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GENERALIZED THUE–MORSE WORDS
AND PALINDROMIC RICHNESS

Štěpán Starosta

We prove that the generalized Thue–Morse word tb,m defined for b ≥ 2 and m ≥ 1 as tb,m =
(sb(n) mod m)+∞n=0, where sb(n) denotes the sum of digits in the base-b representation of the
integer n, has its language closed under all elements of a group Dm isomorphic to the dihedral
group of order 2m consisting of morphisms and antimorphisms. Considering antimorphisms
Θ ∈ Dm, we show that tb,m is saturated by Θ-palindromes up to the highest possible level.
Using the generalisation of palindromic richness recently introduced by the author and E.
Pelantová, we show that tb,m is Dm-rich. We also calculate the factor complexity of tb,m.

Keywords: palindrome, palindromic richness, Thue–Morse, Theta-palindrome

Classification: 68R15

1. INTRODUCTION

A palindrome is a word which coincides with its reverse image, or more formally, a
finite word w is a palindrome if w = R(w), where the reversal (or mirror) mapping
R : A∗ 7→ A∗ is defined by R(w1w2 . . . wn) = wnwn−1 . . . w1 for letters wi ∈ A, A being
an alphabet. In [9], the authors gave an upper bound on the number of palindromic
factors in a finite word: a finite word of length n contains at most n + 1 palindromic
factors. If this bound is attained, we say that a word is rich in palindromes (introduced
in [11], and in [5] where such a word is called full). This definition can be naturally
extended to infinite words: an infinite word is rich in palindromes if every its factor is
rich in palindromes (see [11]). For infinite words with language closed under reversal, i. e.,
containing the reverse of every factor, there exist several equivalent characterizations of
palindromic richness. Each of them can be adopted as a definition.

Let us list three of these characterizations. An infinite word u with language closed
under reversal is rich if one of the following equivalent statements holds:

1. any factor w of u of length n contains exactly n + 1 palindromic factors;

2. for any n ∈ N, the equality ∆C(n) + 2 = P(n) + P(n + 1) is satisfied, where
∆C(n) = C(n + 1)− C(n) and P(n) denotes the palindromic complexity of u, i. e.,
the number of palindromes of length n in the set of factors of u ([6]);

3. each complete return word of any palindrome occurring in u is a palindrome as
well ([11]).
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Let us mention that the inequality

∆C(n) + 2 ≥ P(n) + P(n + 1) (1)

is valid for any infinite word u with language closed under reversal and for any n (see [2]).
Thus, both characterizations 1 and 2 express that a rich word u is saturated by palin-
dromes up to the highest possible level. Episturmian words (see [9]) and words coding
interval exchange transformations determined by a symmetric permutation (see [2]) are
some of the most prominent examples of rich words.

If we replace the reversal mapping R by an antimorphism Θ, we can define Θ-pa-
lindromes as words which are fixed points of Θ, i. e., w = Θ(w). For any antimorphism Θ,
the notion of Θ-palindromic richness can be introduced and analogue of characterizations
1, 2 and 3 mentioned above can be formulated, see [14]; a word is Θ-rich if it contains
the maximum possible number of Θ-palindromic factors.

The famous Thue–Morse word

0110100110010110 . . .

is a binary word defined as a fixed point of the morphism defined by 0 7→ 01, 1 7→ 10.
Although the language of the Thue–Morse word is closed under two antimorphisms, it is
not Θ-rich for any of these two antimorphisms. The author together with E. Pelantová
in [12] explored infinite words with language closed under more antimorphisms simul-
taneously. For a given finite group G formed by morphisms and antimorphisms on A∗,
the words with language closed under any element of G were investigated. If, moreover,
such a word u is uniformly recurrent, then a generalized version of the inequality (1)
was obtained: there exists an integer N such that

∆C(n) + #G ≥
∑

Θ∈G(2)

(
PΘ(n) + PΘ(n + 1)

)
for any n ≥ N , (2)

where G(2) denotes the set of involutive antimorphisms of G and PΘ is the Θ-palindromic
complexity, i. e., PΘ(n) counts the number of Θ-palindromes of length n in set of factors
of u.

Infinite uniformly recurrent words with language closed under all elements of G and
for which equality is attained in the inequality (2) for any n greater than some integer M
are called almost G-rich. Note that if the group G contains (besides the identity) only
the reversal mapping R, the notion of almost richness (as introduced in [11]) and the
notion of almost G-richness coincide. In [12], G-richness is also introduced. Again, in
the case of G = {R, Id} it coincides with classical palindromic richness. The definition
requires further notions, thus we omit it here and restrict ourselves to the following
criterion for G-richness.

Proposition 1.1. An infinite word over A with language closed under all elements of
a finite group G consisting of morphisms and antimorphisms of A∗ is G-rich if

• for any two antimorphisms Θ1,Θ2 ∈ G and any non-empty factor v of u we have
Θ1 6= Θ2 ⇒ Θ1(v) 6= Θ2(v), and
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• for any two morphisms ϕ1, ϕ2 ∈ G and any non-empty factor v of u we have
ϕ1 6= ϕ2 ⇒ ϕ1(v) 6= ϕ2(v), and

• the equality (2) is attained for all n ≥ 1.

Note that the given criterion states only a necessary condition and the converse of
the proposition is not true.

In [12], the authors show that the Thue–Morse word is G-rich, where G is a group
generated by the reversal mapping and the antimorphism determined by the exchange of
0 and 1. The class of so-called generalized Thue–Morse words is also partially treated in
that article, but the question of their G-richness is not resolved. In this article we prove
that all generalized Thue–Morse words are G-rich and we give explicitly the group G.

The generalized Thue–Morse words were already considered by E. Prouhet in 1851,
see [13]. Let sb(n) denote the sum of digits in the base-b representation of the integer
n, for integers b ≥ 2 and m ≥ 1. The generalized Thue–Morse word tb,m is defined as

tb,m = (sb(n) mod m)+∞n=0 .

Using this notation, the famous Thue–Morse word equals t2,2. The word tb,m is over
the alphabet {0, 1, . . . ,m − 1} = Zm. Similarly to the classical Thue–Morse word, also
tb,m is a fixed point of a primitive substitution, as already mentioned in [1]. It is easy
to see that the substitution fixing the word tb,m is defined by

ϕb,m(k) = k(k + 1)(k + 2) . . .
(
k + (b− 1)

)
for any k ∈ Zm,

where the letters are expressed modulo m. As already stated in [1], it can be shown that
tb,m is periodic if and only if b ≡ 1 (mod m).

We show that for any parameters b and m the language of the word tb,m is closed
under all elements of a group, denoted Dm, isomorphic to the dihedral group of order
2m (see Proposition 3.1) and that tb,m is Dm-rich (see Theorem 4.4). In the last section,
we use the results to give the formula for the factor complexity of tb,m.

For more information about generalized Thue–Morse words see [1] where authors give
conditions on b and m so that tb,m is overlap-free and also answer the question whether
tb,m contains arbitrarily long palindromes or infinitely many squares. In [3], the author
describes the factor frequencies of tb,m.

2. PRELIMINARIES

An alphabet A is a finite set, its elements are called letters. A finite word over A is
a finite string w = w1w2 . . . wn of letters wi ∈ A. Its length is |w| = n. The set A∗

is formed by all finite words over A and it is a free monoid with the empty word ε as
neutral element. An infinite word u = (ui)+∞i=0 is an infinite sequence of letters ui ∈ A.
A word v ∈ A∗ is a factor of a word w (finite or infinite) if there exist words s, t such
that w = svt. If s = ε, then v is a prefix of w. If t = ε, then v is a suffix of w. An
integer i such that v = wi . . . wi+|w|−1 is called an occurrence of v in w. We say that an
infinite word is uniformly recurrent if each factor occurs infinitely many times and the
gaps between its successive occurrences form a bounded sequence.
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By Ln(u) we denote the set of factors of u of length n. The set of all factors of u is
denoted by L(u) and is called the language of u. The factor complexity C of an infinite
word u is the mapping N 7→ N counting the number of distinct factors of given length,
i. e., C(n) = #Ln(u).

A letter a ∈ A is a left extension of a factor w ∈ L(u) if aw ∈ L(u). If a factor has
at least two distinct left extensions, then it is left special. The set of all left extensions
of w is denoted Lext(w). The definitions of right extensions, Rext(w) and right special
are analogous. A factor which is left and right special is bispecial (BS).

The bilateral order b(w) of a factor w is the number b(w) = #Bext(w)−#Lext(w)−
#Rext(w) + 1 where the set Bext(w) = {awb ∈ L(u) | a, b ∈ A}. In [7], the following
relation between the second difference of factor complexity and bilateral orders is proved:

C(n + 2)− 2C(n + 1) + C(n) = ∆2C(n) =
∑

w∈Ln(u)

b(w). (3)

One can easily show that if w is not a bispecial factor of an infinite word u, then
b(w) = 0. Thus, to enumerate the factor complexity of an infinite word u one needs to
calculate C(0), C(1), and the bilateral orders of all its bispecial factors.

A mapping ϕ on A∗ is called a morphism if ϕ(vw) = ϕ(v)ϕ(w) for any v, w ∈ A∗

and an antimorphism if ϕ(vw) = ϕ(w)ϕ(v) for any v, w ∈ A∗. By AM(A∗) we denote
the set of all morphisms and antimorphisms over A∗. Let ν ∈ AM(A∗). We say that
L(u) is closed under ν if for all w ∈ L(u) we have ν(w) ∈ L(u).

It is clear that the reversal mapping R is an antimorphism. Moreover, it is an
involution, i. e., R2 = Id. A fixed point of an antimorphism Θ is a Θ-palindrome. If Θ =
R, then we say palindrome or classical palindrome instead of R-palindrome. The set of
all Θ-palindromic factors of an infinite word u is denoted by PalΘ(u). The Θ-palindromic
complexity of u is the mapping PΘ : N 7→ N given by PΘ(n) = # (PalΘ(u) ∩ Ln(u)). If
a ∈ A, w ∈ PalΘ(u), and awΘ(a) ∈ L(u), then awΘ(a) is said to be a Θ-palindromic
extension of w in u. The set of all Θ-palindromic extensions of w is denoted by PextΘ(w).

If u is a fixed point of a morphism ϕ, then a factor v = v0v1 . . . vs−1 ∈ L(u) is an
ancestor of a factor w ∈ L(u) if w is a factor of ϕ(v) and is not a factor of ϕ(v1 . . . vs−1)
or ϕ(v0 . . . vs−2).

3. GENERALIZED THUE–MORSE WORDS AND DIHEDRAL GROUPS

In this section we show that L(tb,m) is closed under all elements of an explicit group
G ⊂ AM(A∗). Fix b ≥ 2 and m ≥ 1. In what follows, to ease the notation, we denote
ϕ = ϕb,m, the alphabet is considered to be Zm, and letters are expressed modulo m.

For all x ∈ Zm denote by Ψx the antimorphism given by

Ψx(k) = x− k for all k ∈ Zm

and by Πx the morphism given by

Πx(k) = x + k for all k ∈ Zm.

Let Dm denote the set Dm = {Ψx

∣∣ x ∈ Zm} ∪ {Πx

∣∣ x ∈ Zm}. It is easy to show that
Dm is a group and can be generated by 2 elements, for instance one can choose Π1 and
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Ψ0. Since the order of Π1 is m, Ψ0 is an involution, and Ψ0Π1 is also an involution, Dm

is isomorphic to the dihedral group of order 2m.
Let π : Zm 7→ Zm denote the permutation defined for all k ∈ Zm by

π(k) = the last letter of ϕ(k) = k + b− 1 = Πb−1(k).

Let q denote the order of π, i. e., the smallest positive integer q such that q(b − 1) ≡ 0
(mod m).

The following properties will help us to prove the next proposition.

Property I. For all x ∈ Zm, we have Πxϕ = ϕΠx and Ψxϕ = ϕΨx+b−1.

P r o o f . It follows directly from the definitions of ϕ, Πx and Ψx. �

Property II. L2(tb,m) = {πk(r − 1)r | r ∈ Zm, 0 ≤ k ≤ q − 1}.

P r o o f . Denote by L0 = {(r − 1)r | r ∈ Zm}. It is clear that L0 ⊂ L2(tb,m). For all
i, denote by Li+1 the set of factors of length 2 of the words ϕ(w) for all w ∈ Li. From
the definition of π, it is clear that Li = {πk(r− 1)r | r ∈ Zm, 0 ≤ k ≤ i}. The definition
of q then guarantees Lq−1 = Lq and the equality Lq−1 = L2(tb,m) follows from the
construction of the sets Li. �

Proposition 3.1. The language of tb,m is closed under all elements of Dm.

P r o o f . We show the claim by induction on the length n of factors. We first verify the
claim for n = 2. Using Property II, it is easy to show that L2(tb,m) is invariant under
all elements of Dm.

Suppose now the claim holds for factors of length n ≥ 2 and take w ∈ Ln+1(tb,m).
It is clear that there exists a factor v such that 1 ≤ |v| ≤ n and w is a factor of
ϕ(v). Let x ∈ Zm. Using Property I, one has Πxϕ(v) = ϕΠx(v). Since we supposed
Πx(v) ∈ L(tb,m), it is clear that Πx(w) is a factor of tb,m Using again Property I for Ψx,
we also have Ψxϕ(v) = ϕΨx+b−1(v), and thus Ψx(w) is a factor of tb,m. �

4. Dm-RICHNESS OF tb,m

In this section we show that the word tb,m is Dm-rich. The following properties of ϕ
and tb,m can be easily deduced.

Property III. ϕ is uniform, i. e., for all k, ` ∈ Zm, |ϕ(k)| = |ϕ(`)| = b.

Property IV. ϕ is marked (see [10]), i. e., for all k, ` ∈ Zm such that k 6= `, the first
letter of ϕ(k) differs from the first letter of ϕ(`), and the same holds for the last letters.

Property V. L3(tb,m) = {πk(t−1)t(t+1) | t ∈ Zm, 0 ≤ k ≤ q−1}∪{(t−1)tπ−k(t+1) |
t ∈ Zm, 0 ≤ k ≤ q − 1}.

P r o o f . It follows from Property II and the definition of ϕ. �
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Property VI. For all words w of length 1 or 2 there exists exactly one x such that w
is a Ψx-palindrome.

P r o o f . It follows directly from the definition of Ψx. �

Property VII. If for x ∈ Zm the word w ∈ L(tb,m) is a Ψx-palindrome, then the
factor ϕ(w) is a Ψx−b+1-palindrome.

P r o o f . It follows directly from Property I. �

Property VIII. If w ∈ L(tb,m) is a BS factor and ν ∈ Dm, then ν(w) is BS factor
and b(w) = b(ν(w)).

Moreover, if w is a Θ-palindrome for some antimorphism Θ ∈ Dm, then ν(w) is a
Θ′-palindrome for some Θ′ ∈ Dm.

P r o o f . Property IV and Proposition 3.1 guarantee the first part of the statement.
The second part of the statement can be verified by setting Θ′ = νΘν−1. �

Property IX. If w = w0 . . . ws−1 ∈ L(tb,m) and there is an index i such that wi+1 6=
wi + 1, then w has exactly one ancestor.

P r o o f . It follows directly from the definition of ϕ and Property III. �

Property X. Let b 6≡ 1 (mod m) and w ∈ L(tb,m). If |w| > 2b, then w has exactly
one ancestor.

P r o o f . Take |w| = 2b + 1. Suppose that there is no index i such that wi+1 6= wi + 1,
i. e., w = k(k + 1) . . . (k + 2b) for some integer k. Since every ancestor of w is of length
3, it implies that there exists a factor v ∈ L3(tb,m) such that v = `(` + b)(` + 2b) for
some `. Since b 6≡ 1 (mod m), it is a contradiction with Property V. �

Property XI. If w ∈ L(tb,m) is BS and |w| ≥ b, then there exist letters x and y such
that ϕ(x) is a prefix of w and ϕ(y) is a suffix of w.

P r o o f . The claim is a direct consequence of Property IV and the definition of ϕ. �

These properties are used to prove the next two lemmas. The first lemma summarizes
the bilateral orders and Θ-palindromic extensions of longer BS factors. Since there are
no non-empty BS factors in the periodic case, we need to deal with it apart.

Lemma 4.1. If b 6≡ 1 (mod m) and w ∈ L(tb,m) is a BS factor of tb,m such that
|w| ≥ 2b, then there exists a BS factor v such that ϕ(v) = w. Furthermore, b(w) = b(v).

If v is a Θ1-palindrome for some Θ1 ∈ Dm, then there exists a unique Θ2 ∈ Dm such
that w is a Θ2-palindrome. Moreover, #PextΘ2(w) = #PextΘ1(v).

P r o o f . Let w be a BS factor of length |w| ≥ 2b.
If |w| > 2b, then the existence of a unique ancestor v follows from Property X. If

|w| = 2b and there exists an ancestor v ∈ L3(tb,m), then we have a contradiction to
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Properties XI and V. Thus, if |w| = 2b, then there exists a unique ancestor v ∈ L2(tb,m)
such that ϕ(v) = w.

Property IV guarantees that v is BS and b(w) = b(v).
Suppose v is a Ψx-palindrome for some x ∈ Zm. According to Property VII, w is

a Ψx−b+1-palindrome. The fact that there is no other such antimorphism follows from
Property VI.

The equality #PextΨx
(v) = #PextΨx−b+1(w) follows again from Property VII. �

Thanks to the last lemma, we have to evaluate only the bilateral orders and the
number of palindromic extensions of shorter factors. The next lemma exhibits these
values for required lengths of BS factors.

Lemma 4.2. Let b 6≡ 1 (mod m) and let w be a BS factor of tb,m such that 1 ≤ |w| <
2b. If Θ ∈ Dm is the unique antimorphism such that w = Θ(w), then the values b(w)
and #PextΘ(w) are shown in Table 1 below.

|w| b(w) #PextΘ(w)

1 ≤ |w| ≤ b− 1 0 1

|w| = b 1 2

b + 1 ≤ |w| ≤ 2b− 2 0 1

|w| = 2b− 1 −1 0

Tab. 1. The bilateral order and the number of palindromic

extensions of a BS factor w of tb,m according to its length |w| in the

aperiodic case b 6≡ 1 (mod m). Θ ∈ Dm is the antimorphism such that

Θ(w) = w.

P r o o f . Let w, 0 < |w| < 2b, be a BS factor and let s denote its length. It follows from
Property XI that there exists k ∈ Zm such that

w = k(k + 1) . . . (k + s− 1).

Since w = Πk (01 . . . (s− 1)), thanks to Property VIII we may take w = 01 . . . (s− 1).
Let Θ ∈ Dm be the unique antimorphism such that w = Θ(w). From the form of w

it follows that Θ = Ψs−1.
We discuss the following cases distinguished by the length s of w.

a) s = 2b− 1.
One can see that w has exactly 2 ancestors: the words 0b and (m−1)(b−1). (Both 0b
and (m−1)(b−1) belong to L2(tb,m) since πq−1(b−1)b = 0b and πq−1(b−2)(b−1) =
(m − 1)(b − 1).) The only pairs of letters x and y such that xwy ∈ L(tb,m) are
m − 1 + b − 1 and 2b − 1, and m − 1 and b. Therefore, b(w) = 2 − 2 − 2 + 1 =
−1. Since Θ = Ψ2b−2, one can see that no extension xwy is a Θ-palindrome, i. e.,
#PextΘ(w) = 0.
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b) b + 1 ≤ s ≤ 2b− 2.
One can deduce that w has 2b − s + 1 ancestors, namely (s − 2b + i)(s − b + i) for
0 ≤ i < 2b − s. (Again, all these words are factors of tb,m since πq−1(i − 1) = i − b
for all i.) The only extensions xwy appearing in L(tb,m) are (m − 1)w(s − b + 1),
(m − 1)ws, and (m + b − 2)ws. Thus we have b(w) = 3 − 2 − 2 + 1 = 0 and
#PextΘ(w) = 1 ((m− 1)ws is a Θ-palindrome).

c) s = b.
The ancestors of w are the factors 0 and (i− b)i for 0 < i < b. The extensions xwy
are (m − 1)wb, π`(−1)w1, and (m + b − 2)wπ−`(1), where 0 ≤ ` < q. Therefore,
b(w) = 2q − q − q + 1 = 1. Since the only Θ-palindromes are (m − 1)wb and
(m + b− 2)w1, we have #PextΘ(w) = 2.

d) 2 ≤ s ≤ b− 1.
The ancestors are the factors m−1, . . . ,m+s−b, the factor 0, and the factors (i−b)i
for 0 < i < s. The extensions xwy are π`(−1)ws and (−1)wπ−`(s) where 0 ≤ ` < q.
Thus, b(w) = (2q− 1)− q− q +1 = 0 and since (m− 1)ws is the only Θ-palindromic
extension, we have #PextΘ(w) = 1.

e) s = 1.
One can see that the extensions are π`(−1)w1 and (−1)wπ−`(1), where 0 ≤ ` < q.
Thus, b(w) = 0 and #PextΘ(w) = 1 as in the previous case.

�

Corollary 4.3. If b 6≡ 1 (mod m) and w is a non-empty BS factor of tb,m, then

1. there exists a unique antimorphism Θ ∈ Dm such that Θ(w) = w;

2. b(w) = #PextΘ(w)− 1.

Theorem 4.4. The word tb,m is Dm-rich.

P r o o f . First, let b 6≡ 1 (mod m). We show that

∆C(n) + 2m =
∑

Θ∈Dm
Θ antimorphism

(
PΘ(n) + PΘ(n + 1)

)
for all n ≥ 1. (4)

Note that #Dm = 2m.
First, we show the relation (4) for n = 1. It is clear that C(1) = m and C(2) = qm.

Thus, the left side equals qm−m + 2m = qm + m. According to Properties II and IV,
it is clear that

∑
Θ∈Dm

Θ antimorphism

PΘ(1) = m and
∑

Θ∈Dm
Θ antimorphism

PΘ(2) = qm. Therefore, the

right side equals qm + m.
To show the relation (4), we are going to verify that for all n ≥ 1 the difference of

the left sides for indices n + 1 and n equals the difference of the right sides for the same
indices. In other words, we are going to show that

∆C(n + 1)−∆C(n) =
∑

Θ∈Dm
Θ antimorphism

(
PΘ(n + 2)− PΘ(n)

)
(5)
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for all n.
According to the equation (3), the left side can be written as

∆2C(n) =
∑

w∈Ln(tb,m)
w BS

b(w)

and for the right side we can use

PΘ(n + 2)− PΘ(n) =
∑

w∈Ln(tb,m)
w=Θ(w)

(
#PextΘ(w)− 1

)
.

Using the fact that a non-bispecial Θ-palindrome has exactly one Θ-palindromic exten-
sion and Corollary 4.3, the relation (5) holds.

If tb,m is periodic, i. e., b ≡ 1 (mod m), the proof of the relation (5) can be done in
a very similar way and is left to the reader.

Finally, according to Proposition 1.1 and Property VI, tb,m is Dm-rich. �

5. FACTOR COMPLEXITY

To our knowledge, the factor complexity of the Thue–Morse word t2,2 was described in
1989 independently in [4] and [8] and of t2,m in [15].

In the aperiodic case, to calculate the factor complexity, one can use the equality (3)
and Lemmas 4.1 and 4.2. Table 2 shows the result: ∆C(n) and C(n). In the periodic
case, the factor complexity is trivial: C(n) = m for all n > 0.

n ∆C(n) C(n)

0 m− 1 1

1 qm−m m

2 ≤ n ≤ b qm−m qm(n− 1)−m(n− 2)

bk + 1 + `

k ≥ 1, 0 ≤ ` < bk − bk−1
qm qm(n− 1)−m(bk − bk−1)

(2b− 1)bk−1 + 1 + `

k ≥ 1, 0 ≤ ` < bk+1 − 2bk + bk−1
qm−m qm(n− 1)−m(bk − bk−1 + `)

Tab. 2. Values of ∆C(n) and C(n) of the generalized Thue–Morse

word tb,m for the aperiodic case b 6≡ 1 (mod m).
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