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KYB ERNET IK A — VO LUME 4 8 ( 2 0 1 2 ) , NUMBER 4 , PAGES 7 9 5 – 8 0 8

MODIFIED POWER DIVERGENCE ESTIMATORS
IN NORMAL MODELS – SIMULATION
AND COMPARATIVE STUDY

Iva Frýdlová, Igor Vajda and Václav Kůs

Point estimators based on minimization of information-theoretic divergences between em-
pirical and hypothetical distribution induce a problem when working with continuous families
which are measure-theoretically orthogonal with the family of empirical distributions. In this
case, the φ-divergence is always equal to its upper bound, and the minimum φ-divergence esti-
mates are trivial. Broniatowski and Vajda [3] proposed several modifications of the minimum
divergence rule to provide a solution to the above mentioned problem. We examine these new
estimation methods with respect to consistency, robustness and efficiency through an extended
simulation study. We focus on the well-known family of power divergences parametrized by
α ∈ R in the Gaussian model, and we perform a comparative computer simulation for sev-
eral randomly selected contaminated and uncontaminated data sets, different sample sizes and
different φ-divergence parameters.

Keywords: minimum φ-divergence estimation, subdivergence, superdivergence, PC simu-
lation, relative efficiency, robustness

Classification: 62B05, 62H30

1. INTRODUCTION

As was already mentioned in many previous publications, e. g. in Liese and Vajda [6],
the well-known information-theoretic divergence measures, introduced in the 60ties by
A. Renyi and I. Csiszar, cannot be directly applied in statistical estimation, since the
divergence between the theoretical absolutely continuous probability measure and the
discrete empirical probability measure takes on infinite values.

In 2006 Liese and Vajda [6] and independently Broniatowski and Keziou [1] estab-
lished a general suprema representation of φ-divergences, which can be used for min-
imum divergence estimation. Another modification, referred to as dual φ-divergence
estimators, was introduced by Broniatowski and Keziou [2] in 2009. These modifi-
cations were studied and extended by Broniatowski and Vajda [3]. They altered the
traditional φ-divergences into subdivergences and superdivergences and defined maxi-
mum subdivergence estimators with escort parameter θ and minimum superdivergence
estimators. Recently, Toma and Leoni-Aubin [7] and Toma and Broniatowski [8] ex-
plored theoretically this class of the so called dual φ-divergence estimators with respect



796 I. FRÝDLOVÁ, I. VAJDA AND V. KŮS

to robustness through the influence function approach. They deal with the asymptotic
relative efficiency of some robust hypothesis tests based on dual divergence saddlepoint
approximations in the framework of parametric models for both non-contaminated and
contaminated data (e. g. scale normal or Cauchy models).

We follow up the work of Broniatowski and Vajda [3] and focus on the important
special cases of the so-called power subdivergences, power superdivergences, and the
corresponding estimators. We describe the basic formulas for these estimators and the
relationships between them. The main interest of our research (see also [5]) is to examine
these modifications in practical use as to the consistency, robustness and efficiency of
the estimators. We focus on the well-known family of power divergences parametrized
by α ∈ R under the normal model. We run a comparative computer simulation for
several randomly selected contaminated and uncontaminated data sets, and we study the
behavior of estimators for different sample sizes and different φ-divergence parameters.

2. BASIC CONCEPTS

Let (X ,A) be a measurable space and let P̃ be a set of all probability measures on
(X ,A). If P ∈ P̃ is dominated by a σ-finite measure λ on (X ,A), then p = dP/dλ is
the Radon–Nikodym density of P with respect to measure λ. Now, let P,Q ∈ P̃. A
φ-divergence is a function Dφ : P̃ × P̃ → [0,∞] defined by

Dφ(P,Q) =
∫
X

φ

(
p

q

)
dQ =

∫
X

q φ

(
p

q

)
dλ , (1)

where φ : (0,∞) → R is a convex function, {P,Q} � λ, p = dP/dλ and q = dQ/dλ.
For this formula to be well defined, we put

q φ

(
p

q

)
=

{
q φ(0) if p = 0,
p φ(∞)/∞ if q = 0,

where φ(0) := limt→0+ φ(t) and φ(∞)/∞ := limt→∞
φ(t)

t , while ”0 · ∞ = 0”.
From now on, we shall consider only φ which are twice differentiable, strictly convex

functions with φ(1) = 0 and endowed with well defined continuous extension to t = 0+

denoted by φ(0). Let Φ be the class of all such functions. As to the probability measures,
we deal with P and Q which are either measure-theoretically equivalent P ≡ Q (i. e.
pq > 0 with respect to λ = P +Q a.s.), or measure-theoretically orthogonal P ⊥ Q (i. e.
pq = 0 λ-a.s.).

For each generating function φ it holds that φ(0) + φ(∞)/∞ > 0 and φ(1) ≤
Dφ(P,Q) ≤ φ(0) + φ(∞)/∞ for every P,Q ∈ P̃ . Moreover,

(i) Dφ(P,Q) = φ(1) if P = Q,

(ii) if φ is strictly convex at 1, Dφ(P,Q) = φ(1) iff P = Q ,

(iii) Dφ(P,Q) = φ(0) + φ(∞)/∞ if P⊥Q (i. e. P,Q are singular),

(iv) if φ is strictly convex at 1 and φ(0) + φ(∞)/∞ < ∞, Dφ(P,Q) = φ(0) + φ(∞)/∞

iff P⊥Q.
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The proofs of these properties can be be found in [9].
In the sequel, we use the power divergences

Dα(P,Q) := Dφα(P,Q), for all α ∈ R, (2)

where

φα(t) =
tα − α(t− 1)− 1

α(α− 1)
, α 6= 0, α 6= 1, (3)

with the limiting cases φ0(t) = − ln t + t− 1 and φ1(t) = t ln t− t + 1. The function φα

satisfies the relations

φα(0) =
{

1
α if α > 0 ,
∞ if α ≤ 0 ,

and φα(∞)/∞ =
{

1
1−α if α < 1 ,

∞ if α ≥ 1 ,

which implies

0 ≤ Dα(P,Q) ≤
{ 1

α(1−α) if 0 < α < 1 ,

∞ otherwise ,
(4)

for Dα divergences given by the formula

Dα(P,Q) =


1

α(α−1)

(∫
pαq1−α dλ− 1

)
, α 6= 0, α 6= 1,∫

ln q
p dQ = I(P,Q) , α = 0,∫

ln p
q dP = I(Q,P ) , α = 1.

(5)

Here, I(P,Q) denotes the Kulback–Leibler informational divergence. If 0 < α < 1 then
the right hand side equality in (4) takes place if and only if P ⊥ Q. Otherwise it takes
place if α ≤ 0 and Q 6� P or if α ≥ 1 and P 6� Q.

Let X1, X2, . . . , Xn be independent and identically distributed observations governed
by Pθ0 ∈ P, where P = {Pθ : θ ∈ Θ ⊂ Rd} is a parametric family of probability measures
on (X ,A), and we assume that for every θ1, θ2 ∈ Θ, θ1 6= θ2, it holds Pθ1 6= Pθ2 .
Moreover, we assume the family P to be nonatomic (continuous), i. e. for all θ ∈ Θ and
x ∈ X we require Pθ({x}) = 0. Let the sample X1, X2, . . . , Xn be represented by the
empirical probability measure Pn = 1

n

∑n
i=1 PXi

, where Pxi
are the Dirac probability

measures concentrated at realizations xi ∈ R of the random sample Xi, i = 1, 2, . . . , n.
For φ ∈ Φ, the parameter θ0 is the unique minimizer of the φ-divergence Dφ(θ, θ0)

with respect to θ, and since the empirical probability measure Pn converges weakly
to Pθ0 , it is reasonable to define the minimum φ-divergence estimator as follows. For
φ ∈ Φ, we say that an estimator θ̂n : Xn → Θ of the true parameter θ0 ∈ Θ is minimum
φ-divergence estimator if

θ̂n = argminθDφ(Pθ, Pn).

The problem we encounter with these estimators is that the continuous family P
and the family of empirical distributions Pemp are measure-theoretically orthogonal, i. e.
Pθ ⊥ Pn for every Pθ ∈ P and Pn ∈ Pemp. This implies that for every Pθ ∈ P and
Pn ∈ Pemp

Dφ(Pθ, Pn) = φ(0) + φ(∞)/∞ (6)
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and the above defined estimates are trivial. To face this problem, it is possible to use
some nonparametric density estimator like we did in [4] by implementing the histogram.
However, these methods bring another unpleasant obstructions such as the bandwidth
selection in case of the histogram type estimator.

In the next section, we give several modifications of the minimum divergence principle
to avoid these complications.

3. POWER SUBDIVERGENCE AND POWER SUPERDIVERGENCE
ESTIMATORS

Throughout this section, we present the results of Broniatowski and Vajda [3] which are
the main subject of our computer simulations in Section 4. We consider the probability
measures Pθ ∈ P and Q ∈ Q for Q = P ∪ Pemp and the corresponding φ-divergences
Dφ(Pθ, Q) well defined for all pairs (Pθ, Q) ∈ P × Q. Consider the family of finite
expectations

D
¯φ,θ̃ (Pθ, Q) =

∫
φ′(pθ/pθ̃) dPθ +

∫
φ#(pθ/pθ̃) dQ, (Pθ, Q) ∈ P ×Q , (7)

parametrized by φ ∈ Φ and θ̃ ∈ Θ, where φ#(t) = φ(t)− tφ′(t), φ′ denotes the derivative
of φ, pθ = dPθ/dλ and pθ̃ = dPθ̃/dλ are the probability density functions, Pθ̃ ∈ P. For
(7) to be correctly defined, we assume that the integrals exist and have finite values.

Now, the maximum subdivergence estimators (briefly, the maxD
¯φ-estimators) are

defined as

θ̃φ,θ,n = argmaxθ̃ D
¯φ,θ̃(Pθ, Pn)

= argmaxθ̃

[∫
φ′

(
pθ

pθ̃

)
dPθ +

1
n

n∑
i=1

φ#

(
pθ(Xi)
pθ̃(Xi)

)]
(8)

with the so called escort parameter θ ∈ Θ. Further, we define the minimum superdiver-
gence estimators (briefly, the min D̄φ-estimators) as

θφ,n = argminθ supθ̃ D
¯φ,θ̃(Pθ, Pn)

= argminθ supθ̃

[∫
φ′

(
pθ

pθ̃

)
dPθ +

1
n

n∑
i=1

φ#

(
pθ(Xi)
pθ̃(Xi)

)]
. (9)

The maximum subdivergence and minimum superdivergence estimators are both Fisher
consistent estimators, see [3] for details.

If we restrict ourselves to the subclasses of these estimators determined by the power
divergences (2) and (3), we have for α > 0 the formulas

θ̃α,θ,n = argminθ̃ Mα,θ(θ̃, Pn) (10)

and
θα,n = argmaxθinf θ̃ Mα,θ(θ̃, Pn) or θα,n = argmaxθ Mα,θ(θ̃α,θ,n, Pn) , (11)
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where

Mα,θ(θ̃, Pn) =


1

1−α

∫ (
pθ

pθ̃

)α

dPθ̃ + 1
αn

∑n
i=1

(
pθ(Xi)
pθ̃(Xi)

)α

if α > 0, α 6= 1,

−
∫

ln pθ

pθ̃
dPθ + 1

n

∑n
i=1

pθ(Xi)
pθ̃(Xi)

if α = 1,

(12)

and for α = 0 the formulas

θ̃0,θ,n = argmaxθ̃ Σn
i=1 ln pθ̃(Xi) and θ0,n = argmaxθ Σn

i=1 ln pθ(Xi).

It is obvious that in the case of α = 0 the estimators θ̃0,θ,n, θ0,n coincide with the MLE’s,
hence the classes of maxD

¯φ-estimators and of minD̄φ-estimators are both extensions of
the MLE. Moreover, the divergences D

¯φ,θ̃ also differ from the original φ-divergences in
general and the above mentioned problem (6) is bypassed by this modification.

3.1. Application to the normal model

Let the observation space (X ,A) be (R,B) and P = {Pµ,σ : µ ∈ R, σ > 0} be the
normal family with parameters of location µ and scale σ. We are interested in maxD

¯α-
estimates (µ̃α,µ,σ,n, σ̃α,µ,σ,n) with divergence power parameters α ≥ 0 and escort param-
eters (µ, σ) ∈ R× (0,∞).

For α = 0 these estimators reduce to

(µ̃0,µ,σ,n, σ̃0,µ,σ,n) =

 1
n

n∑
i=1

Xi,

√√√√ 1
n

n∑
i=1

(Xi − µ̃0,µ,σ,n)2
 , (13)

which are the maximum likelihood estimators in the family of normal distributions.
For α > 0, α 6= 1 the function (12) becomes

Mα,µ,σ(µ̃, σ̃, Pn) =
1

1− α

∫ (
pµ,σ

pµ̃,σ̃

)α

dPµ̃,σ̃ +
1

αn

n∑
i=1

(
pµ,σ(Xi)
pµ̃,σ̃(Xi)

)α

, (14)

where (
pµ,σ(x)
pµ̃,σ̃(x)

)α

=
(

σ̃

σ

)α

exp

{
α (x− µ̃)2

2σ̃2
− α (x− µ)2

2σ2

}
(15)

and ∫ (
pµ,σ

pµ̃,σ̃

)α

dPµ̃,σ̃ = exp

{
−α(1− α)(µ− µ̃)2

2[ασ̃2 + (1− α)σ2]
− ln

√
ασ̃2 + (1− α)σ2

σ̃ασ1−α

}
. (16)

For α = 1

M1,µ,σ(µ̃, σ̃, Pn) = lim
α→1

Mα,µ,σ(µ̃, σ̃, Pn)

=
−(µ− µ̃)2

2σ̃2
− 1

2

[
− ln

(σ

σ̃

)2

+
(σ

σ̃

)2

− 1
]

+
1
n

n∑
i=1

(
σ̃

σ

)
exp

{
(Xi − µ̃)2

2σ̃2
− (Xi − µ)2

2σ2

}
. (17)
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Now, the final full-length formulas for numerical computations of the maxD
¯φ-estimators

and minD̄φ-estimators of normal location and scale can be obtained easily from (10) and
(11) as

θ̃α,θ,n = argminθ̃

1
1− α

exp

{
−α(1− α)(µ− µ̃)2

2[ασ̃2 + (1− α)σ2]
− ln

√
ασ̃2 + (1− α)σ2

σ̃ασ1−α

}

+
1

αn

(
σ̃

σ

)α n∑
i=1

exp

{
α (Xi − µ̃)2

2σ̃2
− α (Xi − µ)2

2σ2

}
(18)

and

θα,n = argmaxθinf θ̃

1
1− α

exp

{
−α(1− α)(µ− µ̃)2

2[ασ̃2 + (1− α)σ2]
− ln

√
ασ̃2 + (1− α)σ2

σ̃ασ1−α

}

+
1

αn

(
σ̃

σ

)α n∑
i=1

exp

{
α (Xi − µ̃)2

2σ̃2
− α (Xi − µ)2

2σ2

}
(19)

for α > 0, α 6= 1. To obtain the estimators for α = 1 we only straightforwardly insert
(17) into (10) and (11).

4. COMPARATIVE SIMULATION STUDY IN THE NORMAL MODEL

In this section we consider both estimates in the normal family with scale parameter
fixed at σ = 1 denoted as P1 = {Pµ : µ ∈ R}, and in the normal family with the
location parameter fixed at µ = 0 denoted by P0 = {Pσ : σ ∈ (0,∞)}. This section is
to present the performances of the newly proposed estimators briefly described in the
previous section. We study the following two families of estimators:

(i) The power subdivergence and power superdivergence estimators of location for the
family P1 given for α = 0 by

µ0,n = µ̃0,µ,n = X̄n =
1
n

n∑
i=1

Xi

and for α > 0 by

µ̃α,µ,n = argminµ̃ Mα,µ(µ̃, Pn) , µα,n = argmaxµinf µ̃ Mα,µ(µ̃, Pn) ,

with Mα,µ(µ̃, Pn) given by (14) under parameter σ = 1 fixed, i. e.

Mα,µ(µ̃, Pn) =
1

1− α
(exp {α(µ̃− µ)(µ̃− µ)/2}))α−1

+
1

αn

n∑
i=1

exp {α(µ̃− µ)(µ̃ + µ− 2Xi)/2} . (20)

For this maximum subdivergence estimator we used three different strategies for the
choice of escort parameter µ, i. e. either µ fixed and independent of the data sample,
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or data based escort µ, which is not robust estimator (MLE), or data based escort µ,
which is robust itself (MEDian).

(ii) The power subdivergence and power superdivergence estimators of scale for the
family P0 given for α = 0 by

σ2
0,n = σ̃2

0,σ,n = S2
n =

1
n

n∑
i=1

X2
i

and for α > 0 by

σ̃α,σ,n = argminσ̃ Mα,σ(σ̃, Pn) , σα,n = argmaxσinf σ̃ Mα,σ(σ̃, Pn) ,

with Mα,σ(σ̃, Pn) given by (14) under the parameter µ = 0 fixed, i. e.

Mα,σ(σ̃, Pn) =
1

1− α

σ̃ασ1−α√
ασ̃2 + (1− α)σ2

+
1

αn

n∑
i=1

(
σ̃

σ

)α

exp
{

αX2
i

2

(
1
σ̃2

− 1
σ2

)}
. (21)

Again, for the maximum subdivergence estimator we used three basic different strategies
for the choice of escort parameter σ, i. e. either σ fixed and independent of the data
sample, or data based escort σ, which is not robust estimator (MLE), or data based
escort σ, which is robust itself (MAD variant).

Apart from section 2, here, X1, . . . , Xn are observations from the convex mixtures
Pε = (1 − ε)P + εQ̃, where P is the standard normal model N(0, 1) with location
µ = 0 and scale σ = 1, and Q̃ is successively normal N(0, 9), N(0, 100), logistic
Lo(0, 1), and Cauchy C(0, 1) distributions. The contamination ε takes on the values
0, 0.01, 0.05, 0.1, 0.2, and 0.3. The sample sizes are considered successively n = 20, 50,
100, 200, 500.

In the case of minD̄α-estimators µα,n and σα,n, we consider power parameters α = 0,
0.01, 0.05, 0.1, 0.2, and 0.5. In the case of maxD

¯α-estimators µ̃α,µ,n, we consider the same
values of power parameter α and we select the escort parameters µ = 0, 0.1, 0.2, 0.5, 1
independently of the sample X1, . . . , Xn, and then also the data based escort parameter
µ = X̄n (MLE) or µ = MED = medn(Xi) (the sample median). For maxD

¯α-estimators
σ̃α,σ,n we consider the same values of power parameter α and the escort parameters
σ2 = 0.2, 0.4, 0.5, 0.6, 0.8, 1, 1.2, 1.5, 2, and similarly the data based choices σ2 = S2

n

(MLE) or σ =MAD= medn(|Xj |) (MAD estimate of scale for known location parameter
equal to 0, otherwise σ =MAD= medn(|Xj − medn(Xi)|)), or σ = 1.483 MAD, where
the constant 1.483 is a calibration constant for the normally distributed sample ensuring
the Fisher consistency of the MAD estimate.

To evaluate the behavior of power superdivergence (or power subdivergence) esti-
mators we generated K different data samples (K=1000) and we obtained K different
estimates (further indexed by (k)). We computed means and standard deviations

m(µ) =
1
K

K∑
k=1

µ(k)
α,n , s(µ) =

√√√√ 1
K

K∑
k=1

(µ(k)
α,n −m(µ))2 ,
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m(σ) =
1
K

K∑
k=1

σ(k)
α,n , s(σ) =

√√√√ 1
K

K∑
k=1

(σ(k)
α,n −m(σ))2,

of the minD̄α-estimators (or maxD
¯α-estimators) as well as the standard maximum like-

lihood estimators X̄
(k)
n and S(k)

n in the normal model. Thus, we obtained the empirical
relative efficiencies

eref(µ) =
1
K

∑K
k=1(X̄

(k)
n )2

1
K

∑K
k=1(µ

(k)
α,n)2

and eref(σ) =
1
K

∑K
k=1(S

(k)
n − 1)2

1
K

∑K
k=1(σ

(k)
α,n − 1)2

,

which compare the performance of the subdivergence (superdivergence) estimator with
that of the MLE. If the value of empirical relative efficiency is greater than 1, we can
say that the subdivergence (or superdivergence) estimator performs better than MLE,
and if it is less than 1, we conclude the contrary.

4.1. Results for power subdivergence estimators of location

Fig. 1. Standard deviation s(µ̃) of maxD
¯

α-estimators with escort

parameter µ = 0 with respect to sample size n for data distributed by

(1− ε)N(0, 1) + εN(0, 9).

When α=0, we can conclude that the estimates coincide with MLE, i. e. eref(µ̃)=1,
as was expected. In case of escort parameter µ = 0, the maxD

¯α-estimators for uncon-
taminated data still more or less copy the behavior of MLE even for values of α > 0, but
as the contamination increases, we observe that the means and standard deviations of
maxD

¯α-estimators move apart from the MLE taking on lower values than those of the
MLE. In case of m(µ̃) the difference is only slight (yet favourable), but in case of s(µ̃)
the difference is apparent (cf. Figure 1) and causes a fair increase in empirical relative
efficiency, especially when the outliers get farther away as for the Cauchy contamination
where the robustness of estimator escorted by µ = 0 is rather stunning compared to
MLE. The behavior of eref(µ̃) for different values of power parameter α shows that the
robustness tendency is growing stronger with α increasing. Since the dependence on
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sample size n is almost constant for n > 50, we present in Figure 2 the values of eref(µ̃)
only for n = 500 as a function of contamination ε for different levels of α which show
the rising efficiency of maxD

¯α-estimator (compared to MLE with α = 0) with increasing
contamination.

Fig. 2. Empirical relative efficiency eref(µ̃) of maxD
¯

α-estimators

with escort parameter µ = 0 with respect to contamination parameter

ε for data distributed by (1− ε)N(0, 1) + εN(0, 9).

All that was stated in the previous paragraph holds for µ = 0. However, the situation
changes to the worse for the parameter µ tending to 1. The consistency, efficiency, even
the robustness tendencies slowly vanish, and apart from the case of µ = 0, the maxD

¯α-
estimators do not possess the useful properties we would desire.

In accordance with the fact that the best results we obtained were for µ = 0 which
is the true parameter, some very good results were received for the escort parameter
µ = X̄n. For the contaminations by N(0, 9), N(0, 100) and Lo(0, 1), we received perfect
match with MLE for all values of ε. Nevertheless, an outstanding behavior was noticed
in the case of contamination by Cauchy distribution, where the power subdivergence
estimator shows significant resistance to distant outliers both in s(µ̃) and eref(µ̃) (cf.
Table 1) in comparison with the MLE standard estimator.

Even though these results are very encouraging, they are not as good as for fixed
choice of escort parameter µ = 0. Better results were obtained for estimators escorted
by sample median, the well known robust estimate of location. Although the efficiencies
eref(µ̃) again are not as good as for µ = 0, it is clear that the choice of the escort sam-
ple median produces much more robust estimates than those escorted by MLE. Unlike
the MLE escorted estimators, the median escorted estimators give us excellent, robust
results for all cases with positive contamination, especially for Cauchy contamination
(cf. Figure 3). For uncontaminated data, we receive almost a perfect match with the
maximum likelihood estimator with only negligible differences from MLE.

To see whether the subdivergence estimators are at least as robust as sample median
itself, we make a comparison of median escorted subdivergence estimators with the
median itself by plugging it into the empirical relative efficiency formula instead of
MLE. We can conclude that for the uncontaminated data the median is never better than
subdivergence estimator for α = 0, i. e. the MLE. When α is increasing, the estimates
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α/n 20 50 100 200 500

m(µ̃) s(µ̃) eref(µ̃) m(µ̃) s(µ̃) eref(µ̃) m(µ̃) s(µ̃) eref(µ̃) m(µ̃) s(µ̃) eref(µ̃) m(µ̃) s(µ̃) eref(µ̃)

0.00 −0.41 24.2 1.00 0.01 25.1 1.00 0.21 6.93 1.00 −0.15 13.1 1.00 −0.42 19.0 1.00

0.01 0.30 8.75 7.66 −0.09 7.14 12.4 0.02 3.57 3.78 −0.02 4.66 7.94 0.00 3.24 34.4

0.05 −0.03 5.16 22.1 −0.06 5.06 24.6 0.02 3.57 3.78 −0.13 2.35 31.2 −0.05 2.18 76.1

0.10 −0.03 5.16 22.1 −0.07 4.27 34.6 −0.08 2.97 5.43 −0.16 2.16 36.8 −0.05 1.93 96.7

0.20 −0.10 3.60 45.2 −0.07 3.23 60.5 0.03 2.10 10.9 −0.14 1.98 43.6 −0.08 1.63 135

0.50 −0.07 2.49 94.7 −0.07 2.06 148 0.01 2.02 11.8 −0.15 1.65 62.9 −0.10 1.49 163

Tab. 1. Properties of maxD
¯

α-estimators with escort parameter

µ = X̄n for generated mixture 0.7N(0, 1) + 0.3C(0, 1).

Fig. 3. Standard deviation s(µ̃) and empirical relative efficiency

eref(µ̃) of maxD
¯

α-estimators with escort parameters µ = 0, µ = X̄n

and µ = medn(Xi) with respect to sample size n for data distributed

by 0.7N(0, 1) + 0.3C(0, 1) and divergence parameter α = 0.5.

worsen a little (which corresponds with the previous results). For the contaminated
data this trend reverses and we receive the best results for α = 0.5. In the case of
contamination by N(0, 9) or Lo(0, 1) (cf. Figure 4) we obtain estimates which are more
robust than the median itself for all levels of contamination. In case of contamination
by N(0, 100), or C(0, 1) the subdivergence estimators perform better than median only
up to five, respectively ten percent contamination. However, even in those unfavourable
cases, the subdivergence estimators are not substantially worse and their performance
is comparable with the escorting sample median itself.

4.2. Results for power subdivergence estimators of scale

As expected, for α = 0 we get the exact MLE, hence eref(σ̃) is always equal to 1. For the
uncontaminated data, the subdivergence estimators of scale more or less correspond with
the MLE’s, but they do not outperform them. When increasing α, the standard deviation
s(σ̃) increases a little, which causes a certain loss of efficiency. For the contamination
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Fig. 4. Empirical relative efficiency eref(µ̃) of the sample median and

maxD
¯

α-estimators with escort parameter µ = medn(Xi) for data

distributed by (1− ε)N(0, 1) + εLo(0, 1) and divergence parameter

α = 0.5.

ε > 0 and escort parameters σ2 = 1, 1.2, 1.5, 2 we observe a loss of consistency of
maxD

¯α-estimators, likewise for the MLE. However, with increasing contamination the
performance of maxD

¯α-estimators is better than MLE. The best results are obtained
mostly for the escort parameter σ2 ∈ 〈0.4, 0.6〉 depending on the contamination model.
Here, the estimates preserve the consistency even for highly contaminated data with
favourable values of m(σ̃) and s(σ̃) resulting in high empirical relative efficiency (cf.
Table 2). The best values of m(σ̃) were obtained for power parameter α = 0.5, however,
the best empirical relative efficiencies for small data samples were achieved at α = 0.2.
For data contaminated by N(0, 100) or C(0, 1), the subdivergence estimators perform
better then MLE even for very small level of contamination ε = 0.01 and all values of
escort parameter σ.

α/n 20 50 100 200 500

m(σ̃) s(σ̃) eref(σ̃) m(σ̃) s(σ̃) eref(σ̃) m(σ̃) s(σ̃) eref(σ̃) m(σ̃) s(σ̃) eref(σ̃) m(σ̃) s(σ̃) eref(σ̃)

0.00 1.29 0.37 1.00 1.34 0.26 1.00 1.33 0.18 1.00 1.34 0.13 1.00 1.34 0.08 1.00

0.01 1.26 0.32 1.29 1.30 0.21 1.33 1.29 0.15 1.29 1.30 0.10 1.30 1.30 0.07 1.29

0.05 1.20 0.24 2.38 1.21 0.15 2.76 1.21 0.10 2.58 1.21 0.07 2.71 1.21 0.04 2.67

0.10 1.16 0.21 3.29 1.16 0.13 4.45 1.16 0.09 4.32 1.15 0.06 4.75 1.15 0.04 4.79

0.20 1.13 0.21 3.85 1.11 0.12 6.45 1.11 0.08 7.21 1.11 0.06 8.76 1.11 0.04 9.45

0.50 1.12 0.24 3.24 1.09 0.14 6.30 1.08 0.10 8.78 1.07 0.07 13.0 1.07 0.04 16.9

Tab. 2. Properties of maxD
¯

α-estimators with escort parameter

σ2 = 0.5 for generated mixture 0.9N(0, 1) + 0.1N(0, 9).

As in the location case, we tried to escort the subdivergence estimator with the
MLE σ = Sn. However, we received only a perfect match with maximum likelihood
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Fig. 5. Empirical relative efficiency eref(σ̃) of the MLE and

maxD
¯

α-estimators with escort parameter σ = 1.483MAD and

σ = MAD with respect to sample size n for data distributed by

0.9N(0, 1) + 0.1N(0, 9) and divergence parameter α = 0.5.

estimator, showing no robustness whatsoever. This motivated us to plug in a simple
robust estimate of scale called median absolute deviation (MAD) multiplied by the
constant 1.483 ensuring the Fisher consistency in normal model. For uncontaminated
data this choice works as well as escorting by MLE, and for contaminated data the
corresponding maxD

¯α-estimators perform better than MLE (see Figure 5 in details).
Even much better results were received by escorting with median absolute deviation
where we left out the calibration constant 1.483 (cf. Figure 5). Moreover, we compared
the subdivergence estimators with MAD itself by plugging it into the eref(σ̃) formula
instead of MLE, and we see that for the values of α ≥ 0.05 the subdivergence estimators
perform even better than this robust MAD estimator (cf. Table 3). This outstanding
behavior in some cases unfortunately vanishes with huge contamination.

α/n 20 50 100 200 500

m(σ̃) s(σ̃) eref(σ̃) m(σ̃) s(σ̃) eref(σ̃) m(σ̃) s(σ̃) eref(σ̃) m(σ̃) s(σ̃) eref(σ̃) m(σ̃) s(σ̃) eref(σ̃)

MAD 0.75 0.19 1.00 0.74 0.12 1.00 0.73 0.09 1.00 0.73 0.06 1.00 0.73 0.04 1.00

0.00 1.29 0.37 0.44 1.34 0.26 0.47 1.33 0.18 0.57 1.34 0.13 0.60 1.34 0.08 0.62

0.01 1.26 0.33 0.55 1.30 0.22 0.61 1.29 0.15 0.72 1.30 0.11 0.77 1.30 0.07 0.78

0.05 1.20 0.27 0.88 1.21 0.18 1.11 1.21 0.12 1.32 1.21 0.09 1.49 1.21 0.05 1.53

0.10 1.15 0.25 1.16 1.16 0.16 1.66 1.16 0.11 2.07 1.16 0.08 2.47 1.16 0.05 2.63

0.20 1.11 0.23 1.47 1.11 0.15 2.44 1.11 0.10 3.38 1.11 0.07 4.42 1.11 0.05 5.06

0.50 1.08 0.23 1.62 1.07 0.15 3.13 1.07 0.10 5.10 1.07 0.07 7.63 1.07 0.05 10.2

Tab. 3. Comparison of MAD estimator and maxD
¯

α-estimators using

escort parameter σ = MAD for the generated mixture

0.9N(0, 1) + 0.1N(0, 9).
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4.3. Results for power superdivergence estimators

For the power superdivergence estimators of location we received a perfect match with
maximum likelihood estimator for all mixtures except for the mixture (1− ε)N(0, 1) +
εC(0, 1). In this particular case, the minD̄α-estimators show favourable robustness and
high efficiency with higher contamination (cf. Figure 6). However, these robustness
tendencies are not as strong as for the case of power subdivergence estimators escorted
by µ = 0, µ = X̄n, or µ = MED.

Fig. 6. Empirical relative efficiency eref(σ̃) of the minD̄α-estimators

with respect to sample size n for data distributed by

(1− ε)N(0, 1) + εC(0, 1) and divergence parameter α = 0.5.

When estimating the scale parameter, we also receive estimates that coincide very
well with the MLE, even in the case of contamination by Cauchy distribution. Therefore,
these estimators do not possess any reasonable robustness and we do not consider them
interesting for future research.

Another feature discouraging from the usage of superdivergence estimators is that
the related numerical computations are extremely time consuming, which is caused by
double optimization. This price is too high to pay for the above mentioned robustness,
and it strongly discourages the users from further utilization.
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