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KYBERNETIKA — VOLUME 48 (2012), NUMBER 4, PAGES 690-713

¢»-DIVERGENCES, SUFFICIENCY, BAYES SUFFICIENCY,
AND DEFICIENCY

FRIEDRICH LIESE

In memory of my dear friend and highly regarded colleague Igor Vajda.

The paper studies the relations between ¢-divergences and fundamental concepts of decision
theory such as sufficiency, Bayes sufficiency, and LeCam’s deficiency. A new and considerably
simplified approach is given to the spectral representation of ¢-divergences already established
in Osterreicher and Feldman [28] under restrictive conditions and in Liese and Vajda [22],
[23] in the general form. The simplification is achieved by a new integral representation of
convex functions in terms of elementary convex functions which are strictly convex at one
point only. Bayes sufficiency is characterized with the help of a binary model that consists
of the joint distribution and the product of the marginal distributions of the observation and
the parameter, respectively. LeCam’s deficiency is expressed in terms of ¢-divergences where
¢ belongs to a class of convex functions whose curvature measures are finite and satisfy a
normalization condition.
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1. INTRODUCTION

Csiszér [8] (and independently also Ali and Silvey [I]) introduced the ¢-divergence

Dy(P,Q) = /¢> <5) qdp

for a convex ¢ : (0,00) — R where p is a o-finite measure which dominates the
distributions P and ) and the integrand is appropriately specified at the points where
the densities p = dP/du and/or ¢ = dQ/du are zero. For ¢(t) = tlnt the ¢-divergence
reduces to the classical information divergence

I(P,Q) = /ln (jg) P,

which was systematically studied by Kullback and Leibler [I8] and others who recognized
its importance in information theory. For the convex or concave functions ¢(t) = t°,
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a > 0 we obtain the so-called Hellinger integrals

a l1-a
i [ () " oo

that for @ > 0, a # 1 are closely related to the divergences
Ro(P,Q) = («— 1) ' InH,(P,Q)

introduced by Rényi [33]. Note that the divergence measures —In H, (P, Q) were con-
sidered for 0 < a < 1 already in Chernoff [6] and the special case for &« = 1/2 in
Bhattacharyya [B] and Kakutani [I7].

Among the ¢-divergences one can find the basic divergence measures of probability
theory and mathematical statistics, such as the total variation | P — Q|| for ¢(t) = |t — 1],
the Pearson divergence x2(P,Q) for ¢(t) = (t — 1)2 or, more generally, the likelihood
ratio cumulants x*(P, Q) for ¢(t) = |t — 1|*,a > 1, systematically studied in Vajda [42].

Statistical applications of ¢-divergences were considered e.g. by Ali and Silvey [I],
Csiszér [9], Arimoto [2], Barron et al. [3], Berlinet et al. [4], and Vajda [45]. Decision-
theoretic applications of ¢-divergences can be found e.g. in Kailath [16], Poor [31],
LeCam [20], Read and Cressie [32], Clarke and Barron [7], Guntuboyina [I3], Nguyen
et al. [27], Torgersen [40], Osterreicher and Vajda [29], and Topsoe [39]. Jager and
Wellner [T5] used ¢-divergences to construct goodness of fit statistics and studied their
asymptotic behavior.

Due to the growing importance of divergences in information theory, statistics and
probability theory the investigation of the structure of ¢-divergences and their relations
to fundamental concepts of statistics and decision theory deserves attention. In this
sense the present paper is a continuation of Liese and Vajda [22] and [23] where a
representation of ¢-divergences in terms of the minimum Bayes error b, (P, Q) was used
to simplify the general theory of ¢-divergences. A crucial point was a second order
generalized Taylor formula for convex functions. In this point we go one step further in
this paper. Let

o(t) = 6(t) — $(1) — (t = DT (1),
where DV ¢ denotes the right derivative of ¢. The convex function 5 is centered in the

sense that it is zero at tg = 1 and has a vanishing right hand derivative at tg = 1. It is
easy to see that

Hence it suffices to deal with 5 which is represented as a spectral representation

1) = / P (tyo(dm)

in terms of the convex functions i, that are elementary convex functions in the sense
that 1), is piecewise linear and strictly convex only at the point tg = (1 — 7)/m. The
weight measure 74 is closely related to the curvature measure of the convex function ¢.
The above representation of (E is new and reduces the proof of the integral representation
of ¢-divergences (spectral representation) to the application of the Fubini theorem.
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Similarly as in Liese and Vajda [22] and [23] the spectral representation of ¢-divergen-
ces as averaged statistical information allows to prove the general form of the information
processing theorem for ¢-divergences (cf. Csiszar [9]) in a much simpler way than this
was achieved in the previous literature (see Csiszar [8] and [9], Ali and Silvey [I], and
Liese and Vajda [21]). The spectral representation of ¢-divergences, applied to suitably
chosen convex functions ¢, provides a unified and considerably simplified approach to
the different characterizations of sufficiency in the literature. For a Bayes model (X, O)
consisting of the observation X and the random and unobservable ® we show that
the Bayes sufficiency of a statistic T is equivalent with the sufficiency of (7', ©) for the
binary model {£(X, 0), L(X)®L(©)} that consists of the joint distribution £(X, ©) and
the product of the marginal distributions £(X) ® £(©). We also establish the relation
between Bayes sufficiency and a information processing theorem for the Bayes model.

Since for binary models { P, Q} sufficiency is equivalent to the equality in the informa-
tion processing theorem for at least one strictly convex function the question arise how
LeCam’s deficiency can be characterized in terms of ¢-divergences. Using the known
relation between deficiency and the minimum Bayes error probabilities b, (P, Q) we are
able to show that the deficiency of two binary models is identical with the maximum
error for ¢-divergences if we replace the distributions from the one model by the distri-
butions of the other model. The formulation “maximum error” means that in contrast
to the sufficiency we have to consider not only one convex function but some family
of convex functions. This family is characterized by a normalization condition to the
curvature measures. The established relation between ¢-divergences and deficiency gen-
eralizes the concave function criterion of decision theory.

This paper is devoted to my dear friend and colleague Igor Vajda, with whom I collabo-
rated for more than 30 years. I will remember Igor as an exceptional person, a careful
listener and a person with whom you could discuss any topic. He was an outstanding
mathematician who was full of innovative ideas. He enjoyed working with others and
was a highly appreciated colleague.

2. SPECTRAL REPRESENTATION OF ¢-DIVERGENCES

In the first part of this section we collect well known facts on convex functions defined
on (0,00) and establish some new technical results. A function ¢ : (0,00) — R is called
convex if for every s,t € (0,00) and 0 < a < 1 it holds

Plas+ (1 —a)t) < ag(s) + (1 —a)d(t).

Every convex function ¢ : (0,00) — R is continuous, the derivative from the right
D7 ¢(x) exists for every z € (0,00), the function D' ¢ is nondecreasing and continuous
from the right and the fundamental theorem of analysis holds

d(t) — P(s) = / Dt¢(r)dr, 0<s<t< oo, (2.1)

see Roberts and Varberg [34]. As DT ¢ is continuous from the right and nondecreasing
there is a uniquely determined o-finite measure 4 on the Borel sets of (0,00) that
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satisfies
ps((s,t]) = DTo(t) — DT ¢(s), 0<s<t<oo. (2.2)

The measure pg is called the curvature measure of ¢. This notation origins from the fact
that

po(B) = [ o"(t) e (2.3)
B
for every twice continuously differentiable convex functions ¢.
The classical Taylor formula can be obtained by a successive partial integration. We

use this idea and apply the integration be parts for measures. The representation ([2.1)
yields for a < b

b
6(6) ~ 6(a) - D*6(@)b— o) = [ (D*6(r) = D¥o(a)) dr
— [ =)o)
(a,b]

Similarly, for b < a
o) - 9(a) - D" o(a)o- ) = [ "(D*é(r) - D é(a)) dr
— [ @ vpa(an).
(b,a]

From here we get the generalized Taylor formula

/ (t—T)pp(dr) if 1<t<oo
1,t
o(t) = o(1) — (t— )Dre) = " 2
/ (T—t)pp(dr) if 0<t<1,
(t71]

that appears already in Liese and Vajda [22] and [23]. As the right hand terms are
nonnegative it follows that

$(t) = (t) — o(1) — (t = 1)D*¢(1) > 0. (2.5)

The application of the monotone convergence theorem to the right hand side of (2.4)
yields that the limits
(t)

= lim —~

¢()
o0 tToo

¢(0) := ltilrél ¢(t) and

exist but may take the value co. Subsequently we use the convention 0-co = 0. A crucial
point for all further considerations is a representation of ¢ in terms of elementary convex
functions. Let

7t — (7t) A (1 — 7) if 0<7m<i,t>0
1/J7r(t)={ . (26)
(1-m)—(rt)A(1—-m) if L<m<1,t>0.
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The function v, is a nonnegative, it holds D%, (t) = 0 for ¢t # (1 — m)/7 and D),
has a jump of high 7 at (1 — )/ so that the curvature measure is

Pior = TO(1—7) /- (2.7)

We see that ¥, elementary in the sense that it is piecewise linear and strictly convex
only at tg = (1 — m)/n. Later these functions appear when studying the Bayes error in
hypothesis testing problems.

For every convex function we introduce the modified curvature measure on the Borel
sets B C (0,1) by

108 = [ 1 (1) (U mpaan), 29)

where Ip denotes the indicator function of the set B. Later we will use 4 as weight
measure for the Bayes error in binary models with prior 7,1 — 7. The definition of -4
implies

/(0’1) g(m)7s(dm) = /(O’OO) g (1 i T) (14 7)py(dr),
/(O,Oo) h()p(dr) = /(071) mh (1 ;W> Yo (dr), (2.9)

for every measurable functions g : (0,1) — [0,00),h : (0,00) — [0,00). If ¢ is twice
continuously differentiable then py(dr) = ¢”(7) dr by (2.3)) and

/(0’1) g(m)s(dm) = /(O’Oo) 9 <1 Jlr T> (147)¢"(r)dr
[ ke () -

where the last equality follows from the change of variables 7 = (1 — 7)/7. To illustrate
~¢ we consider ¢, in (2.6). Then by (2.7)) and the first equation in (2.9) with g =1

10-(0.1)) = [ (14 )80y ) )
w(1+17r)1, (2.11)

™

so that the total mass of the modified curvature measure v, of the elementary convex
functions v, is one.

Now we use the modified curvature measure 7,4 to establish a generalized second
order Taylor expansion which may be considered as a spectral decomposition that gives
a decomposition of a convex function into the piecewise linear functions in .
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Theorem 2.1. If ¢ : (0,00) — R is convex, then 5 in 1) has the spectral representa-
tion

S)= [ elnstam, 0<t<e (2.12)
(E(O) = ©.1) Y (0)’% (dﬂ-)’ (2'13)
5(700 _ 7/’71(00) -

© ELM( « )%m>, (2.14)

where the functions ¥,, 0 < 7 < 1, are defined in ({2.6).
Proof. Forfixedt > 1 weset h(7) = (t—7)[1,(7) = t—tAT. Then by (2.4) and (2.9)

&w=l;)ﬂﬂwwﬂ

:/(0 1]7T<t—t/\ (1;W>>7¢(dw)

’2

:/ (mt — (mt) A (1 — 7))y (dr).

(0,3]

For 0 <t <1 weset h(1) = (1 —t)I1)(1) =7 —t A 7. It follows

s= [ w (T (7)) el

=/’ (1= ) — () A (1 — 7)) 3 ().
(31)

To prove (2.13]) we note that the family of functions 7 — 1, (t) is nondecreasing in ¢ if
1>t ] 0 so that (2.13) follows from the monotone convergence theorem. The proof of

(2.14) is similar. -

Let P, Q be distributions on (X,2). Suppose that y is any o-finite dominating mea-
sure and denote by p, ¢ their respective p-densities.

Definition 2.2. The functional

0
Dy(P.Q) :=/ ¢(p)qdu+¢(0)/ qdu+w/ pdy
{p>0,¢>0} q {p=0,4>0} ©  J{p>0,q=0}

is called the ¢-divergence of P with respect to Q.

To see that the first right-hand integral is well-defined we refer to the inequality
(2.5). We remark that D, (P, Q) may take on the value co. Moreover, the definition of
D4 (P, Q) is independent of the special choice of p.
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The concept of ¢-divergence was independently introduced by Csiszédr [§] and Ali and
Silvey [1]. This general class of functionals includes special cases which appeared in
Bhattacharyya [5], Kakutani [17], Kullback and Leibler [I§], Chernoff [6], Matusita [25],
Rényi [33]), and others. ¢-divergences have been systematically studied in Vajda [43],
Liese and Vajda [21], [22], [23] and in Liese and Miescke [24].

If ¢ : (0,00) — R is a convex function and ¥(t) = ¢(¢) + at + b then 1) is again convex
and it holds

¥(0)=9¢(0)+0b, ¥P(1)=¢(1)+a+Db, @ = @ +a
These relations in combination with Definition [2.2] yield the invariance
Dy(P,Q) — o(1) = Dy(P, Q) — 9(1), (2.15)
and especially for ¢ = ¢ in
Dy(P,Q) — ¢(1) = D3(P, Q). (2.16)

Recall that a convex function ¢ is called strictly convex at ty = 1 if ¢ not linear in
every interval (1 —e,1+¢),e > 0. It follows from that this condition is equivalent
with ps((1 —e,1+¢)) > 0 for every € > 0. As ¢ > 0 we see Dy(P,Q) — ¢(1) > 0
where equality holds for P = @. Conversely, if ¢ is strictly convex at ty = 1 the equality
Dy(P,Q) — ¢(1) = 0 implies P = Q.

In general, the functional Dy (P, Q) is not symmetric in the pair (P, Q). It is easy to
see that the adjoint function ¢*(t) = tgf)(%), t > 0, is convex and it holds

Dy(P,Q) = Dy+(Q, P). (2.17)

This means that the selfadjointness condition

o(t) =t C) , >0, (2.18)

implies the symmetry

D4(P.Q) = D4(Q. P). (2.19)
Even if the condition is satisfied, in general, Dy (P, Q)) does not define a metric in
the space of distributions. The problem is that the triangle inequality

is not satisfied, in general. For ¢(t) = |t — 1| the special ¢-divergence

IP— Q| = Dy(P,Q) =/|p—tJ|du

is the variational distance that satisfies (2.19) and fulfils the triangle inequality. It
should be noted that the variational distance is the only ¢-divergence that is a metric,
see Vajda [44]. The Hellinger distance

D(r.Q) = | [~ vara] v
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is also a metric, but it is not a ¢-divergence; the square of the Hellinger distance is a
¢-divergence. The Vincze—LeCam distance LC(P,Q), with

1 [(p—q)?
LC?*(P,Q) = = / ——du,
(P,Q) = rg
was independently introduced by Vincze [46] and LeCam [20]. The functional LC?(P, Q)
is obviously symmetric in P and @) and a ¢-divergence for the strictly convex function
(t—1)?
t) = . 2.20
o0 = S (220)
Moreover, LC(P,(Q) satisfies the triangle inequality, see Vajda [44] for details. We
consider LC?(P, Q) for the special dominating measure R = 1(P + Q). Then

L(z) := %(x) and 2— L(z) = %(m) (2.21)
and withp=L,q=2—-L,
LC*(P,Q) = /(L —1)2dR. (2.22)

For some purposes it is useful to turn to the symmetrized and normalized version

Dy (P, %(P+ Q)> + Dy (Q, ;(PH?))

S [Ca RN [P
o(t) = % ((b (12+tt) ¢ (IL)) . (2.23)

The convexity of ¢ gives for 0 < o < 1 and t; # to

1+Oét1+(1*0[)t2¢ Ot(1+t1) 2t1 + (170&)(14’152) 2t2
1+at1+(1—a)t21+t1 1+Oét1+(1—04)t21+t2

where

2
1+4h 2ty 1+t 2t
< 1-—- 2.24
=97 ¢(1+t1>+( «) 2 ¢(1+t2)’ (2:24)
. . . . . . 1 2
where the smaller sign stands for a strictly convex ¢. A similar inequality for #qﬁ(l—ﬂ)
shows that ¢ is convex and even strictly convex if ¢ does. If we take ¢(t) = (t—1)? then
2
p—4q
P = [ s plg=0)
{0y 4

is the Pearson divergence and

0= () () -4
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is just the convex function in that appears in the definition of the Vincze-LeCam
distance. This means that the Vincze-LeCam distance is the symmetrized and normal-
ized version of the Pearson divergence.

Now we study a class of divergences which is closely related to the problem of testing
simple statistical hypotheses. For distributions P,Q on (X,?) we want to find a test
¢ : X — [0,1] that minimizes the Bayes error

/(wp +(1-m)(1-p)g)dp=(1~-m)+ / p(mp — (1 —m)q) du,

where 0 < 7 < 1. Obviously, a test ¢p, called a Bayes test, minimizes the Bayes error if
and only if p-a.s.

pp=1 if 7p<(1-¢)g

pp=0 if 7p>(1-¢)q,

and the minimal Bayes error is

be(P.Q) = [ () A (1= ) (2.25)

The value w A (1 — 7) is the a priori loss before making the experiment and b, (P, Q) is
the a posteriori loss of the experiment so that the difference

BT{'(P7Q):7T/\(1_7T)_b7T(P7Q) (226)

is the statistical information in the Bayes model ((X,20),{P,Q},{m,1 — 7}), see De
Groot [11]. It is easy to see that the statistical information B, (P, Q) has the structure
of a ¢-divergence for the function ¢, i.e.

Br(P,Q) = Dy (P, Q). (2.27)

Note that the definition of B, (P, Q) implies B, (P, Q) = B1_(Q, P). The representation
leads to the conjecture that every ¢-divergence can be represented as a similar
superposition of the statistical informations B, (P, Q),0 < 7 < 1. Such representations
connect the concept of the distance of distributions measured by the ¢-divergence with
decision theoretic concepts based on the minimum Bayes risk.

Theorem 2.3. If ¢ : (0,00) — R is convex and P, @ are distributions on (X,2) then

Dy(P,Q) — o(1) = o) B (P, Q)vs(dr). (2.28)

Corollary 2.4. If ¢ is twice continuously differentiable then

DUPQ o) = [ BAPQ Lo (12T ) an

(0,1) ™

Proof. Definition for ¢ replaced with q~5 and 1) yield

DuP@ o= [ 3()adnd0am=0+“r=0)
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It follows from (2.12) and the Theorem of Fubini that

Z)gdu = =1 =) qd dm).
/{p>0,q>0} ¢ (q> e /(0,1) </{p>0,q>0} v (q> ! M) ol

The statements and yield
S(0)Q(p = 0) = o) V700 =017, (dm)

90 pypy= [ Yn()

o0 (0,1) o0

P(q = 0)y,(dm).

The sum of the left hand terms is Dy (P, Q) — ¢(1) whereas the sum of the terms on the
right hand side gives

[ P .0y (am)
which is the right hand term in (2.28)) in view of (2.27). The proof of the Corollary
follows from ([2.10)). O

The representation of ¢-divergence in the previous theorem has been established by
Osterreicher and Feldman [28], Osterreicher and Vajda [29], Guttenbrunner [14] for twice
differentiable functions ¢, and by Torgersen [40] for the special case of Hellinger integrals.
The general case was treated in Liese and Vajda [22] and [23]. The proof given here
is a considerable simplification of the approach given in [22] and [23] and is based on
Theorem 2.1

Example 2.5. Set

tint —t+1 if a=1
pa(t) = ﬁ(t“ —at-1)-1) if a#0,a#1 (2.29)
—Int if a=0

and I (P,Q) = D, (P,Q). Then I(P, Q) = I, (P, Q) is the Kullback-Leibler information
divergence. Furthermore

1@y =4 [ (Go+ ja- Vi) du=20%(7.Q),

where D(P, Q) is the Hellinger distance. Another example from the family I,(P, @) is
the Pearson divergence.

2 _ _ (v —a)? _
X (P,Q) =2I(P,Q) = dp +o00- P(q=0).
{g>0} q
The convex functions p,, in (2.29) are twice continuously differentiable and p/ () = t*~2,

pa(1) = 0. Corollary yields

Q) = [

(0,1)

(1 _ ﬂ_)a—Q

—r B (P.Q) .
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For the most often considered o = 1/2,« =1 and o = 2 we get
1 B(P,Q) Bx(P, Q)
D*(P,Q :7/ — 2 —dr, I(P,Q :/ ——— =~ dm,
( ) 2 (0,1) [(1 - 7T)7T]3/2 ( ) (0,1) (1- 7T)7T2
Bx(P, Q)

3 dr.

-

(0,1) d

Example 2.6. For the convex function ¢(t) = —t*,0 < « < 1, we have
D¢(P7 Q) = _Ha(P7 Q)

Applying Corollary to Dy (P, Q) and using ¢(1) = —1 we get

Hy(P,Q)+1=a(l- a)/ Bx (1, Q) dm

©0.1) (1 _ 7T)2—ozﬂ-1+a :

Recall that B (P,Q) =7 A (1 —7) — b (P, Q) with b, (P, Q) from (2.25) and note that
1—
a(l—a)/ de:l.
1) (

1— 7T)27a771+a

Hence

H,(P,Q)=a(l— a)/ b (P Q) dm

(0,1) (1 —m)2momlte

This formula was already established in Torgersen [40].

3. ¢-DIVERGENCES, SUFFICIENCY, AND BAYES SUFFICIENCY

In addition to the binary model M = (X, 2, {P, Q}) let now (), B) be another measur-
able space and K(B|z), B € B,z € X, be a stochastic kernel. Put

(KP)(B) = /K(B|x)P(dx), Be®,

and introduce K@ in a similar way. The model N' = (¥, B, {KP, KQ}) is called the
randomization of M. Intuitively it is clear that the model N is less informative than M
as it is harder to distinguish between K P and K () than to distinguish between P and Q.
Thus we can anticipate the inequality Dy (K P, KQ) < Dy(P, @), which is the content
of the information processing theorem firstly established by Csiszar [8] in the general
form. In preparation of this theorem we study the special ¢-divergence B, (P, Q). For
every test ¢ for N the function

ola) = [ 00Kyl
is a test for M and it holds

/1/1d(KP):/<de and /wd(KQ)z/gde.
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As b (K P, KQ) is the minimal Bayes risk we arrive at

be(KP.KQ) = inf [w / wd(KP) — (1—7) / (1— ) d(KQ)]

zigf[w/de—(l—w)/(l—w)dQ],

where the first and second supremum are taken over all tests for " and M, respectively.
Hence

Bo(KP,KQ) =7 A (1 — 1) —bs(KP,KQ) (3.1)
Sﬂ—/\(l _ﬂ—) _bﬂ'(PaQ) :BW(P7Q)

This inequality says that the original Bayes model M = ((X,2), {P, Q}) contains more
information than the randomized model N' = ((,B),{KP, KQ}).

Theorem 3.1. If (X,2) and (), B) are measurable spaces and K(B|z),B € B,z € X,
is a stochastic kernel then for every distributions P,Q on (X,2) and every convex
function ¢ : (0,00) — R,

D¢(KP’KQ)§D¢(PaQ)7 (32)

with equality holding for

B, (KP,KQ) =B,(P,Q), 0 <7 <1. (3.3)
Conversely, if ¢ is strictly convex in (0,00) then Dy(KP, KQ) = Dy(P,Q) < oo im-
plies (3.3).

Proof. The inequality (3.2) follows directly from (3.1) and Theorem where equal-
ity holds if (3.3)) is satisfied. Conversely, if Dy(KP, KQ) = Dy(P,Q) < oo then by
Theorem 2.3

0= Ds(P.Q) = Dy(KP.KQ) = [ [Ba(P.Q) - Bu(KP.KQ)]75(dm).

The integrand is nonnegative in view of (3.1)). Consequently,
vo({m: Bx(P,Q) — B(KP,KQ) =0}) = 0. (3.4)

It follows from (2.4) that ¢ is strictly convex in (0, 00) if and only if ps((a,bd)) > 0 for
every 0 < a < b < oo which is equivalent with v4((c,d)) > 0 for every 0 < ¢ < d < 1.
The continuity of the function

7+ By(P,Q) — By(KP,KQ)
and relation (3.4) provide (3.3). O

Now we specialize the kernel K. For a measurable mapping 7' : X — ) we consider
the special kernel
K(Bl|z) = d7(z)(B),
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where d, is the Delta measure on a. Then

(KP)(B) = /5T(x)(B)P(dm)
— P(T™'(B)) = (PoT")(B),

so that KP = PoT 7!, KQ = Q oT~! are the induced distributions. It turns out
that the equality in is closely related to the sufficiency of T. We briefly recall to
the classical concept of sufficiency. Let M = (X, 2, (Py)gea) be a statistical model and
(), B) be another measurable space. If T : X — ) is a measurable mapping then the
statistic T" is called sufficient for M if for every A € 2 there is a measurable function
k4 :Y — [0,1] such that for every 6 € A

Eg (IA‘T) = k‘A (T), Pg-a. S. (35)

If the family (Pp)gea is dominated by the o-finite measure p, fo(z) := %(m), 0 €A,
are the corresponding densities and T is sufficient then by the Neyman factorization
criterion there are measurable functions gg(y) and h(z) such that

fo(x) = go(T (x)) (). (3.6)
This means for a binary model ((X,2), {P,Q}) and

dQ _

P _
=

91(T(x)h(z),  f2 g2(T'(x))h(z),

which implies that the density L in (2.21]) satisfies

1 _ g1(T)
s(fi+f2) 3((T) 4 g2(T))
Therefore L is a measurable function of T. Otherwise, if this condition holds then the

Neyman criterion, applied to the dominating measure R = (P + Q)/2, yields the suffi-
ciency of T. Hence we have the following reformulation of the Neyman criterion.

Clonclusion 3.2. T : X — )Y is sufficient for ((X,2),{P,Q}) if and only if L =
dp . .
(3P+Q)) is a measurable function of T
Now we are ready to give an information theoretic characterization of sufficiency.
Theorem 3.3. Suppose T : X — ) is a measurable mapping. Then the condition ([3.3)),
with K = §r, is equivalent to each of the following conditions
A) T is sufficient for the model (X, {P,Q}),
B) LC(PoT ',QoT™')=LC(PQ),
C) Dy(PoT H,QoT ') = Dy(P,Q) < oo for a strictly convex ¢,
D) Dy(PoT ',QoT™ 1) = Dy(P,Q) for every convex ¢.
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Proof. The proof is carried out according to the following scheme
A) «— B) - €) — B3 — D) — B
A) <« B) : Recall that L is defined in (2.21). Then for every B € B
[ Eair =y)ror @) = [ LR)
B T-1(B)
= (PoT™')(B),
which gives the known relation

d(PoT 1)

m(y) = FEr(LIT =y), R-a.s.

As in (2.22) we express the Vincze-LeCam distance of P,Q and PoT 1, Qo T ! in
terms of L and Er(L|T), respectively, and obtain

LOQ(Pa Q) = ER(L - 1)27

LC*(PoT ™ ',QoT™1) = / (ER(L|IT = y) —1)*> (P o T~ 1)(dy) (3.7)
= Er(Eg(LIT) - 1)%.
Using
ErL = Er(Er(L|T)) =1,
ER(LER(L|T)) = Er(Er(L|T))?,
we get

Er(L — Er(LIT))? = LC*(P,Q) — LC*(Po T 5,QoT™).

From here we see that the condition B) holds if and only if L = dP/dR is a measurable
function of T. Applying Conclusion we see that the conditions A) and B) are
equivalent.

B) — C)is clear.

C) — (3.3): If C) holds for some convex function, say ¢g, then by the second part of
Theorem applied to ¢g, we get .

(3.3) — D) : For every convex function ¢ the first part of Theorem yields D).

D) — B)is clear. O

The equivalence of the conditions A) and C') in Theorem [3.3is an information theo-
retic characterization of sufficiency that goes back to Csiszar [§].

To relate Theorem to another testing theoretic characterizations of sufficiency let
9o (P, Q) denote the second error probability for the best level « test for testing Hy : P
versus H,4 : Q. Then by Torgersen [40], pp. 590-591:

be(P.Q) = min [ra+ (1-m)ga(P.Q)) 7€ (0,1),

3.8
9a(P.Q) = max 1L [bx(P.Q) ~ 7al, a € (0,1). .



704 F. LIESE

Theorem 3.4. Suppose T : X — ) is a measurable mapping. Then the following
conditions are equivalent

A) T is sufficient for the model (X,, {P,Q}),

B) by(PoT ',QoT ") =0,(P,Q), m€(0,1),

C) ga(PoT 'V KoT ™) =g (P,Q), ac(01).

Proof. Using (2.26) we see from Theorem [3.3|that the condition B) is equivalent with
condition A). The equivalence of B) and C) follows from ({3.8]. O

The equivalence of A) and B) is due to Torgersen [40] whereas the equivalence of A)
and C) is due to Pfanzagl [30].

Now we use the integral representation of the ¢-divergence to give a simplified char-
acterization of sufficiency in terms of the variational distance of the measures P and a@.
The following statement is due to Mussmann [26].

Theorem 3.5. Let A be dense in (0,00). T is sufficient for the model (X, {P,Q}) if
and only if
|[PoT ' —aQoT || =[P —aQ|, acA. (3.9)
Proof. Put ¢,(t) = |t — a|. Then
Dy, (P,Q) = [|[P —aQ| and Dy, (KP,KQ) = |[KP —aKQ],

and the necessity of follows from condition D) in Theorem To establish the
converse statement we fix a countable dense subset Ag C A and B(a) > 0,a € Ag with
> uen, Bla) < oo and put ¢(t) = >, c, Ba)|t — al. The function ¢ is convex and has
the curvature measure

Vo = ZGGAO Bla)ve, = Zaer B(a)26,.

As Ay is dense we have v4((s,t)) > 0 for every 0 < s < t < oo so that ¢ is strictly
convex. If (3.9) is fulfilled then

Dy(P,Q) — Dy(PoT 1,QoT™ 1)
=", B@)(Dy,(P.Q) = Dy, (PoT™ K oT ™))
—ZaeA (@)(||P = aQ|| — ||[PoT™ ' aQoT™ 1”

and the statement follows from the strict convexity of ¢ and Theorem [3.3] O

Now we deal with sufficiency in Bayes models. Given the model (X, 2, (Py)geca) we
now suppose that A is equipped with a o-algebra B that contains all one point sets
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{0}, 6 € A. Furthermore, we assume that 8 — Py(A) is measurable for every A € 2.
For a probability measure II on (A,%BA), called prior, we set

(PRI (C) = / (/ Ic(x,G)Pg(dx)> (dh), CeARBa,
(PII)(A) = / Py(A)TI(dO), A€

To have a canonical probability space, on which the random vector (X, ©) with distri-
bution P ® II is defined, we use the probability space

(X x A, A2 BA,P), P=PxII, (3.10)
and denote by X and O the projections of X x A on X and A, respectively. Then
L(X,0)=PxIl, L(X)=PI, L(O)=I

In Bayesian statistics X is observable and we want to make inference on 0. To study the
dependence between the random variables X and © we compare the joint distribution
P ® II with the product (PII) ® IT of the marginal distributions. It is clear that the
smaller this distance is, the weaker is the dependence between X and ©. To specify
the distance between the distributions P @ II and (PII) ® II we use the divergences
introduced in Definition 2.2l Set

I¢(X,@) = D¢(P®H, (PII) ® 1), (3.11)

and call I4(X, ©) the mutual ¢-information of X and ©. If ¢(z) = zlnx then I4(X, O)
becomes the classical mutual information I(X,©) of information theory, see Shannon
[36] and Cover and Thomas [10].

If the family (Py)pea is dominated by the o-finite measure p and the density fg(x) :=

%(m) is measurable in (z, §), which will be assumed in the sequel, then

d(P ®10) B
W(%G) = fo(z), poll-ae.,
m(z) == d(fu ) = / Fo(2)TI(d0), prace. (3.12)
Furthermore,
_ {Z(? it m(z) >0
w(0|z) = { : (=) it m(z) =0 (3.13)

H(B|x):/B7r(0|ac)H(d9), BeBa

are the posterior density and the posterior distribution, respectively. For the special
case of a binary prior II = 1(dg, + Jp,) the posterior distribution is concentrated on
{01,062} and it holds

. fel(x) ) = fez(x)
H({91}|I) - fGl(x)"i‘fOz(x)’ H({92}| )* f91<.’1,‘)+f92(l'). (314)
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Using the notations in (3.12) and (3.13) we may write I,(X, ©) in the following form

1x.0) = [ ([ otatolopm(eyutan) ) mias)
- /D¢(Pe7 PIITI(dY). (3.15)
If we again specialize the prior to be IT = $(Jy, + dp,) we get

1 1 1 1
I¢(X’@) = §D¢ <P91’2(P91 +P92)) + §D¢ (P92’2(P91 +P‘92)>

= Dy(Py,, Py, ), (3.16)

where $ in 1) is strictly convex for a strictly convex ¢.

Definition 3.6. Given the model (X, (Py)oeca) and a family P of priors on (A, BA)
the statistic T : X — Y is called Bayes sufficient for P if for every Il € P and every
B € B there exists a measurable function kg : Y — [0, 1] such that

P(© € B|X) = kp(T(X)), P-a.s. (3.17)
where X and © are the projections defined on the probability space (3.10)).

By Py we denote the family of binary priors
1
Po = {H I = 5(591 +592),91,02 S A} .

Theorem 3.7. If the family (Pp)gea is dominated and Py C P then the following
conditions are equivalent:

A) T is sufficient for the model (X, 2, (Pp)gea),
B) T is Bayes sufficient for P,
C) (T,0) is sufficient for the model
(XXA, AR BA,{P 1L, (PI) @ I)}) for every II € P,
D) I,(T(X),0) =I,(X,0) < 0o
for a strictly convex function ¢ and every II € P,
E) 1,(T(X).0) = I,(X.0)

for every convex function ¢ and every Il € P.

Proof.
The proof is carried out according to the following scheme
A) — B)
l

c) — E)y - D) — A
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A) — B): If T is sufficient then by and
-1
w(6l0) = | [ aornmian)| - a(rio)

is a functions of T. Then the condition (3.17)) is satisfied with

@@M»U@@mmmﬂléw@mmmw

and T is Bayes sufficient.
B) — A): Put IT = 1(dg, + bp,). Then the posterior probabilities II({6;}|z),i = 1,2 in
are functions of T'. Hence in view of Conclusion the statistic T is sufficient for
the binary model {Py,, Py, }. As for dominated models the pairwise sufficiency implies
the sufficiency we get A).
A) — O): If A) is satisfied then by

d(P ®II)

9¢(T ())
W(x’ 9) e (PII) ® IT-a.s.,

~ T 9o(T(2))11(d0)’

so that the left hand term and is a measurable function of (T',0) and C) holds in view

of Neyman’s factorization criterion.
C) — E): If C) is fulfilled then by condition D) in Theorem [3.3| we get

Dy(P @11, (PIT) @ 1)
— Dy((P @ T1) o (T,0)", (PII) & 1) o (T,0) ")

If C € B ®Ba then with Qy = PyoT !
<w®mo@@rww=/(/k@uw)%@mmw>
/(/k@ﬁWdMOHM®@®HWK

and similarly
(QI) @ ) o (7,0)~" = (QII) @ II).

The statement E) follows from (3.11]).
E) — D) is obvious.
D) — A): I 1T = 1(5p, + 69,) then by (3.16)

I¢(X’ 6) = D$(P917P92)a

and similarly
Id)(T(X)?@) = D$(P91 OT_laP92 OT_l)'

If D) is satisfied then we get

Dy(Py,, Po,) = Dg(Py, o T™1, Py, o T7Y).
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If ¢ is strictly convex then qZA) is strictly convex as well, see . Using condition C)
in Theorem we may conclude that T is sufficient for the model (X, 2, {Py,, P, })-
Since 61, 0, are arbitrary the statistic 7' is pairwise sufficient. As the family (Py)oca is
dominated the statement A) follows. O

Remark 3.8. The equivalence of the conditions A) and B) in Theorem is known,
see e.g. Schervisch [35] p. 86. It should be noted that for A) — B) the assumption
of dominance can be removed. The conditions C), D), and E) seem to be new. The
condition D) corresponds to the information theoretic characterization of sufficiency in
Theorem

4. ¢-DIVERGENCES AND DEFICIENCY OF MODELS

Let (X,2,{Py, P>}) be a binary model and (), B) be another measurable space. If the
statistic T : X — Y is sufficient and (X,2() is a standard Borel space then k4 in
can be chosen as a regular conditional distribution, i.e. there is a stochastic kernel
M(Aly), A € A,y € Y that satisfies for Q; = P, o T~!

P(AN {2 T(@) € BY) = [ MAWQi@y), =12
B
For B = ) this implies P, = M Q);,7 = 1,2, so that the two models

M= (X, A, {P,P2}) and N = (P,B,{Q1,Q2})

are mutual randomizations and therefore equivalent from the decision theoretic point
of view. This concept of sufficiency is referred to as Blackwell sufficiency. In order to
express that two models are at least approximately equivalent LeCam introduced the
concept of deficiency. Set

S(M,N) = 1%f112£11’>§ lQ: — KP|,

where the infimum is taken over all kernels K(B|x), B € B, x € X, and put
AM,N) = max(§(M,N),§(N, M)).

Then A(M,N) becomes a semimetric in the space of all binary models. It is clear that
AM,N) =0if M and N are mutual randomizations. Otherwise, two models M and
N with A-distance zero can be shown to be mutual randomizations by the so called
randomization theorem, see Strasser [37].
By the definition of A(M,N) we find, for every ¢ > 0, a stochastic kernel K such
that
1Qi — KRl < AMMA) + <.

If 4 is a test for N then for i = 1,2,

’/w(in —d(KR))| <AM,N) +e.
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As (K*¢)(z) == [¢(y)K (dy|z) is a test for M and

Jwaur) = [aev)an

we get
b0(Q1.Q0) = inf (7 [waQu+ (1= ) [(1-v)aQa)

> inf(ﬂ'/godPl +(1—-m) /(1 —p)dP) — AM,N) —¢
%)
= bﬂ—(Pl,PQ) — A(M,N) —E&.
Take € — 0, use (2.26)) and interchange the role of M and A to get

sup |Bx(P1, P2) — Bx(Q1,Q2)| < A(M,N).

But one can even show that

sup |Br(P1, Po) — Br(Q1,Q2)| = A(M,N). (4.1)

For a proof of this statement we refer to Torgersen [40]. The functionals B, are the
¢-divergences that belong to the class of convex functions

Fo={¥r:0<7m <1, ¢, defined in (2.6)}, (4.2)

see . To study the relation between A(M,N) and other ¢-divergences different
from B, we recall to the modified curvature measure 74 introduced in . We have
already seen in that . ((0,1)) =1, 0 < 7 < 1. Next we calculate the total mass
v4((0,1)) of the modified curvature measure for another class of convex functions ¢.

Lemma 4.1. For every convex and non-increasing function ¢ : (0,00) — R with

6(0) =0, ¢(00) = Jim () > oo, (4.3)
D*(0) = lim D¥o(t) > ~ox.

it holds
76((0,1)) = =D¥¢(0) — p(c0).

Proof. Take s |0 in and use ¢(0) = 0 to get
|1+ 5)0u(as) = D70t - Do0) + | ( [ 100 dmp(dS))
(0,t] (0,¢]

— D*o(t) — D*6(0) + / (D*(t) — DT o(r)) dr

(0,t]
— D*(t) — D (0) + tD*o(t) — 6(t). (4.4)
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For t — oo the limit of the left hand side in (4.4)) exists. Furthermore, D ¢(t) < 0 and
D¢ is nondecreasing. Hence lim; o, DT ¢(t) exists and is finite. Finally, lim;_. o, ¢(t)
is finite by assumption and we may conclude that

A:= lim tDT¢(t) <0

t—o0
exists. If A < 0 then
tq
o) =91 = [ 2D o(r)dr

.
implies lim;—, o ¢(t) = —oo which contradicts the assumption. Hence A = 0 and conse-
quently lim, ., DY ¢(7) = 0. Taking ¢t — oo in (4.4) we get the statement. O

The next statement shows that the deficiency of two models is small if and only if
all distances of the two distributions, measured by special ¢-divergences, are uniformly
close.

Theorem 4.2. For any two binary models
M= (X, A AP, P}) and N =(P,B,{Q1,Q2})
and any convex function ¢ with v4((0,1)) < oo it holds
|Dg(P1, P2) — Dy(Q1,Q2)| < A(M, N)74((0,1)). (4.5)
If F is any class of convex functions ¢ with 74((0,1)) = 1 that contains Fp in (4.2) then

ZUI; |Dg(P1, P2) — Dy(Q1,Q2)| = A(M,N). (4.6)
c

Corollary 4.3. Let F; be the class of all nondecreasing convex functions ¢ on (0, c0)
that satisfy

#(0) =lmo(t) =0, lim o(t) > —oo,

— D*(0) — d(c0) = 1. (4.7)

Then the statement (4.6) holds with F replaced with Fj.

Proof. The spectral representation (2.28)) implies

Dy(Pr, Py) — Dy(Qu, Q)| < / sup By (Pr, Py) — Bo(Q1, Qo) re(dr),

o<n<1

so that (4.5)) follows from (4.1)). If 7o C F then by (4.1) and

Dy, (P, Py) = Bz(P1,P;) and Dy, (Q1,Q2) = B (Q1,Q2), (4.8)
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see (2.27)), we get
AM,N) = sup |Dg(P1, P2) — Dg(Q1,Q2)|
c€Fo
< 2u£|D¢(P17P2> - D¢(Q13Q2)| < A(M7N)7
€

where the last inequality follows from and 74((0,1)) = 1 for ¢ € F. To prove the
Corollary we set 99 (¢) = —((7t) A (1 — 7r)) Then 2 (0) = 0 and

=D (0) — ¥7(00) = —(=7) = (=(1 = 7)) =1,
so that ¥2 € F1. As 42 and 1), differ only by a linear function we get from (4.8) and

(2.15) that
Br(Pr, P2) — Br(Q1,Q2) = Dyo (P1, P2) — Dyo (Q1,Q2).
Hence by (4.1))

AM,N) = sup [Dyo(Pr, P2) — Dyo(Q1,Q2)]

0<nr<1

< ;u}) |Dg(Pr, P2) — Dp(Q1,Q2)| < A(M,N),
(ST

where the last inequality follows from (4.5) and the fact that v4((0,1)) = —D*¢(0) —
¢(00) =1 by Lemma [4.1] O

Remark 4.4. In a somewhat different formulation that uses concave instead of convex
functions the statement (4.6]) is the concave function criterion in decision theory, see
e.g. Strasser [37]. The above theorem extends this result and clarifies the role of the
condition , which appeared there as a purely technical condition. Now we see
that this condition is a normalizing condition for the modified curvature measure of the
convex function ¢.
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