is a vector of quadratic Boolean polynomials.

PRrROOF: From Lemma 1, the only elements in the matrix B~!(x) that can be
linear Boolean polynomials are by, 4 oy, 45(X), for some ki, ks. The others are
all constants. The elements of the vector B~ (x)A(x) are of the form 377 | b} ;(x)
a;(x) so for odd i, b}, ;(x)a;(x) is quadratic since b}, ;(x) is a constant and a;(x)
is quadratic, and also for even i, since by, ;(x) is at most linear and a;(x) is linear,
by..;(x)ai(x) is again quadratic. ’

Thus, the elements of the vector B~!(x)A(x) are quadratic Boolean polyno-
mials. O
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Finally, we are ready to state the main theorem in this part, that gives sufficient
conditions for a left quasigroup from 7L£Q.w of algebraic degree 2, to have a
parastrophe that is again of degree 2.

Theorem 4. Let q(x,y) be a left quasigroups from T LQsw of algebraic degree 2,
i.e. let q be of the form

q(x,y) = A(x) + B(x) -y

where A(x) is a vector of Boolean polynomials a;(x) such that:

— for all odd i, a;(x) is a quadratic Boolean polynomial, and
— for all even i, a;(x) is a linear Boolean polynomial,

and B(x) is an upper triangular matrix of linear Boolean polynomials b;;(x) with
1s on the diagonal, such that:

— for all odd i, and all odd j, b;j(x) = bj;;, where b;; € Fs,

— for all even i, and all even j, b;j(x) = b;;, where b;; € Fs,

— for all odd i, and all even j, b;j(x) is a linear Boolean polynomial, and
— for all even i, and all odd j, b;j(x) = 0.

Then q has a left parastrophe q\ that is again of degree 2.

PROOF: The claim follows directly from Proposition 13, Lemma 2 and Proposi-
tion 8. O

If an LMQQ has a left parastrophe that is again of degree 2, then this property
will be preserved under linear isotopy, i.e. the following holds.

Proposition 14. Let q be a left quasigroups from T LQsw of algebraic degree 2,
that has a left parastrophe again of degree 2. Then every linearly isotopic quasi-
group ¢' has also a left parastrophe of degree 2.

PROOF: Let ¢’ be linearly isotopic to g, i.e., let
¢'(x,y) = D3 - q(D1x + ¢1, D2y + c2) + c3.

Then from the identity ¢'(x, q’\(X, y)) =y we have:

D3 ¢(Dix +c1,Dag{(x,y) + ¢c2) +cz =y
& A(Dix+ec1)+B(Dix+c)- (ng'\(x,y) +c3)=Ds 'y + D3 lcs
& q'\(x,y) =Dy 'B!(Dix+c1)  A(Dix +¢q)
+D> 'B7!(Dix +¢1) - D37y
+D; 'B ! (Dix 4 ¢1) D3 'es + Doy les.
Since the form of A(D1x + ¢1) is the same as the one of A(x), and the form

of B™!(D1x + ¢1) is the same as the one of B™!(x), we can conclude that the
algebraic degree of q’\ is 2. O
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We conclude this part with an example of the described construction of an
LMQQ that has a quadratic left parastrophe.

Example 2. We will construct an LMQQ of order 24 obtained by applying iso-
topic transformation to an LMQQ from 7 £Qss that satisfies Theorem 4.
We first construct q.
Let A(x) be a vector of quadratic Boolean polynomials in x = (z1, z2, ©3, Z4),
given by:
14+x1 +x2+ 2173 + 2223 + Ta + 7124 + T3T4
1421+ 22
12 + 23+ T4+ T124 + X374
1423+ 24

A(x) =

Let B(x) be an upper triangular matrix of linear Boolean polynomials in
X = (x1, 22,23, 24), with 1s on the diagonal given by:

1 zi+z2+23 1 z2o+23+ 724
0 1 0 1
B(x)=| 0 1 142
0 0 0 1
1 zi+2xzo4+23 1 1+z1+220+24
0 1 0 1
1 _
B x) =, 0 1 1+ 29
0 0 0 1

Then ¢(x,y) = A(x) + B(x) -y is

14+ z1+ 22+ 2123 + 2223 + T4 + T174 + T3T4 + Y1 + T1Y2+
+x2y2 + x3y2 + Y3 + Taya + T3ys + Taya

o(x,y)= 1+zi+22+y2+ya
T1T2 + T3+ Ta +x1T4 + T3Ta + Y3 + Ya + T2y4
14+ 23424+ ya

The parastrophe ¢\ (x,y) = B '(x)A(x) + B !(x) -y is

T1X2 + 23 + 2123 + 2223 + T4 + X124 + X224 + 2324 + Y1 + T1Y2+
+xo2y2 + x3y2 + Y3 + Y4 + v1ya + T2ya + Taya

q\(X.y): T1+To+2x3+ x4+ Y2+ Ya
1+ 22+ 2122 + 2223 + 2124 + T224 + 324 + Y3 + Y4 + T2y4
14+ 23+ 24+ ys4

We next apply linear isotopy to ¢ defined by the nonsingular matrices:

0 0 0 1 0 1 0 1 0 1 0 0
1 0 1 0 1 0 0 1 0 1 0 1

Di=ty 1 1 o'P2=|0¢ 1 0 o|'P=|0g 0o 1 1]
0 0 1 1 0 0 1 0 1 0 1 0
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and the vectors: ¢ = (0,1,0,0), c2 = (0,0,1,0), c3 = (1,1,0,1).

We obtain the quasigroup
q'(x,y) = D3(A(D1x +c1) + B(D1x +¢1) - (D2y + ¢2)) + ca:

T1X2 + 2123 + T2Xq4 + 23Y1 + Y2 + Tay2 + T3Y3 + Y4 + T3Y4

T2 + T3 +x2w3 +T1T4 + T2Yy1 + T3Y1+
+ys + x2y3 + x3ys + T2ya + T3Ya

q(x,y) = 14+ x14+ 2122+ 123 + x4 + Toxa+
+y1 + x3y1 + xay2 + ys + x3ys + T3y4

Ty + T3+ 2203 + 1204 + 22Y1 + T3y1+
+y2 + y3 + x2ys + r3y3 + roYs + T3ys

The parastrophe q’\(x, y) is:

T2 + T3+ Ta + 2124 + T2x4 + T3T4+ i
+y1 + T2y3 + T3y3 + yYa + Tays + T3ya

1+ T2+ T1x2 + X123 + T2X3 + T1X4 + T3T4+
+y1 +y2 +ys + x3ys + Tays + ya + T3y4

14+ 212+ 23+ 2123 + T223 + T224a+
+y2 + Y3 + T2ys + Tay3 + ya + T2Y4

T3+ T1%4 + T2T4 + T34 + Y1 + Y3+
+x2y3 + T3Yys + Tays + T3y4

5. Conclusions

In this paper, we investigated Left Multivariate Quasigroups, with a particular
focus on Left Multivariate Quadratic Quasigroups (LMQQs). We provided an
efficient construction of general LMQQs of any order and degree, as well as of
more particular ones that are affine in the variable y, and whose parastrophe is
easy to express. The main goal was to distinguish a class of such LMQQs that
have, even more, a left parastrophe that is again an LMQQ, and thus has a short
symbolic form. First, we determined sufficient conditions for the parastrophe to
be quadratic, and then presented a general backtracking algorithm that finds all
LMQQs that satisfy these conditions. Since the backtracking nature of the al-
gorithm makes it rather inefficient, we provide additional very simple sufficient
conditions. These sufficient conditions provide an easy, efficient and straightfor-
ward construction of LMQQs whose left parastrophe is quadratic.

As the simplification of the sufficient conditions was driven by the main premise
to find an efficient algorithmic construction of LMQQs whose left parastrophe is
quadratic, and thus led to a narrow class of such LMQQs, the authors can set
apart two open problems: Can a different strategy lead to efficient construction
algorithm of a broader class of LMQQs whose left parastrophe is quadratic and
that are left affine, and, can the same be accomplished for LMQQs that are
quadratic in y. In either case, a special attention must be paid to their suitability
for use in multivariate cryptosystems.
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