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Abstract

In this paper, we prove the stability of Noor iteration considered in
Banach spaces by employing the notion of a general class of functions
introduced by Bosede and Rhoades [6]. We also establish similar result
on Ishikawa iteration as a special case. Our results improve and unify
some of the known stability results in literature.
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1 Introduction

Many stability results have been obtained by various authors using different
contractive definitions.
Let (E, d) be a complete metric space, T : E → E a selfmap of E; and

FT = {p ∈ E : Tp = p} the set of fixed points of T in E.
For example, Harder and Hicks [10] considered the following concept to

obtain various stability results:
Let {xn}∞n=0 ⊂ E be the sequence generated by an iteration procedure in-

volving the operator T , that is,

xn+1 = f(T, xn), n = 0, 1, 2, . . . , (1)

where x0 ∈ E is the initial approximation and f is some function. Suppose
{xn}∞n=0 converges to a fixed point p of T in E. Let {yn}∞n=0 ⊂ E and set

εn = d(yn+1, f(T, yn)), n = 0, 1, 2, . . . (2)
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Then, the iteration procedure (1) is said to be T -stable or stable with respect to
T if limn→∞ εn = 0 implies limn→∞ yn = p.
By observing that metric is induced by the norm, (2) becomes

εn = ‖yn+1 − f(T, yn)‖ , n = 0, 1, 2, . . . , (3)

whenever E is a normed linear space or a Banach space.
If in (1),

f(T, xn) = Txn, n = 0, 1, 2, . . . ,

then, we have the Picard iteration process. Also, if in (1),

f(T, xn) = (1− αn)xn + αnTxn, n = 0, 1, 2, . . . ,

with {αn}∞n=0 a sequence of real numbers in [0, 1], then we have the Mann
iteration process.
For any x0 ∈ E, let {xn}∞n=0 be the Ishikawa iteration defined by

xn+1 = (1− αn)xn + αnTun

un = (1− βn)xn + βnTxn, (4)

where {αn}∞n=0 and {βn}∞n=0 are sequences of real numbers in [0,1].
For arbitrary x0 ∈ E, let {xn}∞n=0 be the Noor iteration defined by

xn+1 = (1− αn)xn + αnTqn

qn = (1− βn)xn + βnTrn

rn = (1− γn)xn + γnTxn, (5)

where {αn}∞n=0, {βn}∞n=0 and {γn}∞n=0 are sequences of real numbers in [0, 1].

2 Preliminaries

Several researchers in literature including Rhoades [23] and Osilike [20] obtained
a lot of stability results for some iteration procedures using various contractive
definitions. For example, Osilike [20] considered the following contractive defi-
nition: there exist L ≥ 0, a ∈ [0, 1) such that for each x, y ∈ E,

d(Tx, Ty) ≤ Ld(x, Tx) + ad(x, y). (6)

Later, Imoru and Olatinwo [12] extended the results of Osilike [20] and
proved some stability results for Picard and Mann iteration processes using the
following contractive condition: there exist b ∈ [0, 1) and a monotone increasing
function ϕ : �+ → �+ with ϕ(0) = 0 such that for each x, y ∈ E,

d(Tx, Ty) ≤ ϕ(d(x, Tx)) + bd(x, y). (7)

Recently, Bosede and Rhoades [6] observed that the process of “generalizing”
(6) could continue ad infinitum. As a result of this observation, Bosede and
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Rhoades [6] introduced the notion of a general class of functions to prove the
stability of Picard and Mann iterations. (For Example, See Bosede and Rhoades
[6]).
Our aim in this paper is to prove the stability of Noor iteration for a general

class of functions as well as establish similar result on Ishikawa iteration as a
special case.
We shall employ the following contractive definition: Let (E, ‖.‖) be a Ba-

nach space, T : E → E a selfmap of E, with a fixed point p such that for each
y ∈ E and 0 ≤ a < 1, we have

‖p− Ty‖ ≤ a ‖p− y‖ . (8)

Remark 1 The contractive condition (8) is more general than those considered
by Imoru and Olatinwo [12], Osilike [20] and several others in the following
sense: By replacing L in (6) with more complicated expressions, the process
of “generalizing” (6) could continue ad infinitum. In this paper, we make an
obvious assumption implied by (6), and one which renders all generalizations of
the form (7) unnecessary.
Also, the condition “ϕ(0) = 0” usually imposed by Imoru and Olatinwo

[12] in the contractive definition (7) is no longer necessary in our contraction
condition (8) and this is a further improvement to several known stability results
in literature.

In the sequel, we shall use the following Lemma which is contained in Berinde
[2].

Lemma 1 Let δ be a real number satisfying 0 ≤ δ < 1, and {εn} a positive
sequence satisfying limn→∞ εn = 0. Then, for any positive sequence {un} sat-
isfying

un+1 ≤ δun + εn,

it follows that limn→∞ un = 0.

3 Main results

Theorem 1 Let (E, ‖.‖) be a Banach space, T : E → E a selfmap of E with a
fixed point p, satisfying the contractive condition (8). For x0 ∈ E, let {xn}∞n=0

be the Noor iteration process defined by (5) converging to p, where {αn}∞n=0,
{βn}∞n=0 and {γn}∞n=0 are sequences of real numbers in [0,1] such that

0 < α ≤ αn, 0 < β ≤ βn, 0 < γ ≤ βn, for all n. (9)

Then, Noor iteration process is T -stable.

Proof Suppose that {xn}∞n=0 converges to p. Suppose also that {yn}∞n=0 ⊂ E
is an arbitrary sequence in E. Define

εn = ‖yn+1 − (1− αn)yn − αnTqn‖ , n = 0, 1, . . . ,



22 Alfred Olufemi Bosede

where qn = (1− βn)yn + βnTrn and rn = (1− γn)yn + βnTyn.
Assume that limn→∞ εn = 0. Then, using the contractive condition (8) and

the triangle inequality, we shall prove that limn→∞ yn = p as follows:

‖yn+1 − p‖ ≤ ‖yn+1 − (1− αn)yn − αnTqn‖+ ‖(1− αn)yn + αnTqn − p‖
= εn + ‖(1− αn)yn + αnTqn − ((1− αn) + αn)p‖
= εn + ‖(1− αn)(yn − p) + αn(Tqn − p)‖
≤ εn + (1− αn) ‖yn − p‖+ αn ‖Tqn − p‖
= εn + (1− αn) ‖yn − p‖+ αn ‖p− Tqn‖
≤ εn + (1− αn) ‖yn − p‖+ αna ‖p− qn‖
= εn + (1− αn) ‖yn − p‖+ αna ‖qn − p‖ . (10)

For the estimate of ‖qn − p‖ in (10), we get
‖qn − p‖ = ‖(1− βn)yn + βnTrn − p‖

= ‖(1− βn)yn + βnTrn − ((1− βn) + βn)p‖
= ‖(1− βn)(yn − p) + βn(Trn − p)‖
≤ (1− βn) ‖yn − p‖+ βn ‖Trn − p‖
= (1− βn) ‖yn − p‖+ βn ‖p− Trn‖
≤ (1− βn) ‖yn − p‖+ βna ‖p− rn‖
= (1− βn) ‖yn − p‖+ βna ‖rn − p‖ . (11)

Substitute (11) into (10) gives

‖yn+1 − p‖ ≤ εn +
(
1− (1− a)αn −αnβna

)
‖yn − p‖+αnβna

2 ‖rn − p‖ . (12)

For ‖rn − p‖ in (12), we have
‖rn − p‖ = ‖(1− γn)yn + γnTyn − p‖

= ‖(1− γn)yn + γnTyn − ((1− γn) + γn)p‖
= ‖(1− γn)(yn − p) + γn(Tyn − p)‖
≤ (1− γn) ‖yn − p‖+ γn ‖Tyn − p‖
= (1− γn) ‖yn − p‖+ γn ‖p− Tyn‖
≤ (1− γn) ‖yn − p‖+ γna ‖p− yn‖
= (1− γn + γna) ‖yn − p‖ . (13)

Substituting (13) into (12) and using (9), we get

‖yn+1 − p‖ ≤ εn +
(
1− (1− a)αn − αnβna

)
‖yn − p‖

+ αnβna
2(1− γn + γna) ‖yn − p‖

= εn+
(
1− (1− a)αn − (1− a)αnβna− (1− a)αnβnγna

2
)
‖yn − p‖

≤
(
1− (1− a)α− (1− a)αβa− (1− a)αβγa2

)
‖yn − p‖+ εn. (14)
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Observe that

0 ≤
(
1− (1− a)α− (1− a)αβa− (1− a)αβγa2

)
< 1.

Therefore, taking the limit as n → ∞ of both sides of the inequality (14), and
using Lemma 1, we get limn→∞ ‖yn − p‖ = 0, that is,

lim
n→∞ yn = p.

This completes the proof. �

Theorem 2 Let (E, ‖.‖) be a Banach space, T : E → E a selfmap of E with a
fixed point p, satisfying the contractive condition (8). For x0 ∈ E, let {xn}∞n=0

be the Ishikawa iteration process defined by (4) converging to p, where {αn}∞n=0

and {βn}∞n=0 are sequences of real numbers in [0, 1] such that

0 < α ≤ αn and 0 < β ≤ βn, for all n. (15)

Then, Ishikawa iteration process is T -stable.

Proof Assume that {xn}∞n=0 converges to p. Assume also that {yn}∞n=0 ⊂ E
is an arbitrary sequence in E. Set

εn = ‖yn+1 − (1− αn)yn − αnTun‖ , n = 0, 1, . . . ,

where un = (1− βn)yn + βnTyn. Assume that limn→∞ εn = 0. Then, we shall
prove that limn→∞ yn = p.
Using the contractive condition (8) and the triangle inequality, we have

‖yn+1 − p‖ ≤ ‖yn+1 − (1− αn)yn − αnTun‖
+ ‖(1− αn)yn + αnTun − p‖

= εn + ‖(1− αn)yn + αnTun − ((1− αn) + αn)p‖
= εn + ‖(1− αn)(yn − p) + αn(Tun − p)‖
≤ εn + (1− αn) ‖yn − p‖+ αn ‖Tun − p‖
= εn + (1− αn) ‖yn − p‖+ αn ‖p− Tun‖
≤ εn + (1− αn) ‖yn − p‖+ αna ‖p− un‖
= εn + (1− αn) ‖yn − p‖+ αna ‖un − p‖ . (16)

We estimate ‖un − p‖ in (16) as follows:
‖un − p‖ = ‖(1− βn)yn + βnTyn − p‖

= ‖(1− βn)yn + βnTyn − ((1− βn) + βn)p‖
= ‖(1− βn)(yn − p) + βn(Tyn − p)‖
≤ (1− βn) ‖yn − p‖+ βn ‖Tyn − p‖
= (1− βn) ‖yn − p‖+ βn ‖p− Tyn‖
≤ (1− βn) ‖yn − p‖+ βna ‖p− yn‖
= (1− βn + βna) ‖yn − p‖ . (17)
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Substituting (17) into (16) and using (15), we have

‖yn+1 − p‖ ≤ εn +
(
1− (1− a)αn − (1− a)aαnβn

)
‖yn − p‖

≤
(
1− (1− a)α− (1− a)aαβ

)
‖yn − p‖+ εn. (18)

Since
0 ≤

(
1− (1− a)α− (1− a)aαβ

)
< 1,

then taking the limit as n → ∞ of both sides of (18), and using Lemma 1, we
have

lim
n→∞ ‖yn − p‖ = 0,

that is,
lim
n→∞ yn = p.

This completes the proof. �
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