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TREE ALGEBRAS: AN ALGEBRAIC AXIOMATIZATION
OF INTERTWINING VERTEX OPERATORS

Icor KRI1Z AND YANG XIU

ABSTRACT. We describe a completely algebraic axiom system for intertwi-
ning operators of vertex algebra modules, using algebraic flat connections,
thus formulating the concept of a tree algebra. Using the Riemann-Hilbert
correspondence, we further prove that a vertex tensor category in the sense of
Huang and Lepowsky gives rise to a tree algebra over C. We also show that
the chiral WZW model of a simply connected simple compact Lie group gives
rise to a tree algebra over Q.

1. INTRODUCTION

The aim of the present paper is to describe a set of purely algebraic axioms
designed to capture the structure of genus 0 (or “tree level”) amplitudes in conformal
field theory. To explain this very briefly, in mathematical physics, a chiral quantum
conformal field theory consists of a system of state spaces indexed by a set of labels
A. A Riemann surface with parametrized boundary components whose boundary
components are labelled by elements of A should specify, roughly, a linear operator
from the tensor product of the state spaces corresponding to the inbound boundary
components to the tensor product of the state spaces corresponding to the outbound
boundary components. In fact, the operator is not specified uniquely. Rather, there
should be a finite vector space of such operators, and these vector spaces should
form a holomorphic bundle on the moduli space of Riemann surfaces, called a
modular functor. Certain axioms should be satisfied, in particular, when cutting a
Riemann surface ¥ along an analytically parametrized simple curve, the space of
operators corresponding to X should be isomorphic, via a prescribed isomorphism,
to the direct sum of the vector spaces corresponding to all possible labels on the
cutting curve (the spaces should be 0 for all but finitely many choices of labels
on the cutting curve). The isomorphisms should be subject to certain canonical
coherence diagrams. The operators on state spaces corresponding to the uncut
and cut Riemann surfaces should be related by trace. There should also be a
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354 I. KRIZ AND Y. XIU

special label called the zero label such that the operator corresponding to annuli
approaching the unit circle “converge” to the identity.

The main issue with such an approach is inherited from the usual issues of quan-
tum mechanics: in interesting examples, the state spaces are infinite-dimensional,
and to make the approach mathematically rigorous, we must select which category
of vector spaces we will be working in. Quantum mechanics suggests Hilbert spaces
(cf. [1I7]), in which case we are firmly in the realm of analysis. Involving analysis
certainly seems necessary if we want to make rigorous the entire structure outlined
in the last paragraph.

In the 80’s, however, it has been noticed by Borcherds [2] and Frenkel, Lepowsky
and Meurman [5] that the structure present on the state space corresponding to
the 0 label and genus 0 Riemann surfaces can be axiomatized purely algebraically.
In this approach, the state space is not a Hilbert space, but simply a graded
vector space over a field of characteristic 0. Operators corresponding to round
domains (the unit disk with a finite set of disks removed, all boundary components
parametrized linearly) are encoded in a structure called (graded) vertex algebra. If
one wishes to look beyond round domains, one does not consider arbitrary Riemann
surfaces of genus 0, but rather infinitesimal variations of boundary parametrization,
the effect of which is described by what is known as the conformal element or
energy-momentum tensor.

The goal of the present paper is to propose an extension of the vertex algebra
axiomatization to intertwining operators, i.e. operators on state spaces involving
the entire set of labels A of a chiral conformal field theory, purely in the language of
algebra. In particular, a test of the success of such an approach is that it should be
valid over any field of characteristic 0. (Note: in this paper, we only deal with round
domains, we do not consider conformal elements). This advances the program of
making conformal field theory a purely algebraic object, which is a well known
desideratum. It is related, for example, to the Grothendieck-Teichmiiller program
[8, [10], and, viewed from a different perspective, the geometric Langlands program
(cf. [I).

There is, however, a major difficulty. It is well known that in interesting examples
(e.g. parafermions or the chiral WZW models), the intertwining operators corres-
ponding to non-zero labels (even for round domains) fail to be algebraic. Typically,
rather, one gets hypergeometric functions (which are transcendental) and their ge-
neralizations (cf. [7, [I5]). Considering this, our task may seem impossible. Because
of this, axiomatic systems have been developed which combine algebra and analysis,
in particular the concept of vertex tensor category by Huang and Lepowsky [14].

Yet, the same examples point toward a possible solution: although the correlation
functions for non-zero labels are not algebraic, they satisfy differential equations
which are algebraic. An example is given by the Knizhnik-Zamolodchikov equations
in the case of the WZW model (cf. [15]). In fact, similar equations have been
formulated by Y.Z. Huang for a large range of examples in [I3].
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What we do in the present paper is formulate purely algebraic axioms the
Huang-Knizhnik-Zamolodchikov equations should satisfy in an algebraic model of
chiral conformal field theory in genus 0. The main obstacle to doing so is the sheer
complexity of the structure involved. Even the algebraic axiomatization of a vertex
algebra [2, [5] (i.e. the case of the 0 label) involves the remarkably complicated
Jacobi identity. To make things worse, a straightforward generalization of the
Jacobi identity to intertwining operators is false. Although Huang [12] has obtained
a more complicated generalization of the Jacobi identity for intertwining operators,
devicing a workable system of axioms from this approach seems daunting. To get a
handle on the structure in the present paper, we make substantial use a simple
interpretation of the vertex algebra axioms obtained by Hortsch, Kriz and Pultr [9]:
a graded vertex algebra is essentially the same thing as an algebra over a certain
co-operad (the “correlation function co-operad”), which can be easily described
explicitly.

The present paper is organized as follows: We write down the general axioms
in Section [2] below; we call the resulting algebraic structure a tree algebra. In
Section [4] we discuss a version of the Riemann-Hilbert correspondence (cf. [4])
in the present setting, and prove that a vertex tensor category in the sense of
Huang and Lepowsky [14] can be realized as a tree algebra over C “with regular
singularities”, which is a completely algebraic object. At the end of Section [d] we
also give an example showing that the chiral WZW model for a simply connected
simple compact Lie group can be realized as a tree algebra over Q.

2. THE BASIC DEFINITIONS

Let F' be any field of characteristic 0. We recall from [9] the ordered configuration
space C(n) = C(z1,...,2,) of n distinct points zi,...,2, in Al. Denote the
coefficient ring of the affine variety C(n) by C(n). It is advantageous to consider
C(n) =C(z,. .., 2n) a Z-graded ring with grading by total degree of a homogeneous
rational function. In [9], it is shown that the system (C(n)) is a graded co-operad:
the co-multiplication

(1) C(Z11y -+ ZLnys ey Zhly -« Zhkny )0
= C(21y s 2k) e @ C(t115 - - -y ting )oy @ - @ C(tk1y - -, thny ey,
with £y + - -+ + £, = £ is given by setting
Zij = tij + 2
and expanding
(2) (tij +2i —ting —zi) ™, Qi F#d
by rewriting as
(tij + (i — zir) — tirys) ™",
and expanding in increasing powers of t;; and t;;;. Moreover, it is shown in [9]

that vertex algebras in a suitable sense can be characterized as graded algebras
over the graded co-operad C.
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Define, for Z-graded F-vector spaces A, B, a Z-graded vector space

(A®B), = colim || Ar® Bn_i
ko k>ko

If A, B are (commutative) rings, so is (in a natural way) A®B. One checks that
the structure map takes the form

(3) C(ma+ - +my) = (C(m1) @ - @ C(mn))RC(n),

and is a homomorphism of graded rings. (Note: In the definition of a graded
co-operad, separate operations appear in each multi-degree on the right which adds
up to the degree on the left. Because of this, when encoding the structure map by
a single symbol, infinite sums on the right can occur. This is the reason for the
appearance of the & sign; see [9].)

Note that C(0) = F, so selecting ¢ among n coordinates gives us a “co-augmentation”

(4) C(n—i) — C(n).

The purpose of this paper is to extend this definition to a fully algebraic treatment
of tree-level amplitudes of chiral conformal field theories. This makes it possible to
define, at least on the level of chiral tree-level amplitudes, “rational conformal field
theory” as “conformal field theory over Q”. This is possible despite of the fact that
these amplitudes are usually transcendental: typical examples are hypergeometric
functions [7]. The reason that an algebraic treatment is possible is because we
can describe algebraic flat connections with reqular singularities whose solutions
are the desired amplitudes, and characterize the precise algebraic structure these
connections are required to obey. To this end, we must first develop the theory of
such connections: the reason this is non-trivial is that we need a suitable treatment
of the grading, which in particular should capture a concept of “total degree” of
the solution, which is to be an element of the field F'.

We consider the ring of Kéhler differentials Qé (n)/F" and equip it with a Z-grading
so that the universal differentiation

is a graded homomorphism of F-modules (of degree 0). Then Qé(n)/F is a free

C(n)-module on the basis dz1, ..., dz,. Let M be a projective graded C(n)-module.
Then a homogeneous connection is a map of graded F-modules

Vi M = M ®c(n) Qny/r
which satisfies, for f € C(n), m € M,
V(fm)=mdf + fV(m).
We say that the connection V is flat when it satisfies the Maurer-Cartan equation

(5) (18d)V =—(Ve1)V
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where both sides are considered as maps into M ®c(y,) Q?}(n) JF (Note: This is
equivalent to equipping M with a structure of an algebraic D-module. A general
D-module, however, does not have to be projective, although finitely generated
C(n)-modules are (see [3] VI, Proposition 1.7.)

Next, our aim is to define the degree of a flat homogeneous connection. We first
define the degree of the difference of two flat homogeneous connections. In effect,
such difference

E=V,—-V,,
written in matrix form as
(6) E = Eydzy +--- + Endz,, E; € Homeny (M, M)
is said to have a degree when
(7) Eizi+- -+ Epzy =F(21,...,2,) ldy

for some function
F(z1,...,2n) €C(n).

Clearly, this property is invariant under linear change of the variables z1,..., z,.

Lemma 1. When a difference E of two flat connections has a degree, then deg(E) =
F(z1,...,2,) is a constant function of z1,...,zn.

Proof. In coordinates, reads

O0FE; OF; 1
8 - = __[E;, E;].
Now compute
—FE . Z=n
071 1+ 07 ot 01
(9)
OF oFE; 1
—F bt R e — =|E1,z21E1 + - - - WEn].
1+Zl(‘3z1 Tt 0zn 2[ LAt J

The Lie bracket @D vanishes because of our assumption . The first term vanishes
by the following Lemma and the fact that E is a homogeneous connection. Thus,
@ vanishes. An analogous argument holds with z; replaced by any z;, which proves

the statement of the Lemma. O
Lemma 2. A function f of n variables z1,...,z, is homogeneous of degree k if
and only if

0 0
(10) zl—f—i—-"—i—zn—f:kf.

z1 Ozn,
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Proof. Suppose f is homogeneous of degree k. By the chain rule,

da” d Caz,
1) R ) = S, ) = T 00)
af(tla"'atn) af(tla"'atn)
12 - - -z +...+7 © Zn
( ) otq (az1,...,azy) ! Oty (az1,...,azy)
_ of of

13 = a" 1( oL ni) .
( ) “ 1 82’1 + Tz 8Zn
Conversely, if holds,

df(Az1,.. ., Azn) Zzaf(tl, ceytn) kf(Azr, ., Az)

d\ AT N )y ‘

Studying the solutions of the ODE y'()\) = k—Ay gives the result. O

Lemma 3. Suppose M is a graded C(n)-module and V is a flat homogeneous
connection. Suppose g: M — M be an isomorphism of C(n)-modules which is
homogeneous of degree £. Then

(14) V+g ldg

is a flat homogeneous connection, and the difference g~'dg has degree £.

Proof. A direct consequence of Lemma O

The connections V, of Lemma |3| will be said to have the same monodromy.

Now we define the degree of a homogeneous flat connection V on M. Let us first
assume that M is a free graded C(n)-module. Let ¢ = (41, ..., ¢x) be a C(n)-basis
of M consisting of elements of degree 0. Then we say that the flat homogeneous
connection

Vg:aipr+ -+ apdp — (dar)dy + - - + (dag) px
has degree 0. An arbitrary flat homogeneous connection V is said to have degree
0 when the difference V — V4 has degree 0. This definition is consistent since by
Lemma for two degree 0 bases ¢, ¥, V4 — Vy, has degree 0.

When M is a projective C(n)-module, consider a direct summand embedding
M C N where N is a free C(n)-module. We say that a flat connection V on M has
degree 0 when there exists a commutative diagram

M —V> M ©c(n) Q1
(15) ol c gl@ld
N —2> N @c(n) Qe )/

where N is a free C(n)-module and V' is a flat homogeneous connection of degree
0, and ¢ is an inclusion of a graded direct summand.
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Lemma 4. This notion of degree 0 flat homogeneous connection does not depend
on the choice of the graded direct summand inclusion t.

Proof. Consider two such direct summand embeddings ¢: M — N, //: M — N'.
Clearly, we may assume

(16) N=N'".
Let the direct complements of ¢, ¢’ be K, K’, respectively. We may assume
(17) K>K'

(by replacing, if necessary, N with N & M & K). Now assuming 7 , we can
produce a diagram of C(n)-modules

—t e N

M
1
M

> N
’
L

for some graded isomorphism f: N — N (of degree 0) of graded C(n)-modules.
The statement then follows from Lemma Bl O

Comment: We do not know whether every projective C(n)-module M, or even
one endowed with a flat homogeneous connection of degree 0, is free.

Let M; be modules over Z-graded commutative rings R;, and suppose we
have homogeneous connections E; on M,;. Then there is a natural homogeneous
connection E on the ) R;-module ) M; given by

(18) Evi®@--®@vp)= > 11® @01 ®E;j(v;) Qviz1 ® - @ vy, .
i=1

The same formula also defines a natural homogeneous connection on M; QM.

If R — S is a map of Z-graded commutative rings, M is a graded R-module
and we have a homogeneous flat connection £ on M, then there is a natural
“pushforward” homogeneous flat connection £ ®p S on M Qg S, since we have a
natural map

Qp/r ®r S — Qgyp -
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3. TREE FUNCTORS AND TREE ALGEBRAS

Let A be a set (called set of labels). A pre-tree functor (A, M) is a system of
graded C(n)-modules My, ., . and graded module isomorphisms

My A Ao OC(miteretmn) (C(mM1) @ -+ @ C(my)BC(n))

(19) iu

n
@ ( ® M)\ilwug)\imi’)\i)®M)\1’~~a)\nu)\oc
Ao A, =1

which must make My, ., r. a A-sorted Z-graded C-module co-operad. We will
also assume that there be a distinguished element 1 € A such that

My_ =0 if Ao £ 1

(20) F=C0) if Ae=1.

It follows that the co-augmentation induce an isomorphism

(21) M,y amdoe @c(n—iy) C(N) ——= M1 15 1, A Ao -

A pre-tree functor is called finite if all the projective C(n)-modules My, . i, .
are finite rank. A pre-tree algebra (A, M,V, «, ¢) consists of a pre-tree functor M, a
system of Z + ay-graded vector spaces V) such that a; = 0, and homomorphisms
of C(n)-modules

(22)  Ordnnee Moy — Hom((Vy,) @ ... (®V4,), (Vi) ®@F C(n))
homogeneous of degree
(23) Qoo — Q1 =+ — Qp

such that if we choose labels A11,..., Apm,, , Aoo, and denote, for a graded C(mq +
-+ +my,)-module X, put

X=X QC(ma+-+mn) Cm)®---® C(mn)®C(n)) )

and put

n
M = @ ( ® M/\i1,-~~7)\mi7>\i)®M)\17---1>\n,>\oo7
Av

i i=1

n

V= ® ( ® Hom( ® Vi,,Va, ®C(m;)))@Hom ( Q Vi,, Vi ®C(n)),
N : :

i i=1 g i
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we have a commutative diagram

n /
(M)\u ,,,,, Anmn,)\x)/ I <HOH1(V>\11 X V)\nmna C( E mz)))

(24) . | -

M - v,
3. &

where the top and bottom row are induced by the appropriate cases of , the
left column is induced by an appropriate case of , and the right hand column
is induced by composition.
There is also the obvious equivariance axiom and a unitality axiom which asserts
that 1 € M, x» maps in
HOIn(V)\, Vi ® C(l))

to Id ®1. A pre-tree algebra is called finite if its pre-tree functor is finite.

A tree functor (A, M, E) consists of a pre-tree functor (A, M), and a system of
homogeneous flat connections

(25) 2 VI WP
of degree on My, ., A, such that
(1) The connections are equivariant with respect to the obvious action of

E'n
(2) The connection for \y = --- = A\; = 1 has the same monodromy as

the pushforward of the connection Ej, 1o AmAse along the natural map
C(n — i) — C(n) induced by co-inserting C(0) to the first ¢ coordinates.
(3) The pushforward of the connection
Exiiv A nmn
via the structure map
(26) Clmi+---4+my) — Clm1) @...C(myp)RAC(N)

is equal to
n
@ ( ® E)\ilwwa)\imiy)\i)®E/\1:d0tsa)\n'
; i=1
(4) The connection E} y is the pushforward of the connection dz via the map
C(l) — M 5.

A tree algebra (A, M,V,a, ¢, E) consists of a pre-tree algebra (A, M,V,«, ¢),
and a structure (A, M, E) of a tree functor on its pre-tree functor (A, M).

This data are somewhat redundant. There is no natural choice of the numbers
a), they are only determined modulo 1. Because of that, it is important to define
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isomorphism of tree algebras. To this end, there is an obvious notion of isomorphism
of tree functors, and an obvious notion of isomorphism involving graded isomor-
phisms of the spaces V), so all we need to discuss is isomorphism of tree algebra
on the same tree functor and the same data V, ¢. An isomorphism of tree algebras
(A, M,V,a, 0, E), (A, M,V, 3,0, F) consists of homogeneous isomorphisms

(27) Do P Moy daee — Moy x e
homogeneous of degree

(Broe —rss) = (Bry —an,) = = (B, —an,)
such that

—1
Fxiodnde = Exiande =950 A Q900 A A

and the pushforward of gx,, ... x... r. Via (19) is equal to

@ ®gAil,-nvAimi1>\i®g>\17---1)\n1>\oc :
AlyeensAn

4. REGULARITY

Our treatment of regular connections follows Deligne [4]. Let C' be a smooth
algebraic curve over F', and let C' be a smooth projective curve containing C'. Let
M be a (finite-dimensional) algebraic vector bundle on C, and let

(28) E:M—M Koc QlC/ Spec F’

be an algebraic connection. We say that E has regular singularities if for every
smooth projective curve C' and every embedding C' C C, and every point z € C'—C,

M ®Oc Oa:

has a basis in which the pushforward of the connection F has simple poles. A
connection E on an n-dimensional smooth separated algebraic variety X is said to
have regular singularities if for every smooth algebraic curve C' in X, the restriction
of E to C has regular singularities. We will call a tree functor (A, M, E) regular
when all the connections Ey, . i, r. have regular singularities. A tree algebra is
called regular when its tree functor is regular. This notion is clearly invariant under
isomorphism of tree algebras.

Our main goal is to establish a version of the Riemann-Hilbert correspondence
for tree functors and tree algebras over C. To this end, we must define the analytic
versions of our concepts. In effect, we may define C(n),, to be the Z-graded ring of
all holomorphic functions f on the configuration space C(n) of n ordered distinct
points in C, homogeneous in the sense that

FOz1, o Azn) = Mo f (2,00 20)
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In our grading, the degree of f is —k. We would like to have a Z-graded co-operad
structure

(29) C(ml + -4 mn)an - (C(ml)an K- & C(mn)a7l)®c(n)an ’

but the difficulty is that expanding an analytic function by a Laurent series may
present elements of arbitrarily low degrees. Replacing @ by the product of its
bigraded summands of the same total degree, we do get a Z-graded co-operad,
but the resulting objects P(my,...,m,,n) aren’t rings, so we cannot study vector
bundles in the sense of finite rank projective modules. Our solution is to replace

by
(30) Clmy+ -+ mp)an — X(M1,. .., My, N)an,

where the right hand side denotes the ring of all partially defined holomorphic
functions f on

(31) C(my) X -+ x C(my) x C(n)
where, if we denote the coordinates of by

(32) tlla s 7t1m,17' < 7tnla s 7tnmnazla sy R

then for each choice of z1, ..., z, there exists a locally uniform € > 0 such that f is
defined on when

(33) l[£351] < €.

Using and the natural inclusion
(34) C(ml)an ® Tt ® C(mn)an ® C(n)an - X(mla e amn7 n)an ’

we may define analytic (pre)-tree functors and (pre)-tree algebras in precise analogy
with the algebraic definitions. We start with C*-equivariant holomorphic vector
bundles = on C'(n). By this we mean a holomorphic bundle with a holomorphic
action of C* on the total space which is compatible with the C*-action on C(n) by

Mz1y ey zn) = Az, .00 Azn)
Then the space M of global sections of E is then naturally a graded C(n)g,-module.

We will called a projective module of finite rank if it is a direct summand of a
free module on a finite set of generators.

Lemma 5. Let X be a Stein manifold. The global sections functor defines an
equivalence of categories from the category of finite-dimensional holomorphic vector
bundles over X (and holomorphic maps over Idx ) and the category of finite rank
projective modules over the ring Hol(X) of holomorphic functions on X.

Proof. First we will prove that a holomorphic vector bundle £ of finite dimension
n on X is always a holomorphic direct summand of a finite dimensional trivial
vector bundle. First, note that this is true topologically: X is of the homotopy type
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of a dim(X)-dimensional CW complex, so by Whitehead’s theorem, the topological
classifying map ¢ of £ factors through a map ¢’ into the dim(X)-skeleton of BU(n):

X —"~ BU(n)

2y TC
EEN

BU (1) dim(x)

But BU(n)gim(x) is compact, so the restriction ~;, of the universal n-bundle =,
on BU(n) to BU(n)gim(x) is a direct summand of a finite-dimensional trivial
vector bundle. Hence, the same is true for £ topologically, which we indicate by the
subscript (?7)top:

(35) ftop 52 Ntop = Ntop -

But now the data (35]) may be represented topologically by a GL,,(C) x GLn_,(C)-
-principal bundle, so by Grauert’s principle [6], Satz 2, the data can be
represented in the holomorphic category, which we indicate by the subscript (?)gn:

(36) gan @ T]aTL g Nan M

Applying Grauert’s principle again for the groups GL,(C), GLx(C), however, we
see that

EUJI’L g 5’ Nan g N .
This shows that the global section functor in the statement of the Lemma lands in
the category indicated. To show that the functor is onto on isomorphism classes of
objects, recall that a finite rank projective Hol(X )-module can be constructed from
a free module by applying an idempotent matrix; since a free module always arises
from a trivial bundle, applying the same matrix on the bundle gives the bundle
corresponding to the finite rank projective module.

We now need to prove that the global section functor is fiathfully full. Since,
however, every object in the source is a holomorphic direct summand of a trivial
finite-dimensional vector bundle, it suffices to prove that the functor is faithfully
full on the subcategory of finite-dimensional trivial holomorphic vector bundles,
which in turn reduces to showing that the functor induces bijection of the set
of holomorphic self-maps of the 1-dimensional trivial vector bundle to the set
of holomorphic self-maps of the 1-dimensional free Hol(X)-modules. Obviously,
however, both sets are (compatibly) bijective to Hol(X). O

Corollary 6. The category of finite-dimensional C* -equivariant holomorphic
vector bundles over C(n) and holomorphic C* -equivariant homomorphisms (over
the identity on C(n)) is equivalent, via the global sections functor, to the category
of finite rank projective graded C(n)an-modules and (degree 0) homomorphisms of
graded modules.

Proof. In the case n = 1, the isomorphism class of a C*-equivariant bundle is
determined by the representation on the 0 fiber, which shows that the functor is a
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bijection on isomorphism classes of objects. Additionally, non-equivariantly, the
bundles are trivial by Grauert’s theorem [6], so in the rank 1 case, maps are simply
holomorphic functions on C, and therefore homogeneous functions are simply z*,
k > 0. This is a graded morphism if and only if the C*-action on 0-fiber of the
target is z~% tensored with the action of the O-fiber of the source. This gives the
required statement.

In the case n > 1, the action of C* on C(n) is free. The quotient C(n)y =
C(n)/C* is an affine variety whose ring of coefficients is C(n)o, the homogeneous
submodule of C(n) of elements of degree 0. (In fact, C'(n)o is canonically isomorphic
to the configuration space of n distinct points 21, ..., z, € A! with the condition
zo = z1 + 1.) The category of C*-equivariant holomorphic bundles over C(n)
and C*-equivariant holomorphic maps over Id is equivalent to the category of
holomorphic vector bundles on C(n)g. Since C(n)y is a Stein manifold, this is in
turn equivalent to the category of finite rank projective C(n)o-modules, which is in
turn equivalent to the category of graded finite type projective C(n)-modules. [

Also, a holomorphic connection on = gives rise to a connection in the C(n),,-module
sense

(37) E: M — M{dz,...,dz,};
note that we have a canonical differentiation
Cn)an — C(N)anf{dz1, ... ,dz,}.

We may then define flat, homogeneous connections and connections with a given de-
gree in terms of the algebraic connection , and we can mimic the definitions of the
previous section using the space x(mi, ..., My, N)an. One complication to the com-
patibility of our notions however is that (C(m1)®- - -®@C(m,,))®C(n) is not a subspace
of x(mi,...,Mp,n)an. Nevertheless, if we denote by x(mi,...,m,,n) the intersec-
tion of (C(my1) ® --- ® C(my))DC(n) and x(m1,...,Mp,N)an in P(my, ..., my,n),
then the right hand side of can be replaced by x(mj1,...,my,,n), which allows
a comparison.

We will need to define a regular flat homogeneous connection
E: M — M'{dt;;,dz}
on a finitely generated projective x(my, ..., my,n)-module M where
M =M Or(mi,..ymn,m) x(mi, ..., Mp,M)an -

We will say that a flat connection E on M’ is regular if each of its solutions has
moderate growth. We say that a solution g has moderate growth if for every locally
closed smooth algebraic curve C' in , every holomorphic embedding D C C
with non-zero derivative at 0 € D (where C' is a smooth compactification of C)
and every continuous function € on D such that for every = = (¢;5,2;) € D — {0},
g is defined for &’ = (dt;;, z;) whenever 0; < e(x), there exists an N > 0 such that

(3%) o) < (T16) " full =
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where u denotes the standard holomorphic coordinate on D and in , g denotes
a branch of g on a sector S of D — {0} ([4]); we may define a branch of a solution
of E on S as a holomorphic function on S which satisfies Vg = 0 where V is the
pullback of E to S. The multi-valued section g will also be referred to as regular.

Our first version of Riemann-Hilbert correspondence is the following

Lemma 7. There is an equivalence of categories (canonical up to canonical iso-
morphism) between the following categories:

Finite-dimensional C*-equivariant holomorphic wvector
(39) bundles on C(n) with a homogeneous flat connection of
degree k

Finite rank projective Z-graded C(n)-modules with a homo-

4
(40) geneous reqular flat connection of degree k.

Proof. When n = 1, then every local system on C(1) & Al is trivial. Treating
the local system as a free C(1)4,-module M with a flat connection E, a priori the
free generators of M may not be graded. However, since all homogeneous functions
on C(1) have non-negative integral degrees, we have a decreasing filtration F*M
consisting of all elements of degree > k. Then, we can consider the associated
graded object

(41) FFM/F*M .

Looking at the lowest k for which is non-trivial, the fact that M clearly
implies that is generated by homogeneous elements of degree k. Further, the
connection must be 0 on these generators by homogeneity. Consider the free graded
submodule generated by these elements by My. Then M /M, is also a free module
(the category of finite dimensional free C(1)q,-modules with flat connection is
equivalent to the category of finite dimensional C-vector spaces), so we may repeat
the argument with M replaced by M/Mj to show by induction that M is free as a
graded C(1)4,-module with generators annihilated by the connection. Since clearly
an analogous argument applies to the algebraic category, the statement follows.

Assume now n > 1. Then any z; defines an isomorphism of vector spaces from
C(n)i to C(n)k—1. The category of graded C(n)-modules and morphisms of degree
0 is therefore equivalent to the category of C(n)p-modules. Similar statements are
also valid for the corresponding analytic categories. But now C(n)g is in fact the
coefficient ring of a smooth affine variety C(n)o, which comes with an embedding
into P"~! with homogeneous coordinates z1, ..., 2, (in fact, the embedding factors
through the copy of A"~! which is the complement of the locus of z; — 23). The
statement for connections is that flat connections (algebraic or analytic) on C(n)o
correspond precisely to homogeneous connections on C(n) resp. C(n)qy, of degree 0:
This is because

dzn
Qe (nyo/F = {a17+d0t8+an € (U rlolar + -+ an =0}
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Therefore, for homogeneous flat connections of degree 0, the result follows from
Theorem 5.9 of [4], applied to the variety C(n)o = Spec(C(n)o). The case of
general degree k can be reduced to the case of degree 0 by subtracting an algebraic
connection of degree k. O

Our main interest is in the following statement:

Theorem 8. There is an equivalence of categories (canonical up to canonical
isomorphism) between the category of finite analytical tree functors (resp. algebras)
and finite reqular tree functors (resp. algebras).

Proof. Given Lemmal[7] and the fact that the two connections whose isomorphism
we are seeking are obviously regular, the statement amounts to asserting that an
isomorphism in

(42) X(mlu ceey M, n)an

between two graded regular connections on

(43) x(ma,...,mpy,n)
of the same degree is algebraic. However, this amounts to saying that every regular
function in is in . This can be shown as follows: consider a regular function
in . Then considering g as a function of the ¢;;’s for fixed z;, expand in the
total degree of all the ¢;;’s for a fixed i. Then the coefficients of fixed total degree
d; in the t;;’s for each ¢ are obviously elements of

C(mi)a, ® -+ ®@C(mn)a,

and further each of the numbers d; where the coefficient is non-zero is bounded
below by a bound N(z1,..., z,). Since this bound, however, is locally constant, it
must be in effect constant because the function involved are analytic.

Now we claim that for each given assortment of degrees dy,...,d,, the corres-
ponding component

(44) 9dy,....dn
of ¢ is in effect an element of

C(m)®@---®@C(my) ®C(n).

In fact, select the lowest (di,...,d,) (say, lexicographically) such that is
non-trivial. Then by , all summands of higher degree can be neglected, and
must be regular. Subtracting this component, we may show by induction that
all of the components are regular. (I

Definition 9. Recall the definition of vertex tensor category of Huang and Lepowsky
[14], Definition 4.1. We call a vertex tensor category semisimple if there are finitely
many objects (called irreducible objects) whose endomorphism groups are C and
such that there are mo monzero morphisms between mon-isomorphic irreducible
objects, and every object is isomorphic to a direct sum of irreducible objects, and
the unit object is irreducible.
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Theorem 10. There is a ‘realization’ functor (canonical up to natural equivalence)
from the category of vertex tensor categories and isomorphisms, to the category of
analytic tree algebras and isomorphisms, and consequently, by Theorem[§, to the
category of tree algebras and isomorphisms.

Comment: By the work of Lepowsky and Huang, vertex algebras which satisfy
certain ‘rationality’ conditions supply examples of vertex tensor categories in the
sense of [I4]. A good survey is Huang [16]. It should also be noted that the present
result overlaps with Huang’s construction [I3] of genus 0 correlation functions for
modules of vertex algebras. The major point of interest of our result is that it
extends to the algebraic category of tree algebras over C. It should be noted that
we model only a part of the structure of vertex tensor category in our axioms (e.g.
we do not treat the conformal element = energy-momentum tensor), which is one
of the reasons why we do not get an equivalence of categories in our statement.

Proof of Theorem [10l We will study the definition of vertex tensor category
[14], Definition 4.1. First of all, because we do not treat conformal element data,
we restrict attention to the subspaces K (n)o of the moduli spaces K (n) (see Huang
[T1], p.65) where the tube functions are the identity, and the scaling constant is 1.
In this setting, there is a canonical splitting of the determinant bundle, so we get a
canonical map

(45) Y K(n)y — K°(n).

Next, for a semisimple vertex tensor category V), the set of labels A is the set of
representatives of isomorphism classes of irreducible objects (we shall also write
Vx = A), and 1 corresponds to the unit object [14], Definition 4.1. (3). Now for and
@ € K(2)o, and irreducible objects Vy, V,,, we consider their tensor product [14],
Definition 4.1 (1)

(46) W= Vi By ) Vi

Then by our definition of semisimple vertex tensor category, we have a unique
decomposition up to isomorphism

(47) W= @ W,

veA
where, non-canonically,
(48) W, 2N®V,

for a finite-dimensional complex vector space N. Further, by our assumptions,
non-canonically, we have

(49) Aut(W,) = GL(N).

Property (6), together with axioms (1) and (2) of Definition 4.1 of [T4] imply that
define a principal smooth GL(N)-bundle with flat connection on the space
C(2). We let My, be the dual of the associated vector bundle (which the flat
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connection automatically makes analytic). The correlation function ¢y, . (the
analytic version of ) then follows from the universal intertwining operator from
eV, to (146)).

General correlations functions with an arbitrary number of arguments are then
produced in an analogous way by iterating the tensor product . Co-operad
associativity resp. unitality resp. equivariance follow from property (4) resp. (7)
resp. (5) of [14], Definition 4.1. Vertex algebra unitality follows from property (8).
O

Example. The chiral WZW model. Let g be a finite-dimensional simple Lie algebra
over C. In [I5], Huang and Lepowsky construct a vertex tensor category of finite
sums of irreducible lowest weight-modules L(k,\) over the quotient L(k,0) of
the affine vertex algebra M (k,0) by its mazximal ideal (=mazximal proper graded
submodule) for k =0,1,2,.... By Theorem this gives rise to a tree algebra T
over C. In effect, we have the following refinement:

Theorem 11. Let g be defined over C O k O Q. Then the tree algebra corresponding
to the Huang-Lepowsky construction can be defined over k.

Proof. The key point is to study the so called Knizhnik-Zamolodchikov equations
[15], (2.14), which define the desired homogeneous flat connection on the tree
functor. The connection is defined on the trivial C(n)-module

(50) Napoande =L(A) ® - ® L(Ay)

where L(A) is the summand of lowest degree of L(k, \). The flat connection defined
by the KZ-equations maps

frL(M\)® - ®L(A\,)
to

1 1 .
- Id®--- PR i Q- ®I1d)d
b bt IE@ Zé—Zpi( @ ®gE @@ @lddzy

(61 df

where on the right hand side, (¢g°) and (g;) are dual bases of g with respect to the
Killing form, and are inserted at the £’th and p’th coordinate, respectively.

Manifestly, the connection is defined over Q. The tree functor is actually
a direct summand of . It corresponds to g-equivariant maps from the lowest
weight summand of

to L(k, Aso) where @ encodes the moduli data [I4], which, in our case, is just the
n-tuple of points (21, ..., 2z,). By definition, all this is defined over k. O
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