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Left MQQs whose left parastrophe is also quadrati
Simona Samardjiska, Danilo GligoroskiAbstra
t. A left quasigroup (Q; q) of order 2w that 
an be represented as a ve
torof Boolean fun
tions of degree 2 is 
alled a left multivariate quadrati
 quasigroup(LMQQ). For a given LMQQ there exists a left parastrophe operation qn de�nedby: qn(u; v) = w , q(u;w) = v that also de�nes a left multivariate quasigroup.However, in general, (Q; qn) is not quadrati
. Even more, representing it in asymboli
 form may require exponential time and spa
e. In this work we investi-gate the problem of �nding a sub
lass of LMQQs whose left parastrophe is alsoquadrati
 (i.e. is also an LMQQ), and in the same time 
an be easily 
onstru
ted.These LMQQs are aÆne in the se
ond argument, and their left parastrophe 
anbe easily expressed from the quasigroup operation. We give ne
essary and suf-�
ient 
onditions for an LMQQ of this type to have a left parastrophe that isalso an LMQQ. Based on this, we distinguish a spe
ial 
lass that satis�es ourrequirements and whose 
onstru
tion is deterministi
 and straightforward.Keywords: left multivariate quadrati
 quasigroup, left parastrophe, algebrai
 de-gree, matrix of Boolean polynomialsClassi�
ation: 20N05, 11T55, 11T711. Introdu
tionThe potential and usefulness of quasigroups (or equivalently Latin squares)in the design of di�erent types of 
ryptographi
 primitives and 
odes has beenaddressed in numerous works, beginning with the seminal work of Shannon [21℄more than half a 
entury ago. Sin
e then, quasigroups were in
orporated in thedesign of many di�erent 
ryptographi
 s
hemes as well as 
odes. We 
an mentionsome of them:{ Se
ret sharing s
hemes: Cooper et al. [7℄ designed a se
ret sharing s
hemearising from Latin squares,{ Blo
k Ciphers: A version of the blo
k 
ipher DES that uses Latin squareswas proposed by Carter et al. [4℄,{ Hash fun
tions: The need of using quasigroups in the design of 
rypto-graphi
 hash fun
tions was dis
ussed by S
hnorr and Vaudenay in [20℄,and later, in the SHA-3 hash 
ompetition, at least three fun
tions hadquasigroups or left quasigroups in their design (Edon-R [11℄, NaSHA [14℄and Blue Midnight Wish [12℄),{ Stream Ciphers: The fast software stream 
ipher CryptMT by Matsumotoet al. [15℄ a
tually uses quasigroups that belong to the 
lass of polynomialquasigroups analyzed by Rivest in [17℄,



398 S. Samardjiska, D. Gligoroski{ Hardware stream 
ipher: A hardware stream 
ipher Edon80 using fourdi�erent quasigroups of order 4 was proposed in [8℄,{ Coding theory: Latin squares were used for designing LDPC 
odes in [23℄,[16℄.Re
ently, in [9℄, a new 
lass of quasigroups 
alledMultivariate Quadrati
 Quasi-groups (MQQs) was introdu
ed. The distin
tive property of these quasigroups isthat when represented as Boolean fun
tions in their algebrai
 normal form, theyare multivariate quadrati
. MQQs have found an appli
ation [9℄, [10℄ in the �eldof Multivariate 
ryptography, or MQ (multivariate quadrati
) 
ryptography. MQs
hemes have performan
e advantages over the 
lassi
al publi
 key s
hemes basedon integer fa
torization (RSA) and on the dis
rete logarithm problem in the addi-tive group of points de�ned by ellipti
 
urves over �nite �elds (ECC). Additionally,they are 
onsidered as one of the post-quantum alternatives to the most popu-lar RSA and ECC s
hemes, sin
e there are no known quantum algorithms thatwould break MQ s
hemes. However, they have one disadvantage | the size of thepubli
/private key pair is mu
h bigger than in the 
urrently used 
ryptosystems.The authors of [9℄ 
onstru
ted only MQQs of lower orders (up to 25). In [2℄,a randomized algorithm was proposed to generate MQQs of higher orders, but justup to 214. In [5℄, a method for 
onstru
tion of bilinear MQQs was proposed. A de-tailed survey on the properties and 
onstru
tion of multivariate quadrati
 loopsand quasigroups was given in [6℄. In [19℄, an approa
h was taken to 
onstru
tquasigroups based on T-fun
tions de�ned by Klimov and Shamir [13℄. Thesequasigroups were 
alled T-multivariate quasigroups, and 
an be (but are not ex-
lusively limited to be) quadrati
. An extension of the algorithms from [5℄ and[19℄ to arbitrary Galois �elds Fpk was re
ently given in [18℄.In this paper we 
ontinue the analysis of MQQs, by investigating the wider 
lassof Left MQQs (LMQQs), and distinguishing sub
lasses that are of spe
ial interestfor 
ryptographi
 use in multivariate publi
 key s
hemes. More 
on
retely, sin
ein general a parastrophe of an LMQQ is not quadrati
 and representing it in asymboli
 form may require exponential time and spa
e, it is a 
hallenging problemto �nd a sub
lass of LMQQs whose parastrophes are also quadrati
, and in thesame time 
an be easily 
onstru
ted.1.1 Contribution and organization of the paper. We �rst introdu
e andgive a general 
onstru
tion of left multivariate quasigroups (LMQs) of any order2w and any degree, and afterwards fo
us on the properties of a sub
lass of the
lass of all LMQs of order 2w that 
onsists of left quasigroups aÆne in the se
ondargument, whose left parastrophe 
an be easily expressed.We then distinguish a spe
ial family of LMQQs and give the ne
essary andsuÆ
ient 
onditions for these LMQQs to have a left parastrophe that has degree 2,i.e., is also an LMQQ. As this 
hara
terization does not provide an algorithmi

onstru
tion of this type of LMQQs, we further re�ne the requirements at severalstages, to �nally rea
h very simple suÆ
ient 
onditions for an LMQQ to have aquadrati
 left parastrophe and provide an espe
ially easy 
onstru
tion pro
edure.



Left MQQs whose left parastrophe is also quadrati
 399The paper is organized as follows: The preliminaries are given in Se
tion 2; inSe
tion 3 we investigate LMQs of several di�erent types, give e�e
tive 
onstru
-tions, and determine the relations between them; Se
tion 4 is devoted to �ndingand analyzing di�erent suÆ
ient 
onditions for an LMQQ to have a quadrati
 leftparastrophe in order to �nd suitable ones that give a simple and easy algorithmi
pro
edure for their 
onstru
tion. The 
on
lusions are given in Se
tion 5.2. Preliminaries2.1 Quasigroups. The following de�nitions and basi
 properties 
an be foundin 
lassi
 textbooks on quasigroup theory, su
h as Belousov's [3℄, or Smith's [22℄.Let (Q; q) be a groupoid and let a be a �xed element of Q. The mappingsLq;a; Rq;a : Q! Q, 
alled left and right translations (translation mappings), arede�ned by: Lq;a(x) = q(a; x); Rq;a(x) = q(x; a);for every x 2 Q.De�nition 1. The groupoid (Q; q) is 
alled a left (right) quasigroup if the map-ping Lq;a (Rq;a) is a permutation of Q for every a 2 Q.If (Q; q) is both left and right quasigroup, then it is simply 
alled a quasigroup.If a quasigroup (Q; q) has a unit element e, then (Q; q) is 
alled a loop.A �nite (left/right) quasigroup of n elements is said to be a (left/right) quasi-group of order n.De�nition 2. Given a (left) quasigroup (Q; q) a new (left) quasigroup operationqn 
an be de�ned on the set Q byqn(u; v) = w , q(u;w) = v;
alled a left parastrophe operation. The two operations satisfy the identities(1) q(u; qn(u; v)) = v; qn(u; q(u; v)) = v;for all u; v 2 Q.Let Qn be a set of all left quasigroup operations over the set Q of n elements,and let SQ be the symmetri
 group upon Q. Sin
e a left quasigroup from Qn
an be 
onsidered as a 
olle
tion of n permutations from SQ, the de�nition of
omposition of permutations from SQ 
an be naturally extended to Qn.Let q1; q2 2 Qn. A 
omposition of q1 and q2 is de�ned by:(q1 Æ q2)(u; v) = q1(u; q2(u; v)); for all u; v 2 Q:Moreover, it is not hard to see that the following holds.Proposition 1. (Qn; Æ) is a group isomorphi
 to (SQ)n. �



400 S. Samardjiska, D. GligoroskiDe�nition 3. Two (left) quasigroups (Q; q1) and (Q; q2) are said to be isotopi
,if there exist permutations �; �; 
 2 SQ su
h that
(q1(u; v)) = q2(�(u); �(v)); for all u; v 2 Q:We denote the isotopy by (�; �; 
). If � = � = 
 we say that the (left) quasigroupsare isomorphi
.Using the de�nition, we 
an eÆ
iently 
onstru
t new (left) quasigroups isotopi
to a known one.Proposition 2 ([1℄). Given a binary (left) quasigroup (Q; q), and permutations�; �; 
 2 SQ, the operation q0 de�ned byq0(u; v) = 
�1(q(�(u); �(v))); for all u; v 2 Q;de�nes a (left) quasigroup (Q; q0) isotopi
 to (Q; q). (�; �; 
) is an isotopy from(Q; q) to (Q; q0).In the rest of the paper we will be mainly interested in properties of �nite leftquasigroups.2.2 Left Multivariate Quasigroups. We will use the following notations.Let F2 denote the Galois �eld of order 2, and F2 [x1; x2; : : : ; x� ℄ the ring ofpolynomials in the variables x1; x2; : : : ; x� over the �eld F2 .We will 
all the elements of the quotient ring F2 [x1; x2; : : : ; x� ℄=(x21 � x1; x22 �x2; : : : ; x2� � x�) Boolean polynomials.We will 
onsider the elements (u1; u2; : : : ; uw) 2 Fw2 as 
olumn ve
tors and usethe notation u = (u1; u2; : : : ; uw). Furthermore, for (u1;u2; : : : ;um) 2 (Fw2 )m wedenote by us;j the s-th bit of the j-th 
omponent uj .Let f : (Fw2 )m ! Fw2 be a mapping, and let f(u1;u2; : : : ;um)s denote thes-th bit of f(u1;u2; : : : ;um). The fun
tion f 
an be represented as a w-tupleof Boolean fun
tions as f = (f (1); f (2); : : : ; f (w)), where f (s) : (Fw2 )m ! F2for every s = 1; : : : ; w, and f (s)(u1;u2; : : : ;um) = f(u1;u2; : : : ;um)s for every(u1;u2; : : : ;um) 2 (Fw2 )m.It is a well known fa
t that every Boolean fun
tion g : (Fw2 )m ! F2 
an be rep-resented uniquely by its Algebrai
 Normal Form (ANF) as a Boolean polynomialin mw variables ĝ 2 F2 [x1;1; x2;1; : : : ; xw;1; x1;2; : : : ; x1;m; : : : ; xw;m℄. Hen
e, f (s)
an be represented by a polynomial of the formf̂ (s)(x1;1; : : : ; xw;m) = Xi=(i1;1 ;:::;iw;m)2Fmw2 ai Y1 � j � w1 � k � m xij;kj;k ;where ai 2 Z2, x0j;k = 1 and x1j;k = xj;k. The algebrai
 degree of a Booleanfun
tion g is the number of variables in the longest term of ĝ.Here, we will be interested in the 
ase when m � 2. For simpli
ity, we will usethe variables x1; x2; : : : ; xw for the 
ase ofm = 1, and x1; x2; : : : ; xw; y1; y2; : : : ; yw
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 401for the 
ase of m = 2. We will denote by x and y the w� 1 matri
es [xi℄w�1 and[yi℄w�1 over F2 [x1; : : : ; xw; y1; : : : ; yw℄, respe
tively.For better readability, we will also use the notations M(x) and M(x;y) formatri
es over F2 [x1; : : : ; xw; y1; : : : ; yw℄ whose elements are polynomials in thevariables x1; : : : ; xw and x1; : : : ; xw; y1; : : : ; yw, respe
tively.Re
all that an n� n matrix M over a 
ommutative ring is 
alled nonsingularor invertible if there exists an n � n matrix T su
h that MT = TM = In.Furthermore M is nonsingular if and only if its determinant is invertible. Inthe 
ase of a square matrix M(x;y) over the ring F2 [x1; : : : ; xw; y1; : : : ; yw℄, thismeans that M(x;y) is nonsingular if and only if det(M(x;y)) = 1, if and only ifdet(M(a;b)) = 1 over F2 for every a;b 2 Fw2 .In the rest of this text, we will not distinguish between a Boolean fun
tion gand its polynomial ANF form ĝ, i.e., we will 
onsider them equivalent, and usesimply the notation g.Let (Q; q) be a left quasigroup of order 2w. We �x a bije
tion � : Q! Fw2 andidentify u 2 Q by the Boolean ve
tor �(u) = u. Now, the binary operation q onQ 
an be viewed as a mapping q� : F2w2 ! Fw2 de�ned by:q�(u;v) = z() q(u; v) = z:Hen
e, without loss of generality, all left quasigroups of order 2w 
an be viewedas mappings q = (q(1); q(2); : : : ; q(w)) : F2w2 ! Fw2 represented in their ANF formover F2 [x1; x2; : : : ; xw; y1; y2; : : : ; yw℄.We will 
all these quasigroups Left Multivariate Quasigroups (LMQ). If thealgebrai
 degree of an LMQ is 2, we will 
all it Left Multivariate Quadrati
 Quasi-group (LMQQ). Note that this is in a

ordan
e with the naming 
onvention from[9℄ where the notion of Multivariate Quadrati
 Quasigroups (MQQ) was intro-du
ed.3. Constru
tion of left multivariate quasigroupsIn [19℄, the authors give ne
essary and suÆ
ient 
onditions for a T-fun
tion(de�ned in [13℄) to de�ne a permutation or a quasigroup. This 
hara
terizationprovides a deterministi
 
onstru
tion of multivariate quasigroups.For left multivariate quasigroups it is possible to give a simpler form than theone in [19℄. We will need the following straightforward result.Theorem 1 ([19℄). A mapping p = (p(1); p(2); : : : ; p(w)) : Fw2 ! Fw2 su
h that forevery s = 1; : : : ; w, the 
omponent p(s) is a Boolean polynomial of the formp(s)(x1; : : : ; xw) = xs + Xj=(js+1;:::;jw)2Fw�s2 �(s)j xjs+1s+1 xjs+2s+2 : : : xjww ;de�nes a permutation on the set Fw2 . �It is an easy 
onsequen
e that the following holds.



402 S. Samardjiska, D. GligoroskiTheorem 2. A mapping q = (q(1); q(2); : : : ; q(w)) : F2w2 ! Fw2 su
h that for everys = 1; : : : ; w, the 
omponent q(s) is a Boolean polynomial of the form(2) q(s)(x1; : : : ; xw; y1; : : : ; yw)= ys + Xk=(k1;::;kw)2Fw2j=(js+1;:::;jw)2Fw�s2 �(s)k;jxk11 xk22 : : : xkww yjs+1s+1 yjs+2s+2 : : : yjww ;de�nes an LMQ of order 2w.Proof: Clearly, for any (a1; : : : ; aw) 2 Fw2 , q(s)(a1; : : : ; aw; y1; : : : ; yw) is a per-mutation by Theorem 1, hen
e (2) de�nes an LMQ. �The form given in Theorem 2 
an be rewritten in an equivalent matrix form.Theorem 3. Let A(x) = [ai(x)℄w�1 and B(x;y) = [bij(x;y)℄w�w be matri
esof Boolean polynomials in the variables x1; : : : ; xw; y1; : : : ; yw, su
h that ai(x)depends only on the variables x1; : : : ; xw, for all i, 1 � i � w, and B(x;y) is anupper triangular matrix with 1s on the diagonal, and bij(x;y) depends only onthe variables x1; : : : ; xw; yj+1; : : : ; yw, for all i; j, 1 � i < j � w.Then the mapping(3) q(x;y) = A(x) +B(x;y) � yde�nes a left multivariate quasigroup of order 2w.Proof: We show that the forms (2) and (3) are equivalent.Let an LMQ q be given by the form (2). Then the 
omponent q(s) is of theform q(s)(x1; : : : ; xw; y1; : : : ; yw) = 0� Xk = (k1; ::; kw)2 Fw2�(s)k;0xk11 xk22 : : : xkww 1A+ ys ++ 0BBB� Xk = (k1; ::; kw)2 Fw2j = (1; js+2; : : : ; jw)2 Fw�s2�(s)k;jxk11 xk22 : : : xkww yjs+2s+2 : : : yjww 1CCCA� ys+1 + � � �++ 0BBB� Xk = (k1; ::; kw)2 Fw2j = (0; : : : ; 0; 1; jw)2 Fw�s2�(s)k;jxk11 : : : xkww yjww 1CCCA� yw�1 ++ 0BBB� Xk = (k1; ::; kw)2 Fw2j = (0; : : : ; 0; 1)2 Fw�s2�(s)k;jxk11 : : : xkww 1CCCA� yw:



Left MQQs whose left parastrophe is also quadrati
 403As this is true for every 
omponent q(s) of q, q 
an be rewritten in the matrixform (3). �Form (3) allows 
reation of left quasigroups of any order and degree. If we takethe Boolean polynomials in A(x) to be of degree d, and the Boolean polynomialsinB(x;y) to be of degree d�1, then the left quasigroup q will have degree d. Usingisotopy we 
an 
reate new left quasigroups, and if the isotopy is (�; �; 
), su
h that�(x) = D1x + 
1; �(x) = D2x + 
2; 
�1(x) = D3x + 
3, where D1;D2;D3 arenonsingular w � w matri
es over F2 and 
1; 
2; 
3 2 Fw2 , the degree is preserved,i.e. the newly obtained left quasigroups are again of degree d. Throughout therest of the text we will 
all su
h isotopies linear.Finding the parastrophe qn of q for a given LMQ 
an in general be a task ofgreat spa
e and time 
omplexity. That is also true for the spe
ial 
lass of leftquasigroups de�ned in Theorem 3. However, if (3) is of the form(4) q(x;y) = A(x) +B(x) � y;i.e., B(x) depends only on the variables x1; : : : ; xw, then the left parastrophe qn,
an be easily found, using one of the identities (1), to be:(5) qn(x;y) = B�1(x)A(x) +B�1(x) � y:Even more, we have the following.Proposition 3. Let T LQ2w be the set of all left quasigroups of order 2w of theform (4). Then (T LQ2w ; Æ) is a subgroup of (Q2w ; Æ).Proof: Let q1; q2 2 T LQ2w . Then q1(x;y) = A1(x) +B1(x) � y and q2(x;y) =A2(x) +B2(x) � y, for some matri
es A1(x);A2(x) of Boolean polynomials, andsome upper triangular matri
es B1(x);B2(x) of Boolean polynomials, with 1s onthe diagonal. Then,q1 Æ q2(x;y) = q1(x; q2(x;y)) = A1(x) +B1(x) � (A2(x) +B2(x) � y)= (A1(x) +B1(x) �A2(x)) +B1(x) �B2(x) � y:Sin
e B1(x) and B2(x) are upper triangular, their produ
t B1(x) �B2(x) is againupper triangular, and has 1s on the diagonal. So q1 Æ q2 2 T LQ2w . The identityelement of (Q2w ; Æ) is e(x;y) = y, and it is 
learly in T LQ2w as well.The inverse of a quasigroup q is its left parastrophe qn, and from (5) it is 
learthat qn 2 T LQ2w . Hen
e, the 
laim follows. �Example 1. We give an example of a 
onstru
tion of an LMQQ of order 24obtained by applying isotopi
 transformation to an LMQQ from T LQ24 .We �rst 
onstru
t q in the form (4).Let A(x) be a 4� 1 matrix of quadrati
 Boolean polynomials in the variablesx1; x2; x3; x4, given by:



404 S. Samardjiska, D. GligoroskiA(x) =264 x1 + x3 + x1x3 + x2x3 + x1x4 + x2x4 + x3x41 + x1 + x2 + x3 + x1x3 + x2x3 + x1x4x2 + x1x2 + x3 + x1x3 + x1x4 + x3x4x1x2 + x1x3 + x2x3 + x4 + x1x4 + x2x4 + x3x4 375:Let B(x) be a 4� 4 upper triangular matrix of linear Boolean polynomials inthe variables x1; x2; x3; x4, with 1s on the diagonal given by:B(x) =264 1 x2 + x3 1 + x2 1 + x40 1 1 + x4 1 + x1 + x2 + x30 0 1 x2 + x30 0 0 1 375:Then q(x;y) = A(x) +B(x) � y isq(x;y) =2666664 x1 + x3 + x1x3 + x2x3 + x1x4 + x2x4 + x3x4 + y1++x2y2 + x3y2 + y3 + x2y3 + y4 + x4y41 + x1 + x2 + x3 + x1x3 + x2x3 + x1x4 + y2 + y3++x4y3 + y4 + x1y4 + x2y4 + x3y4x2 + x1x2 + x3 + x1x3 + x1x4 + x3x4 + y3 + x2y4 + x3y4x1x2 + x1x3 + x2x3 + x4 + x1x4 + x2x4 + x3x4 + y4
3777775:The matrix B�1(x) is given byB�1(x) =266664 1 x2 + x3 1 + x3 + x2x4 + x3x4 1 + x2 + x1x2 + x1x3++x2x3 + x4 + x2x4 + x3x40 1 1 + x4 1 + x1 + x2x4 + x3x40 0 1 x2 + x30 0 0 1 377775;and the parastrophe qn(x;y) = B�1(x)A(x) +B�1(x) � y by:qn(x;y) =26666664 x1 + x2 + x1x2 + x3 + x1x3 + x2x3 + x1x2x3 + x3x4 + x1x2x3x4++y1 + x2y2 + x3y2 + y3 + x3y3 + x2x4y3 + x3x4y3 + y4 + x2y4++x1x2y4 + x1x3y4 + x2x3y4 + x4y4 + x2x4y4 + x3x4y41 + x1 + x1x2 + x1x2x3 + x4 + y2 + y3 + x4y3++y4 + x1y4 + x2x4y4 + x3x4y4x2 + x3 + x1x4 + x1x2x4 + x3x4 + x1x3x4 + y3 + x2y4 + x3y4x1x2 + x1x3 + x2x3 + x4 + x1x4 + x2x4 + x3x4 + y4

37777775:Next we apply to q a linear isotopy de�ned by the nonsingular matri
es:D1 =2664 1 0 1 01 1 1 11 1 0 00 0 1 0 3775; D2 =2664 0 1 1 01 1 0 00 0 0 10 1 0 1 3775; D3 =2664 0 0 1 10 1 0 11 0 1 01 0 0 0 3775;and by the ve
tors: 
1 = (1; 1; 0; 1), 
2 = (0; 1; 1; 0), 
3 = (0; 0; 1; 1).



Left MQQs whose left parastrophe is also quadrati
 405We obtain the left quasigroupq0(x;y) = D3(A(D1x+ 
1) +B(D1x+ 
1) � (D2y + 
2)) + 
3 given byq0(x;y) =26666664 1 + x1 + x1x2 + x3 + x1x3 + x2x4 + x2y1 + x3y1 + x4y1 + y2++x3y2 + y3 + y4 + x2y4 + x3y41 + x1 + x1x2 + y2 + x2y2 + x3y2 + x4y2 + x2y4 + x3y4 + x4y4x2 + x1x2 + x1x4 + y1 + x2y1 + x3y1 + x4y1 + y2 + x1y2++x2y2 + y3 + x3y4 + x4y41 + x1x2 + x3 + x1x3 + x2x3 + x4 + x2x4 + y1 + y2 + x1y2++x2y2 + x3y2 + x2y4 + x4y4
37777775:Sin
e the left quasigroups in the 
lass T LQ2w are quite easy to 
onstru
t, theywill be our main fo
us in the next se
tion. In the rest of this se
tion we will pointout the relationship with the bigger 
lass of left quasigroups aÆne in the se
ondargument y.De�nition 4. A left multivariate quasigroup (Fw2 ; q) is said to be left aÆne, iffor every a 2 Fw2 , Lq;a(y) is an aÆne mapping.We denote the set of all LMQs of order 2w that are left aÆne by LLQ2w .Proposition 4. A mapping q : F2w2 ! Fw2 is in LLQ2w if and only if it has theform(6) q(x;y) = A(x) +B0(x) � y;whereA(x) = [ai(x)℄w�1 is a w�1 matrix of Boolean polynomials in the variablesx1; : : : ; xw, and B0(x) = [bij(x)℄w�w is a w � w nonsingular matrix of Booleanpolynomials in the variables x1; : : : ; xw.Proof: If q has the form (6) then 
learly it is a left quasigroup, and it is inLLQ2w . Conversely, let q 2 LLQ2w . Then, using a ve
tor notation, it 
an berepresented in the general form: q(x;y) = A(x) +A1(x;y) +A2(y) where thes-th 
omponent isq(s)(x;y) = A(s)(x) +A(s)1 (x;y) +A(s)2 (y) = Xk=(k1;::;kw)2Fw2 �(s)k xk11 xk22 : : : xkww ++ Xk=(k1;::;kw)2Fw2j=(j1;:::;jw)2Fw2k;j 6=0 �(s)k;jxk11 : : : xkww yj11 : : : yjww + Xk=(k1;::;kw)2Fw2k 6=0 
(s)k yk11 yk22 : : : ykww(7)

Now, for every a 2 Fw2 ,Lq;a(y) = A(a) +A1(a;y) +A2(y)is an aÆne mapping, so A1(a;y) +A2(y) = B0(a) � y



406 S. Samardjiska, D. Gligoroskihas to be a linear mapping, i.e. B0(a) is a nonsingular w � w matrix for everya 2 Fw2 . Hen
e, q has the form (6). �Similarly as for Proposition 3 it is straightforward that the following is true.Proposition 5. (LLQ2w ; Æ) is a subgroup of (Q2w ; Æ), and also (T LQ2w ; Æ) is asubgroup of (LLQ2w ; Æ). �Proposition 6. Let q 2 LLQ2w be given in the form (6). If B0(x) 
an bede
omposed as B0(x) = D1 � B(x) � D2, where D1;D2 are w � w nonsingularBoolean matri
es, and B(x) is an upper triangular matrix of Boolean polynomialsin x1; : : : ; xw, with 1s on the diagonal, then q 
an be 
onstru
ted using a linearisotopy from a quasigroup in T LQ2w with the same degree.Proof: Let q be as de�ned. Thenq(x;y) = A(x) +B0(x) � y = A(x) +D1 �B(x) �D2 � y= D1 � (D1�1 �A(x) +B(x) � (D2 � y))= D1 � (A0(x) +B(x) � (D2 � y)):Let q0(x;y) = A0(x) + B(x) � y. Clearly, q0 2 T LQ2w . Now, q(x;y) = D1 �q0(x;D2 � y), i.e., q 
an be obtained from q0 using the isotopy (I;D2;D1�1). �Proposition 7. Let q be a quadrati
 loop of order 2w. Then q 2 LLQ2w .Proof: First, let q be a quadrati
 loop of order 2w with a unit element 0 =(0; 0; : : : ; 0) 2 Fw2 . Then from [6℄,q(x;y) = x+ �(x;y) + ywhere � is a bilinear Boolean map. Clearly, q is left aÆne i.e., q 2 LLQ2w .Now, let q be an arbitrary quadrati
 loop of order 2w. Then, q is linearlyisomorphi
 to a loop with unit element 0. The linear isomorphism does not
hange the degree of y, hen
e, again q 2 LLQ2w . �4. LMQQs whose left parastrophe is also quadrati
In this se
tion we will fo
us on the left quasigroups from T LQ2w that have analgebrai
 degree 2, i.e. on LMQQs that 
an be represented in the form (4). Thenthe left parastrophe of the LMQQ q is given by (5).The possibility of expressing qn using a short formula is a neat property ofthese LMQQs. But this does not imply that it is always eÆ
ient to use qn in su
ha form. In general, although q is quadrati
, qn 
an be of any degree d, 2 � d � 2w(see Example 1). Hen
e for a random q, the average number of terms in qn isexponential in the number of variables.Here, we will fo
us on �nding a 
lass of su
h LMQQs in the group T LQ2w ,with the additional property of eÆ
ient algorithmi
 
onstru
tion.From (5) it is straightforward that:
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 407Proposition 8. An LMQQ that 
an be written in the form (4) has a left para-strophe that is also an LMQQ (i.e., it is also of degree 2) if and only if B�1(x) isa w�w upper triangular matrix of linear Boolean polynomials, and B�1(x)A(x)is a w � 1 matrix of Boolean polynomials of degree 2. �Next we want to �nd under what 
onditions the elements of B�1(x) are linearpolynomials.We introdu
e the following notations.Let B0(x) be an upper triangular matrix of linear Boolean polynomials in thevariables x1; x2; : : : ; xw, with 1s on the diagonal. We denote the elements of thematri
es B(x) and B0(x) by bij(x) and b0ij(x), respe
tively, and represent themin the following form:(8) bij(x) = x> � bij + bij and b0ij(x) = x> � b0ij + b0ij ;where bij ;b0ij 2 Fw2 , and bij ; b0ij 2 F2 . (Note that bii(x) = bii = 1.)In other words, we represent the matri
es B(x) and B0(x) as sums of uppertriangular matri
es(9) B(x) = B1(x) +B2; and B0(x) = B01(x) +B02;where the Boolean polynomials x> � bij and x> � b0ij are the elements of B1(x)and B01(x), respe
tively, and bij 2 F2 and b0ij 2 F2 are the elements of B2 andB02, respe
tively.It is straightforward to verify the following:Proposition 9. Let the matri
es B(x) and B0(x), given in the form (9), satisfythe 
onditions: 1: B1(x) �B01(x) = 0;2: B1(x) �B02 +B2 �B01(x) = 0;3: B02 = B�12 :Then, B0(x) = B�1(x). �The 
onditions 1., 2., and 3. from Proposition 9 
an be rewritten in a simplerequivalent form given in the next proposition.Proposition 10. The matrix B(x) given in the form (9), satis�es the 
ondition:B1(x) �B�12 �B1(x) = 0(10)if and only if there exists a matrix B0(x) = B01(x) +B02 of the form (9) su
h thatthe 
onditions 1., 2., and 3., are satis�ed for B(x) and B0(x).Furthermore, if B(x) satis�es (10), then B�1(x) = B�12 �B1(x) �B�12 +B�12 .Proof: Let the matrix B(x) satisfy (10). Let B01(x) = B�12 � B1(x) � B�12 andB02 = B�12 . It is easy to verify that the 
onditions 1., 2., and 3., from Proposition 9hold for the matri
es B(x) and B0(x) = B01(x) +B02.



408 S. Samardjiska, D. GligoroskiConversely, let there exist a matrix B0(x) su
h that 1., 2., and 3. hold. Thenfrom Proposition 9, B0(x) = B�1(x) and thus B01(x) �B1(x) +B01(x) �B2+B�12 �B1(x) = 0. NowB1(x) �B�12 �B1(x) = B1(x)(B01(x) �B1(x) +B01(x) �B2) = 0;i.e., (10) holds.Now it is 
lear that if B(x) satis�es (10), then B�1(x) = B�12 �B1(x) �B�12 +B�12 . �The next proposition provides an equivalent expli
it form of (10).Proposition 11. The matrix B(x) given in the form (9), satis�es 
ondition (10)if and only if for every i; j, j � i � 2,Xi=r0<���<rm=j br0r1br1r2 � � � brm�2rm�1b>rm�1rm = 0:(11)Furthermore, if (11) holds, then the elements b0ij(x) of B�1(x) are linearBoolean polynomials and b0ij(x) = x> � b0ij + b0ij , where:b0ij = Xi = r0 < � � � < rm = jt 2 f0; : : : ;m� 1g br0;r1 � � �brtrt+1 � � �brm�1;rm ;(12) b0ij = Xi=r0<���<rm=j br0r1br1r2 � � � brm�1;rm :(13)Proof: We will expand the 
ondition (10). First we need an expli
it form forB�12 , i.e. a formula for the elements of the inverse of an upper triangular Booleanmatrix with 1s on the diagonal.From elementary linear algebra, B�12 = [det(Bij)℄w�w, whereBij = [�ijsr℄(w�1)�(w�1) is obtained from B2 by removing its j-th row and i-th
olumn. Clearly, for i > j det(Bij) = 0, and det(Bii) = 1.For i < j,(14) �ijsr =8>>><>>>:bs;r; for s < j; r < i;bs+1;r; for s � j; r < i;bs;r+1; for s < j; r � i;bs+1;r+1; for s � j; r � i:In general, det(Bij) = P�2Sw�1 �ij1;�(1)�ij2;�(2) : : : �ijw�1;�(w�1). From (14), theterms in the sum are 0, ex
ept for permutations � 2 Sw�1 su
h that s+1 � �(s),for every s, 1 � s � w � 1. The permutations that satisfy this 
ondition arepermutations with 
y
li
 de
omposition to 
y
les of the form (s; s� 1; : : : ; s� t).
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 409Again, from (14), �ijr+1;r = (br+1;r+1; for i � r < j � 1;0; otherwise:Hen
e, det(Bij) =Pi=r0<���<rm=j br0r1br1r2 � � � brm�1;rm .Now (10) is equivalent tojXt=i+1 ( tXk=i+1 x>bik det(Bkt))btjx = 0; for every i < j;whi
h in turn is equivalent tojXt=i+1 tXk=i+1bik det(Bkt)btj = 0; for every i < j:If we expand the last expression using the above formula for det(Bkt), we obtain(11).The rest of the proposition follows dire
tly from Proposition 9 if we apply theformula for B�12 . �Having found suÆ
ient 
onditions for the matrix B(x) to have an inverse thatis a matrix of linear polynomials over F2 , we 
an state the following.Proposition 12. Let the matrix B(x) satisfy 
ondition (10). Then an LMQQq(x;y) of the form (4) has a left parastrophe of degree 2 if and only if there existsa w � 1 matrix of homogeneous quadrati
 Boolean polynomials A02(x) su
h thatB1(x)A02(x) is a w � 1 matrix of homogeneous quadrati
 Boolean polynomials.Proof: Let A02(x) satisfy the given 
onditions. Let A01(x) be a w � 1 matrixof linear Boolean polynomials. Put A(x) = B2(A01(x) +A02(x)). From Proposi-tion 10,B�1(x)A(x) = (B�12 �B1(x) �B�12 +B�12 ) �B2 � (A01(x) +A02(x))= B�12 �B1(x) �A01(x) +A01(x) +A02(x) +B�12 �B1(x) �A02(x);whi
h is a w � 1 matrix of homogeneous quadrati
 Boolean polynomials. FromProposition 8, the left parastrophe of q is of degree 2.Conversely, let q(x;y) have a quadrati
 left parastrophe. Then from Propo-sition 8, B�1(x)A(x) is quadrati
. Represent A(x) as A(x) = A1(x) + A2(x)where A1(x) is w � 1 matrix of linear Boolean polynomials and A2(x) is w � 1matrix of homogeneous quadrati
 Boolean polynomials. Then, it is not hard tosee that the matrix A02(x) = B�12 A2(x) satis�es the 
onditions. �
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onstru
tion of the matri
es B(x) and A(x). Next,we give a pro
edure for 
onstru
tion of a matrix B(x) that satis�es the givenrequirements.In fa
t, we will �rst des
ribe an algorithm that �nds all the possible matri
esB(x) that satisfy the 
onstraints (11), for every i; j, where j � i � 2. Thealgorithm is in essen
e a sear
h algorithm in a tree that uses depth-�rst sear
hand ba
ktra
king te
hniques and �nds all the possible solutions of the system ofequations (11) for all j � i � 2, with unknowns bs;t 2 Fw2 and bs;t 2 F2 .Then we modify this algorithm by randomizing the value (su

essor) sele
tionheuristi
s, to obtain a new but equivalent algorithm. However, the introdu
tionof the heuristi
s enables the algorithm to be adapted to �nd a single matrix B(x)that satis�es the 
onditions, and is randomly drawn from the set of all possiblematri
es that satisfy the 
onditions.First, we 
reate the tree using the next pro
edure.TreeSetup:(1) We de�ne an ordering \�"on the set of indi
es I = f(i; j)j 2 � i + 1 <j � wg that 
orrespond to the appropriate indi
es of the matrix B(x) by:(i; j) � (i0; j0) if j � i < j0 � i0; or if j � i = j0 � i0 and i < i0:It is not hard to see that \�" is a total stri
t ordering.With every index (i; j) 2 I we asso
iate the equation (11).(2) We de�ne a rooted tree of depth jIj = (w�2)(w�1)2 by asso
iating theindi
es (i; j) 2 I in as
ending order to ea
h level of the tree, startingfrom the level at depth 0, i.e. starting from the root node. Note that wedo not asso
iate indi
es to the last level, i.e. to the leafs. We label ea
hlevel with the asso
iated index.The su

essors of ea
h node are determined by the new unknownsappearing in (11) asso
iated to the 
urrent level. At this point, we are notinterested in the solutions of the asso
iated equations, but rather in thenew unknowns appearing in the equations. All the possible assignmentsfor the new unknowns de�ne a su

essor for the node. In more details,the su

essors are de�ned in the following way:(i) The asso
iated equation to level (1; 3) (the root of the tree) isb1;2b>2;3 = 0. We assign ea
h possible value of (b1;2;b2;3) 2 F2w2 toa di�erent su

essor of the root node. Thus, the root node has 22wsu

essors. We order the su

essors lexi
ographi
ally.(ii) The asso
iated equation to level (2; 4) is b2;3b>3;4 = 0. The new un-known appearing in the equation is b3;4. Hen
e, every possible valueof b3;4 2 Fw2 is assigned to 2w di�erent, lexi
ographi
ally orderedsu

essors of ea
h of the nodes in the 
urrent level.(iii) In a similar manner, for ea
h of the nodes in the levels (3; 5); : : : ; (w�2; w) we de�ne 2w di�erent, lexi
ographi
ally ordered su

essors.
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 411(iv) For level (1; 4), the asso
iated equation isb1;2b>2;4 + b1;3b>3;4 + b1;2b2;3b>3;4 = 0:The new unknowns appearing in the equation are b1;3;b2;4 and b2;3.For ea
h of the nodes in the level, we de�ne 22w+1 su

essors (forea
h possible value of (b1;3;b2;4; b2;3) 2 F2w+12 ) to whi
h we assignthe elements of F2w+12 in a lexi
ographi
 order.(v) For ea
h of the levels (i; i + 3); i 2 f2; : : : ; w � 3g, the asso
iatedequation is(15) bi;i+1b>i+1;i+3 + bi;i+2b>i+2;i+3 + bi;i+1bi+1;i+2b>i+2;i+3 = 0:The new unknowns are bi+1;i+3 and bi+1;i+2. Hen
e, for ea
h of thenodes in the level, we de�ne 2w+1 su

essors (for every(bi+1;i+3; bi+1;i+2) 2 Fw+12 ) to whi
h we assign the elements of Fw+12in a lexi
ographi
 order.(vi) We 
ontinue in the same manner, and for the level (1; 1 + k), 3 <k < w the asso
iated equation isX1=r0<���<rm=1+k b1;r1br1r2 � � �brm�2rm�1b>rm�1;1+k = 0:(16) The only new unknowns appearing in the equation are b1;k, b2;k+1and b2;k. Every possible value of (b1;k;b2;k+1; b2;k) 2 F2w+12 is as-signed to 22w+1 di�erent lexi
ographi
ally ordered su

essors of ea
hof the nodes in the 
urrent level.(vii) The asso
iated equation for ea
h of the levels (i; i+k), i 2 f2; : : : ; w�kg, 3 < k < w � 1 isXi=r0<���<rm=i+k bi;r1br1r2 � � � brm�2rm�1b>rm�1;i+k = 0:(17) Sin
e the new unknowns appearing are bi+1;i+k and bi+1;i+k�1, forea
h of the nodes of level (i; i + k), we de�ne 2w+1 su

essors (forea
h (bi+1;i+k ; bi+1;i+k�1) 2 Fw+12 ) to whi
h we assign the elementsof Fw+12 in a lexi
ographi
 order.We should point out several properties of the tree we have just 
onstru
ted.{ There is a one-to-one 
orresponden
e between the paths from the root tothe leaves and all the possible assignments to the unknowns appearing inthe system of equations (11) for all j � i � 2.{ An exhaustive sear
h for solutions of the system (11), j � i � 2, 
orre-sponds to an exhaustive sear
h through the tree. Thus all the solutionsto the system are present in the tree, in the form of paths.Trying out all the possible assignments of the unknowns bs;t 2 Fw2 and bs;t 2 F2appearing in the system of equations (11), j � i � 2, and 
he
king whether the
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learly will lead to �nding all the solutions. However, thepro
edure 
an be made more eÆ
ient using the 
onstru
ted tree and introdu
inga pruning te
hnique. The pruning 
an be done based on a test for 
onsisten
y ofa partial assignment of the unknowns. We de�ne the following depth-�rst sear
halgorithm.FindAllSolutions:(1) Initiate an empty \history list" to keep tra
k of the visited nodes. Weassume that the list is being maintained throughout the algorithm. Inessen
e it 
ontains all the prede
essors of the 
urrent node.(2) At the root node solve the asso
iated equation b1;2b>2;3 = 0. Create alexi
ographi
ally ordered list of all the solutions (b1;2;b2;3) 2 F2w2 of theequation. Prune all the su

essors that are not in the list of solutions.Move to the leftmost su

essor, i.e. the one that 
orresponds to the �rstsolution in the list of solutions. Update the history list by adding the
hosen solution of the 
urrent equation.(3) Move depth-�rst throughout the tree. At ea
h node that is not a leaf{ If the node is being visited for the �rst time (i.e. there is no list ofsolutions asso
iated to it), use the history list to assign the values ofbs;t 2 Fw2 and bs;t 2 F2 
hosen in the previous steps in the equationthat is asso
iated to the 
urrent level. Solve the 
urrent equation,and put the solutions in a lexi
ographi
ally ordered list. Prune allthe su

essors that are not in the list of solutions.� If the list of solutions is not empty, move to the su

essor that
orresponds to the �rst solution in the list of solutions, i.e. tothe leftmost su

essor. Update the history list by adding the
hosen solution to the 
urrent equation.� If the list of solutions is empty, go up to the prede
essor.{ If the node has been visited before, the 
urrent visit is due to movingup the tree. Read the last entry from the history list, and lo
ate itin the solution list.� If it is not the last in the solution list, move to the su

es-sor node that is next in the solution list. Update the historylist by deleting the last entry, and adding the solution that
orresponds to the 
hosen su

essor node.� If the read entry is last in the solution list, go up to the pre-de
essor. Update the history list by deleting the last entry.(4) When the algorithm rea
hes a leaf, save the history list as one solution ofthe system (11), j � i � 2 in a list Sol. Go up to the prede
essor.(5) The algorithm ends when the root is rea
hed again and the 
urrent so-lution list has been exhausted. In fa
t, at this point there are no morepossible moves.(6) Output the list Sol.
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 413It is 
lear that sin
e the algorithm FindAllSolutions traverses all the nodesthat satisfy the equations asso
iated to them, the list Sol 
ontains all the solutionsof the system (11), j � i � 2.Note that, not all bs;t and bs;t that de�ne the elements of the matrix B(x)appear in the equations (11). In parti
ular, b1;i, bi;w, 1 < i < w, as well as b1;wdo not appear in (11). This means that there are no spe
ial 
onstraints for themand 
an take any value.The algorithm FindAllSolutions 
an be modi�ed to an equivalent one by
hanging the su

essor sele
tion heuristi
s. In FindAllSolutions, at ea
h �rstvisit of a node a solution list is 
reated with solutions to the asso
iated equations.The solutions are ordered lexi
ographi
ally, and this list is used for 
hoosing thesu

essors in this visit and all other subsequent visits of the node.Let FindAllSolutionsRand be an algorithm that is the same as FindAllSo-lutions, ex
ept the solutions in the solution list at ea
h node are being permutedusing a random permutation on
e at the time of 
reation of the solution list. Af-ter that, this list is used in the same manner as in FindAllSolutions, and isnot being permuted again. The output of the algorithm is a list SolRand that
ontains all the solutions of the system (11), j � i � 2.It is not hard to see that the two algorithms are equivalent and in the samenumber of steps �nd all the solutions of the system (11), j � i � 2. The onlydi�eren
e is that SolRand is a permutation of the entries in Sol.We introdu
e the algorithm FindAllSolutionsRand be
ause it 
an be natu-rally modi�ed for the purpose of �nding a single random solution of the system(11), j � i � 2. Let FindOneSolutionRand be the subalgorithm of FindAll-SolutionsRand that 
ontains all the steps of FindAllSolutionsRand from thebeginning until the �rst entry is written down in SolRand. In other words, werun FindAllSolutionsRand until one solution is found, and then we terminatethe algorithm.We note that a similar modi�
ation to FindAllSolutions is not useful inthis setting, sin
e the �rst solution that this algorithm �nds is always the same.Instead, if we want to use FindAllSolutions to �nd a random solution, we wouldhave to �nd all solutions �rst, i.e. run the 
omplete algorithm, and then pi
k onebased on some probability distribution, for example the uniform distribution.This is, however, a highly ineÆ
ient method of �nding a random solution.We should point out that the random solution the algorithm FindOneSolu-tionRand �nds is not uniformly distributed in the set of all solutions. Indeed,at ea
h node the solution list is permuted using a random permutation, thus allsolutions have an equal probability to be �rst after the permutation is applied.However, if the pruned subtree of the node is not balan
ed, then some of thepartial solutions in the solution list will yield more global solutions than others.As a 
onsequen
e, the random permutation a
tually 
reates bias in the pro
ess.This 
an be over
ome if the permutation used at ea
h node is not drawn fromthe uniform distribution, but rather from the distribution of the partial solutions
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essors with regards to the global solutions. However, without theknowledge of the nature of the pruned tree, or equivalently the set of globalsolutions SolRand, this 
an not be done. Chara
terizing 
ompletely the solutionsSolRand is an interesting but nontrivial open problem.Next, we present a pro
edure for 
onstru
ting the w� 1 matrix A(x) on
e thematrix B(x) is known.We will use Proposition 12, and �rst 
onstru
t a w� 1 matrix of homogeneousquadrati
 Boolean polynomials A02(x) su
h that B1(x)A02(x) is a w� 1 matrix ofhomogeneous quadrati
 Boolean polynomials.Let the elements of A02(x) be denoted by a0k(x) = P1�i;j�w a(k)ij xixj , where1 � k � w.Constru
tA(x):(1) For a given B(x) = B1(x) +B2, 
al
ulate T(x) = B1(x)A02(x).(2) Represent T(x) as T(x) = T2(x)+T3(x) where T2(x) 
onsists of homo-geneous quadrati
 polynomials, and T3(x) 
onsists of homogeneous 
ubi
polynomials.(3) Solve T3(x) = 0 in the unknowns a(k)ij ; 1 � i; j; k � w. Let SolA be theset of solutions.(4) For s 2 SolA 
onstru
t A02(x).(5) Let A01(x) be a w � 1 matrix of linear Boolean polynomials.(6) Constru
t A(x) = B2(A01(x) +A02(x)).4.2 EÆ
ient 
onstru
tion of LMQQs whose parastrophe is also qua-drati
. Although the algorithms FindAllSolutions and FindAllSolutions-Rand �nd all matri
es B(x) with the desired properties, they are extremelyineÆ
ient. Even the algorithm FindOneSolutionRand requires solving equa-tions of the form (11) at least (w�2)(w�1)2 times (at least on
e for every level),that are in essen
e systems of equations over F2 , and possibly many ba
ktra
kingsteps.Next we present a very simple suÆ
ient 
ondition for a matrix B(x) to satisfythe 
onditions (11). This result provides a very simple, straightforward algorith-mi
 
onstru
tion of the matrix B(x), that does not require solving systems ofequations, nor ba
ktra
king strategy, nor any kind of tests during the 
onstru
-tion. Thus, it is very suitable for implementation.Proposition 13. Let for i < j, the elements bij(x) = x> � bij +bij of the w�wupper triangular matrixB(x) of linear Boolean polynomials satisfy the 
onditions:b2k1+1;2k2+1 = 0;b2k1+2;2k2+1 = 0;b2k1+2;2k2+2 = 0; and(18) b2k1+2;2k2+1 = 0;(19)where k1; k2 2 f0; : : : ; �w2 �� 1g, and bii(x) = 1.Then, the elements of B�1(x) are linear Boolean polynomials.
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 415The ve
tors b2k1+1;2k2+2, and the 
onstants b2k1+1;2k2+1, b2k1+1;2k2+2,b2k1+2;2k2+2 
an be 
hosen at random.Proof: We prove the lemma formally, i.e. we show that the 
ondition fromProposition 11 holds.First, let i be even, i.e., let i = 2k1 + 2, for some k1 2 f0; : : : ; �w2 �� 1g. Thenbi;j = 0, for any j, and (11) is 
learly satis�ed.Similarly, for j odd, bi;j = 0 for any i, and again (11) holds.What is left is to analyze the 
ase when i = 2k1 +1 and j = 2k2 +2, for somek1; k2 2 f0; : : : ; �w2 ��1g. Using the same argument as for the previous two 
ases,(11) turns into: Xi=r0<���<rm=j br0r1br1r2 � � � brm�2rm�1b>rm�1rm= Xi = r0 < r1 < � � � < rm�1 < rm = jr0; rm�1 � odd; r1; rm � even br0r1br1r2 � � � brm�2rm�1b>rm�1rm :(20)Now, in any of the terms in the sum (20), the produ
t br1r2 � � � brm�2rm�1 is su
hthat r1 is even and rm�1 is odd. No matter the parity of r2; : : : ; rm�2, there existsbrsrt , r1 � s < t � rm�1, su
h that rs is even and rt is odd. But then, brsrt = 0,and the term in question is equal to 0. Sin
e this holds for every term, the sum(20) is equal to 0.Again, we 
on
lude that (11) holds.Hen
e, from Proposition 11, the elements of B�1(x) are linear Boolean poly-nomials. �We now turn to �nding a similar pro
edure for the 
onstru
tion of the ve
torA(x), su
h that B�1(x)A(x) is a ve
tor of Boolean polynomials of degree 2.We �rst need to �nd the form of B�1(x).Lemma 1. Let the elements of the w � w upper triangular matrix B(x) oflinear Boolean polynomials satisfy the 
onditions (18) and (19). Then the matrixB�1(x) has the same form asB(x), i.e. for i < j, the elements b0ij(x) = x>�b0ij+b0ijof B�1(x) satisfy:b02k1+1;2k2+1 = 0;b02k1+2;2k2+1 = 0;b02k1+2;2k2+2 = 0;(21) b02k1+2;2k2+1 = 0(22)and b0ii(x) = 1.



416 S. Samardjiska, D. GligoroskiProof: From Proposition 11,b0ij = Xi = r0 < � � � < rm = jt 2 f0; : : : ;m� 1g br0;r1 � � �brtrt+1 � � �brm�1;rm ;(23) b0ij = Xi=r0<���<rm=j br0r1br1r2 � � � brm�1;rm :(24)First we prove (21).Let i and j be both odd. We analyze one term br0;r1 � � �brtrt+1 � � �brm�1;rmfrom (23).If every rs, 0 � s � m is odd, then rt and rt+1 are odd as well, and from(18), brtrt+1 = 0. Hen
e, br0;r1 � � �brtrt+1 � � � brm�1;rm = 0. If there is at leastone rl that is even, 0 < l < m, then either l = t, when from (18), brtrt+1 = 0,or l 6= t and rl+1 is odd, when from (19), brlrl+1 = 0. In both 
ases, again,br0;r1 � � �brtrt+1 � � � brm�1;rm = 0. Hen
e b0ij = 0.Let i and j be both even. Again we look at one term from (12). If every rs,0 � s � m is even, then rt and rt+1 are even, and thus from (18), brtrt+1 = 0.If at least one rl is odd, 0 < l < m, then either l = t + 1, when from (18),brtrt+1 = 0, or l 6= t+ 1 and rl�1 is even, when from (19), brl�1rl = 0. Again, allthe 
ases infer br0;r1 � � �brtrt+1 � � � brm�1;rm = 0. Hen
e b0ij = 0.Let i be even and j be odd. Then there exists rs, 0 � s � m su
h that rs iseven, and rs+1 is odd. If s = t, from (18), brtrt+1 = 0, and if s 6= t, then from(19), brsrs+1 = 0. Similarly as above, we 
on
lude that b0ij = 0.From the above it follows that (21) holds.The last reasoning 
an also be dire
tly applied to 
on
lude that b0i;j = 0 wheni is even and j is odd, i.e. that (22) holds. �Let the elements of the ve
tor A(x) of Boolean polynomials be denoted byai(x), 1 � i � w. For the ve
tor A(x) we have the following lemma.Lemma 2. Let for all odd i, ai(x) be a quadrati
 Boolean polynomial, and for alleven i let ai(x) be a linear Boolean expression. Let B(x) be an upper triangularmatrix of linear Boolean polynomials with 1s on the diagonal, su
h that (18) and(19) are satis�ed.Then B�1(x)A(x) is a ve
tor of quadrati
 Boolean polynomials.Proof: From Lemma 1, the only elements in the matrix B�1(x) that 
an belinear Boolean polynomials are b02k1+1;2k2+2(x), for some k1; k2. The others areall 
onstants. The elements of the ve
torB�1(x)A(x) are of the formPwi=1 b0k;i(x)ai(x) so for odd i, b0k;i(x)ai(x) is quadrati
 sin
e b0k;i(x) is a 
onstant and ai(x)is quadrati
, and also for even i, sin
e b0k;i(x) is at most linear and ai(x) is linear,b0k;i(x)ai(x) is again quadrati
.Thus, the elements of the ve
tor B�1(x)A(x) are quadrati
 Boolean polyno-mials. �
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 417Finally, we are ready to state the main theorem in this part, that gives suÆ
ient
onditions for a left quasigroup from T LQ2w of algebrai
 degree 2, to have aparastrophe that is again of degree 2.Theorem 4. Let q(x;y) be a left quasigroups from T LQ2w of algebrai
 degree 2,i.e. let q be of the form q(x;y) = A(x) +B(x) � ywhere A(x) is a ve
tor of Boolean polynomials ai(x) su
h that:{ for all odd i, ai(x) is a quadrati
 Boolean polynomial, and{ for all even i, ai(x) is a linear Boolean polynomial,and B(x) is an upper triangular matrix of linear Boolean polynomials bij(x) with1s on the diagonal, su
h that:{ for all odd i, and all odd j, bij(x) = bij , where bij 2 F2 ,{ for all even i, and all even j, bij(x) = bij , where bij 2 F2 ,{ for all odd i, and all even j, bij(x) is a linear Boolean polynomial, and{ for all even i, and all odd j, bij(x) = 0.Then q has a left parastrophe qn that is again of degree 2.Proof: The 
laim follows dire
tly from Proposition 13, Lemma 2 and Proposi-tion 8. �If an LMQQ has a left parastrophe that is again of degree 2, then this propertywill be preserved under linear isotopy, i.e. the following holds.Proposition 14. Let q be a left quasigroups from T LQ2w of algebrai
 degree 2,that has a left parastrophe again of degree 2. Then every linearly isotopi
 quasi-group q0 has also a left parastrophe of degree 2.Proof: Let q0 be linearly isotopi
 to q, i.e., letq0(x;y) = D3 � q(D1x+ 
1;D2y + 
2) + 
3:Then from the identity q0(x; q0n(x;y)) = y we have:D3 � q(D1x+ 
1;D2q0n(x;y) + 
2) + 
3 = y, A(D1x+ 
1) +B(D1x+ 
1) � (D2q0n(x;y) + 
2) = D3�1y +D3�1
3, q0n(x;y) = D2�1B�1(D1x+ 
1) �A(D1x+ 
1)+D2�1B�1(D1x+ 
1) �D3�1y+D2�1B�1(D1x+ 
1) �D3�1
3 +D2�1
2:Sin
e the form of A(D1x + 
1) is the same as the one of A(x), and the formof B�1(D1x + 
1) is the same as the one of B�1(x), we 
an 
on
lude that thealgebrai
 degree of q0n is 2. �



418 S. Samardjiska, D. GligoroskiWe 
on
lude this part with an example of the des
ribed 
onstru
tion of anLMQQ that has a quadrati
 left parastrophe.Example 2. We will 
onstru
t an LMQQ of order 24 obtained by applying iso-topi
 transformation to an LMQQ from T LQ24 that satis�es Theorem 4.We �rst 
onstru
t q.Let A(x) be a ve
tor of quadrati
 Boolean polynomials in x = (x1; x2; x3; x4),given by:A(x) =264 1 + x1 + x2 + x1x3 + x2x3 + x4 + x1x4 + x3x41 + x1 + x2x1x2 + x3 + x4 + x1x4 + x3x41 + x3 + x4 375:Let B(x) be an upper triangular matrix of linear Boolean polynomials inx = (x1; x2; x3; x4), with 1s on the diagonal given by:B(x) =264 1 x1 + x2 + x3 1 x2 + x3 + x40 1 0 10 0 1 1 + x20 0 0 1 375;B�1(x) =264 1 x1 + x2 + x3 1 1 + x1 + x2 + x40 1 0 10 0 1 1 + x20 0 0 1 375:Then q(x;y) = A(x) +B(x) � y isq(x;y)=266664 1 + x1 + x2 + x1x3 + x2x3 + x4 + x1x4 + x3x4 + y1 + x1y2++x2y2 + x3y2 + y3 + x2y4 + x3y4 + x4y41 + x1 + x2 + y2 + y4x1x2 + x3 + x4 + x1x4 + x3x4 + y3 + y4 + x2y41 + x3 + x4 + y4 377775:The parastrophe qn(x;y) = B�1(x)A(x) +B�1(x) � y isqn(x;y)=266664 x1x2 + x3 + x1x3 + x2x3 + x4 + x1x4 + x2x4 + x3x4 + y1 + x1y2++x2y2 + x3y2 + y3 + y4 + x1y4 + x2y4 + x4y4x1 + x2 + x3 + x4 + y2 + y41 + x2 + x1x2 + x2x3 + x1x4 + x2x4 + x3x4 + y3 + y4 + x2y41 + x3 + x4 + y4 377775:We next apply linear isotopy to q de�ned by the nonsingular matri
es:D1 =2664 0 0 0 11 0 1 00 1 1 00 0 1 1 3775; D2 =2664 0 1 0 11 0 0 10 1 0 00 0 1 0 3775; D3 =2664 0 1 0 00 1 0 10 0 1 11 0 1 0 3775;
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 419and the ve
tors: 
1 = (0; 1; 0; 0), 
2 = (0; 0; 1; 0), 
3 = (1; 1; 0; 1).We obtain the quasigroupq0(x;y) = D3(A(D1x+ 
1) +B(D1x+ 
1) � (D2y + 
2)) + 
3:q0(x;y) =26666664 x1x2 + x1x3 + x2x4 + x3y1 + y2 + x4y2 + x3y3 + y4 + x3y4x2 + x3 + x2x3 + x1x4 + x2y1 + x3y1++y3 + x2y3 + x3y3 + x2y4 + x3y41 + x1 + x1x2 + x1x3 + x4 + x2x4++y1 + x3y1 + x4y2 + y3 + x3y3 + x3y4x1 + x3 + x2x3 + x1x4 + x2y1 + x3y1++y2 + y3 + x2y3 + x3y3 + x2y4 + x3y4
37777775:The parastrophe q0n(x;y) is:q0n(x;y) =2666666664 x2 + x3 + x4 + x1x4 + x2x4 + x3x4++y1 + x2y3 + x3y3 + y4 + x2y4 + x3y4x1 + x2 + x1x2 + x1x3 + x2x3 + x1x4 + x3x4++y1 + y2 + y3 + x3y3 + x4y3 + y4 + x3y41 + x1x2 + x3 + x1x3 + x2x3 + x2x4++y2 + y3 + x2y3 + x4y3 + y4 + x2y4x3 + x1x4 + x2x4 + x3x4 + y1 + y3++x2y3 + x3y3 + x2y4 + x3y4

3777777775:5. Con
lusionsIn this paper, we investigated Left Multivariate Quasigroups, with a parti
ularfo
us on Left Multivariate Quadrati
 Quasigroups (LMQQs). We provided aneÆ
ient 
onstru
tion of general LMQQs of any order and degree, as well as ofmore parti
ular ones that are aÆne in the variable y, and whose parastrophe iseasy to express. The main goal was to distinguish a 
lass of su
h LMQQs thathave, even more, a left parastrophe that is again an LMQQ, and thus has a shortsymboli
 form. First, we determined suÆ
ient 
onditions for the parastrophe tobe quadrati
, and then presented a general ba
ktra
king algorithm that �nds allLMQQs that satisfy these 
onditions. Sin
e the ba
ktra
king nature of the al-gorithm makes it rather ineÆ
ient, we provide additional very simple suÆ
ient
onditions. These suÆ
ient 
onditions provide an easy, eÆ
ient and straightfor-ward 
onstru
tion of LMQQs whose left parastrophe is quadrati
.As the simpli�
ation of the suÆ
ient 
onditions was driven by the main premiseto �nd an eÆ
ient algorithmi
 
onstru
tion of LMQQs whose left parastrophe isquadrati
, and thus led to a narrow 
lass of su
h LMQQs, the authors 
an setapart two open problems: Can a di�erent strategy lead to eÆ
ient 
onstru
tionalgorithm of a broader 
lass of LMQQs whose left parastrophe is quadrati
 andthat are left aÆne, and, 
an the same be a

omplished for LMQQs that arequadrati
 in y. In either 
ase, a spe
ial attention must be paid to their suitabilityfor use in multivariate 
ryptosystems.
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