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Notes on the Fuč́ık spectrum

and the mixed boundary value problem

Vendula Honzlová Exnerová

Abstract. The paper is devoted to the study of the properties of the Fuč́ık spec-
trum. In the first part, we analyse the Fuč́ık spectra of the problems with one
second order ordinary differential equation with Dirichlet, Neumann and mixed
boundary conditions and we present the explicit form of nontrivial solutions.

Then, we discuss the problem with two second order differential equations
with mixed boundary conditions. We show the relation between the Dirichlet
boundary value problem and mixed boundary value problem; using results of
E. Massa and B. Ruf, we derive some properties of the Fuč́ık spectrum of the
mixed boundary value problem. Finally, we introduce a new proof of the closed-
ness of the Fuč́ık spectrum and a lemma about convergence of the corresponding
nontrivial solutions.

Keywords: Fuč́ık spectrum, system of ordinary differential equations of the se-
cond order, Dirichlet, Neumann and mixed boundary conditions

Classification: 34A34, 34B15, 47J10

Introduction

The aim of this paper is to summarize known results about Fuč́ık spectra of
a second order differential equation and for a system of two equations of this type
and to study the problem with mixed boundary conditions.

We introduce the one equation problem in the first section and the descriptions
of Fuč́ık spectra of the problem with Dirichlet and Neumann boundary conditions
in the second one. As we have not found the explicit form of eigenfunctions for
Dirichlet and Neumann problem in the literature, we present it here. In the
third section, we apply the idea of symmetric extension of solutions of mixed
boundary value problem to prove that they are solutions of Dirichlet boundary
value problem on a different domain.

The fourth section is devoted to a two equation problem. We use works of
E. Massa and B. Ruf concerning the Fuč́ık spectra of Dirichlet and Neumann
problems. Applying the symmetrical extension, we obtain new results for the
mixed boundary conditions which have not been studied yet. Most of them are
consequences of the known results for Dirichlet and Neumann boundary value
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problem. In some cases (see Theorem 1, Remark 2, last section), we get stronger
results.

In the last section, we present a more straightforward proof of the closedness
of the Fuč́ık spectrum of the mixed boundary value problem.

1. The Fuč́ık spectrum

First, we define the main problem and its boundary conditions.
By W 1,2(I), we denote the usual Sobolev space, i.e.

W 1,2(I) = {u ∈ L2(I); u′ ∈ L2(I)}.

Definition 1. Let I ⊂ R be a bounded interval. Let µ, ν be given real numbers.
Let the problem be given by the equation

(1) −u′′ = µu+ − νu− on I,

where u± is defined by u+(t) = max{u(t); 0} and by u−(t) = max{−u(t); 0}.
We call a function u the weak solution of the problem (1) with

1. Dirichlet boundary conditions if u ∈ W 1,2
0 (I) and

(2)

∫

I

u′ϕ′ = µ

∫

I

u+ϕ− ν

∫

I

u−ϕ

holds for every function ϕ ∈ W 1,2
0 (I);

2. Neumann boundary conditions if u ∈ W 1,2(I) and (2) holds for every
function ϕ ∈ W 1,2(I);

3. mixed boundary conditions if u ∈ W 1,2(I), u(a) = 0 and (2) holds for
every function

ϕ ∈ {f ∈W 1,2(I); f(a) = 0}

provided I = (a, b).

To simplify, the problem with Dirichlet boundary conditions is called the
Dirichlet problem and the others are shortened in the same way.

Now, we can proceed with the definition of the Fuč́ık spectrum.

Definition 2. We define the Fuč́ık spectrum of the problem (1) with boundary
conditions 1, 2 or 3 to be the set of such couples (µ; ν) ∈ R

2 that the problem (1)
with parameters µ, ν and given boundary conditions has a nontrivial weak solu-
tion.

2. The Fuč́ık spectra of the problem with one equation

Before pursuing two equation problems, we would like to summarize results
concerning one equation problems.
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According to the classical eigenvalue problem and some basic computations,
we can restrict to nonnegative parameters µ, ν because for negative parameters
the problem (1) has only the trivial solution.

In the 1970’s, S. Fuč́ık investigated the Dirichlet problem.

Lemma 1 ([3, Lemma 2.8]). The problem (1) with Dirichlet boundary conditions
on the interval [0, π] has a nontrivial solution if and only if at least one of the
following conditions holds:

1. µ = 1, ν is arbitrary,
2. µ is arbitrary, ν = 1,

3. µ > 1, ν > 1 and
√
µ
√
ν√

µ+
√
ν
∈ N,

4. µ > 1, ν > 1 and
√
µ(

√
ν−1)√

µ+
√
ν

∈ N,

5. µ > 1, ν > 1 and
√
ν(

√
µ−1)√

µ+
√
ν

∈ N.

Note 1. We can explicitly write the form of solutions of the Dirichlet problem
on [0, π] with parameters (µ; ν), µν 6= 0. Set

ck := kπ

√
µ+

√
ν

√
µν

, dk := ck +
π√
µ
, ek := ck +

π√
ν

for k ∈ N0. Then the function

uD(t) :=

{
c sin

(√
µ(t− ck)

)
for t ∈ [ck, dk] ∩ [0, π],

−
√
µ√
ν
c sin (

√
ν(t− dk)) for t ∈ [dk, ck+1] ∩ [0, π],

for c > 0 and the function

ũD(t) :=

{
−d sin (√ν(t− ck)) for t ∈ [ck, ek] ∩ [0, π],√

ν√
µ
d sin

(√
µ(t− ek)

)
for t ∈ [ek, ck+1] ∩ [0, π],

for d > 0 are the weak solutions of the Dirichlet problem (1). Obviously, uD and
ũD are C2-functions and thus the classical solutions.

For the Neumann problem, it is easy to obtain the following lemma.

Lemma 2. The point (µ; ν), µ, ν ≥ 0 belongs to the Fuč́ık spectrum of the
Neumann problem (1) on the interval [0, π] if and only if it satisfies one of the
following conditions:

1. µν = 0,

2. µ > 0, ν > 0 and
2
√
µ
√
ν√

µ+
√
ν
∈ N.

Note 2. We are able to write the explicit form of solutions for the Neumann
problem on [0, π] with parameters (µ; ν), µν 6= 0 as well. Define

cNk := k
π

2

(
1√
µ
+

1√
ν

)
=
kπ(

√
µ+

√
ν)

2
√
µν
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for k ∈ N0. Then the function

uN (t) :=

{
c cos

(√
µ(t− cN2k)

)
for t ∈ [cN2k − π

2
√
µ
, cN2k +

π
2
√
µ
] ∩ [0, π],

−
√
µ√
ν
c cos (

√
ν(t− c2k+1)) for t ∈ [cN2k+1 − π

2
√
ν
, cN2k+1 +

π
2
√
ν
] ∩ [0, π],

for c > 0 and the function

ũN (t) :=

{
−d cos

(√
ν(t− cN2k)

)
for t ∈ [cN2k − π

2
√
ν
, cN2k +

π
2
√
ν
] ∩ [0, π],

√
ν√
µ
d cos

(√
µ(t− cN2k+1)

)
for t ∈ [cN2k+1 − π

2
√
µ
, cN2k+1 +

π
2
√
µ
] ∩ [0, π],

for d > 0 are the weak solutions of the Neumann problem (1). Again, uN and ũN
are evidently C2-functions and thus the classical solutions.

Note 3. As we can see, the Fuč́ık spectra of problems with one equation can
be described as a countable union of curves. These curves are disjoint in the
Neumann case (except curves µ ≡ 0 and ν ≡ 0). In the Dirichlet case, they are
almost disjoint — each of them intersects at most one of the other curves and
it holds at exactly one point which is equal to an odd eigenvalue of the classical
spectrum with Dirichlet boundary conditions on [0, π]. See Figures 1–3.

3. The symmetrical extension

While solving the mixed problem on the interval [0, π], we can observe its very
close relation with the Dirichlet problem on [0, 2π].

Let u be a function belonging to K := {u ∈W 1,2((0, π)); u(0) = 0}. We denote
by ū a function defined on [0, 2π] in the following way:

ū(t) =

{
u(t) t ∈ [0, π],

u(2π − t) t ∈ [π, 2π].

Using the fact that functions from W 1,2(0, π) are absolutely continuous on

[0, π], we can prove that ū ∈W 1,2
0 (0, 2π).

Lemma 3. Let u ∈ K be nontrivial. Then u is a solution of the problem (1) with
mixed boundary conditions on the interval [0, π] if and only if the function ū is a
solution of the Dirichlet problem on the interval [0, 2π] provided ū′(π) = 0.

Note 4. The assumption ū′(π) = 0 is unambiguous since we know that solutions
of the Dirichlet problem are C2-functions (see [2, p. 317]).

Proof: If we have a solution u of the Dirichlet problem on [0, 2π] which satisfies
u′(π) = 0, its restriction to [0, π] is clearly a solution of the mixed boundary
problem on [0, π].

For the opposite direction, we use the definition of a weak solution. Let ψ ∈
W 1,2

0 (0, 2π). We need to verify that the equation (2) with ψ holds. Set ϕ1(t) :=
ψ(t) for t ∈ [0, π] and ϕ2(t) = ψ(2π− t) for t ∈ [0, π]. Then obviously ϕ1, ϕ2 ∈ K.
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Then, evidently, we have that

∫ π

0

u′(t)ϕ′
1(t) dt+

∫ π

0

u′(t)ϕ′
2(t) dt =

∫ π

0

u′(t)ψ′(t) dt+

∫ 2π

π

u′(2π − t)ψ′(t) dt

=

∫ 2π

0

ū′(t)ψ′(t) dt.

(3)

At the same time, it holds that

∫ π

0

u′(t)ϕ′
1(t) dt+

∫ π

0

u′(t)ϕ′
2(t) dt = µ

∫ π

0

u+(t)ϕ1(t) dt

− ν

∫ π

0

u−(t)ϕ1(t) dt+ µ

∫ π

0

u+(t)ϕ2(t) dt− ν

∫ π

0

u−(t)ϕ2(t) dt

= µ

∫ 2π

0

ū+(t)ψ(t) dt− ν

∫ 2π

0

ū−(t)ψ(t) dt.

(4)

The equations (3) and (4) show that ū is a solution of the Dirichlet problem
on [0, 2π]. �

p
µ

p
ν

Figure 1. FS of
the Dirichlet prob-
lem

p
µ

p
ν

Figure 2. FS of
the Neumann prob-
lem

Remark 1. It is natural to ask if we can extend a solution with respect to
the point zero in any way and then search parameters for which there exists a
nontrivial solution of the Neumann problem on [−π, π] taking the zero value at
the origin. The set of such parameters is very poor — the condition at origin
holds only if the parameters are both equal to the same odd classical eigenvalue
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p
µ

p
ν

Figure 3. FS of the mixed problem

of the Neumann problem on [−π, π], it means

µ = ν = λN2k−1 =

(
2k − 1

2

)2

, k ∈ N.

In this case, a nontrivial solution equals to a classical eigenfunction of the Neu-
mann problem (up to a multiple), exactly it is the solution u(t) = c sin 2k−1

2 t on
[−π, π] for c 6= 0.

By the above, the Fuč́ık spectrum of the mixed problem is a subset of the Fuč́ık
spectrum of the Dirichlet problem on the double-long interval. We have to verify
for which solutions of the Dirichlet problem the condition ū′(π) = 0 holds. This
is not true only for parameters which satisfy condition similar to the claim 3 in
Lemma 1. The result is summarized in the lemma below.

Lemma 4. Let (µ; ν) ∈ R
2
+. The point (µ; ν) belongs to the Fuč́ık spectrum of

the problem on the interval [0, π] with mixed boundary conditions if and only if
it satisfies at least one of the following conditions:

1. µ = 1
4 , ν is arbitrary,

2. µ is arbitrary, ν = 1
4 ,

3. µ > 1
4 , ν >

1
4 and

√
ν(2

√
µ−1)√

µ+
√
ν

∈ N,

4. µ > 1
4 , ν >

1
4 and

√
µ(2

√
ν−1)√

µ+
√
ν

∈ N.

Note 5. A solution of the mixed problem on [0, π] extends to the solution of the
Dirichlet one on [0, 2π], so its explicit form for the corresponding parameters is
given in Note 1.
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4. The Fuč́ık spectrum of the two equation problem with mixed boun-

dary conditions

This section is mainly the corollary of the symmetrical extension we mentioned
above (but for the system of two equations) and results about the Dirichlet prob-
lem for such systems of Eugenio Massa and Bernhard Ruf which can be found in
[4] and [5].

The problem that we want to study is given by the following equations:

−u′′(t) = αv+(t)− βv−(t) for t ∈ [0, π],

−v′′(t) = γu+(t)− δu−(t),

u(0) = v(0) = 0,

u′(π) = v′(π) = 0.

(5)

Now, the test function space is K×K := {(f ; g) ∈ W 1,2((0, π))×W 1,2((0, π));
f(0) = 0 = g(0)}.
Definition 3. The set of points (α;β; γ; δ) ∈ R

4 such that the problem (5) with
parameters α, β, γ, δ has a nontrivial weak solution is called the Fuč́ık spectrum
of the problem (5) and we denote it by Σ.

By using analogous arguments as in the previous section, it is easy to see that
the couple (u; v) is a solution of (5) if and only if the couple of symmetrically
extended functions (ū; v̄) is a solution of the problem with the same equations
on the interval [0, 2π] with the Dirichlet boundary conditions provided u′(π) =
v′(π) = 0.

As a consequence, the Fuč́ık spectrum of the mixed problem Σ is a subset of
the Fuč́ık spectrum of the Dirichlet problem on the interval [0, 2π] and thus Σ
preserves all properties of the Fuč́ık spectrum of the Dirichlet problem.

Due to known results ([4]; Lemma 2.1, Proposition 2.3), we can restrict to
nonnegative parameters. If one of equations in (5) is identically zero, then the
system has only the trivial solution. By basic computations, we get that if exactly
one parameter vanishes in each of equations, we obtain a solution which does not
change sign on the domain (it is either positive or negative) and we present it
below. If a solution does change sign, then all parameters have to be strictly
positive (strictly negative, respectively).

In this system, we can find some symmetries. The most important one is that
if (u; v) solves the problem with parameters (α;β; γ; δ), then (u; av) solves the

problem with parameters (α
a
; β
a
; aγ; aδ) for any a > 0. Therefore, we can find

such a that α
a
= aγ.

The preceding ideas allow us to reduce the number of parameters. It is enough

to study the set Σ̂ which is defined as a set of points (α;β; δ) ∈ (R+)
3 such that

the problem (5) with parameters α, β, α, δ has a nontrivial weak solution. For
more details see [4, Section 3].
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We state now a lemma which is a slight modification of Lemma 3.2 in [5]
because it is very useful below. The correctness of the modification of boundary
conditions follows from the symmetrical extension.

Lemma 5 ([5, Lemma 3.2]). Let c, d ∈ L∞(0, π) with c, d > 0 a.e. and (u; v) be
a nontrivial solution of the boundary value problem on (0, π)

−u′′(t) = c(t)v(t),

−v′′(t) = d(t)u(t),

u(0) = v(0) = 0,

u′(π) = v′(π) = 0.

1. For x0 ∈ [0, π], we have that

• if u(x0) = 0 or v(x0) = 0, then u′(x0)v
′(x0) > 0,

• if u′(x0) = 0 or v′(x0) = 0, then u(x0)v(x0) > 0.

2. For x1, x2 ∈ [0, π], x1 < x2, we have that

• if u′(x1) = u′(x2) = 0 and u′(x) 6= 0 for x ∈ (x1, x2),
then u(x1)u(x2) < 0,

• if u(x1) = u(x2) = 0 and u(x) 6= 0 for x ∈ (x1, x2),
then u′(x1)u

′(x2) < 0.

In the following text, we will assume that the nontrivial solution is normalized,
it means ||u||L2(0,π) = ||v||L2(0,π) = 1. By this condition, we avoid the problems
with sequences of solutions in a form {(anu, anv)}∞n=1 such that an → 0 as n
approaching the infinity.

Various properties of components of a solution are interconnected.

Lemma 6. Let (α;β; δ) ∈ Σ̂ and (u; v) be the corresponding nontrivial solution.
Then the number of points t ∈ (0, π) such that u(t) = 0 is finite and it is the same
as the number of points s ∈ (0, π) such that v(s) = 0.

Proof: If u has no zero point in (0, π), it is easy to figure out that u(t) =
±cv(t) = ±d sin

(
t
2

)
for some c, d > 0.

The claim was proved for the Dirichlet case provided u has a zero point in
the interior of an interval (see [5, Proposition 3.4]). Thus ū and v̄ have the same
number of zero points on (0, 2π).

Suppose that ū(π) = 0. Then, by symmetry of the extension, ū has an odd
number of zeros and so does v̄ by the claim for Dirichlet case. By symmetrical
extension, necessarily v̄(π) = 0. It means u(π) = u′(π) = 0 and v(π) = v′(π) = 0
and from the second equation in the system (5), v′′(π) = 0 holds too. Using the
uniqueness of the solution for differential equations with a Lipschitz right-hand
side (see [1, Theorem 7.4]), we obtain that v ≡ 0, but it is a contradiction with
assumptions of the claim. �

E. Massa and B. Ruf [4, Proposition 3.2] proved that the Fuč́ık spectrum is
bounded away from zero in this sense:
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Let (α;β; δ) be a point of the Fuč́ık spectrum Σ̂ and moreover, let α > 0.
Then α ≥ λD1 and βδ ≥ λD1 . Here λD1 denotes the first eigenvalue of the classical
spectrum problem with Dirichlet boundary conditions on [0, 2π] (which is the
same as for the problem with mixed boundary conditions on [0, π]).

The relation between components of a solution is even stronger. Let α > λD1
and βδ > λD1 . Then u+v+ 6≡ 0 and u−v− 6≡ 0. Moreover, at least one of multiples
u+v− and u−v+ is not identically zero provided β 6= δ.

Now, we can classify points which certainly do not belong to the Fuč́ık spec-
trum. The similar claim was proven for the Dirichlet problem in [4, Proposi-
tion 4.1]. We do not give the proof here, because we use the methods adapted
from mentioned article. However, we can get a stronger estimate on the set of
points which do not belong to Fuč́ık spectrum of the mixed problem. Namely, we
have that

Theorem 1. Let α0, β0, δ0 be positive integers and let a > 0 be such that

{
α0

a
,
β0
a
, aα0, aδ0

}
⊂ (λk, λk+1)

where λk, λk+1 denote the consecutive eigenvalues of the classical spectrum of the

problem with mixed boundary value conditions on [0, π]. Then (α0;β0; δ0) /∈ Σ̂.

Note 6. As we have written above, the first eigenvalue λ1 of the classical spec-
trum problem with mixed boundary conditions on [0, π] is the same as the first
eigenvalue λD1 of the Dirichlet one on [0, 2π], it means λ1 = λD1 = 1

4 . Generally, it

holds that λk = λD2k−1 =
(
2k−1

2

)2
for all k ∈ N, where λk (λDk respectively) is the

k-th eigenvalue of the classical spectrum of the mixed boundary value problem
on [0, π] (Dirichlet problem on [0, 2π] respectively).

Due to results of E. Massa and B. Ruf about Dirichlet problem, we know that
Fuč́ık spectrum can be described as a countable union of the surfaces. These sur-
faces are globally given by graphs of C1-functions — more precisely, the parameter
α is a C1-function of β and δ (see [5, Theorem 1.2]). The domain of α+ is the set
{(β; δ) ∈ R

2
+;

√
βδ > λDk } and the domain of α− is {(β; δ) ∈ R

2
+;

√
βδ > λDk+1}

(see [5, Proposition 4.9]).

Definition 4. Let k ≥ 2 be an integer. Then we call the Fuč́ık surfaces connected
C1-surfaces

Γk+ := {(α;β; δ) ∈ Σ̂; α = α+(β, δ); a corresponding solution of the problem (5)
is positive in a right neighborhood of the origin}
satisfying (λk;λk;λk) ∈ Γk+ and

Γk
−

:= {(α;β; δ) ∈ Σ̂; α = α−(β, δ); a corresponding solution of the problem (5)
is negative in a right neighborhood of the origin}
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satisfying (λk;λk;λk) ∈ Γk−. Moreover, we define

Γ1+ := {(α, β, δ) ∈ R
3
+; α = λ1}

and

Γ1− := {(α, β, δ) ∈ R
3
+; βδ = λ1}.

It was proven ([5, Theorem 1.2]) that

Σ̂ =

∞⋃

k=1

(Γk+ ∪ Γk−) .

By [5, Proposition 4.10], the Fuč́ık surfaces of different orders are disjoint:

(Γk+ ∪ Γk−) ∩ (Γl+ ∪ Γl−) = ∅ for all k 6= l.

It was also proven in [5, Proposition 4.11], that in general, the surfaces Γk+

and Γk− may coincide (and they do in case of Neumann problem and for even k
in case of Dirichlet problem). But they do not coincide in the case of the mixed
problem.

Remark 2. Because of the results of the first section, it is evident that there are
two different unbounded curves which belong to the corresponding surfaces Γk+

and Γk−. More precisely:

γk+ :=

{
(α;β;β) ∈ R

3
+;

√
β(2

√
α− 1)√

α+
√
β

= k

}
⊂ Γk+,

and

γk− :=

{
(α;β;β) ∈ R

3
+;

√
α(2

√
β − 1)√

α+
√
β

= k

}
⊂ Γk−.

Obviously, the intersection of these curves is the only point, exactly

γk+ ∩ γk− = {(α;β;β) ∈ R
3
+; α = β = λk}.

Thus, the surfaces Γk+ and Γk− do not coincide. The claim is evident for the
surfaces Γ1+ and Γ1−.

For further properties of the Fuč́ık surfaces, we refer to [5].

5. The closedness of the Fuč́ık spectrum

Although you can find a proof that the Fuč́ık spectrum is a closed set in works
of E. Massa and B. Ruf, we give here an alternative one which is more detailed
and gives more than the simple closedness (see Lemma 7).

Theorem 2. Let {An}∞n=1 be a subset of Σ̂, An = (αn;βn; δn). Let An → A =

(α;β; δ) ∈ R
3. Then A ∈ Σ̂.
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Proof: Denote by un := (un; vn) ∈ W 1,2(0, π) × W 1,2(0, π) a corresponding
nontrivial solution of the problem (5) with parameters αn, βn, δn such that

||un||L2(0,π) = ||vn||L2(0,π) = 1.

We test the first equation in (5) with parameters αn, βn, δn by the function un:

||u′n||2L2(0,π) =

∣∣∣∣αn

∫ π

0

v+n un − βn

∫ π

0

v−n un

∣∣∣∣ ≤ (|αn|+ |βn|)
∫ π

0

|unvn|

≤ ||un||L2(0,π)||vn||L2(0,π)(|αn|+ |βn|) = (|αn|+ |βn|)

and analogically

||v′n||2L2(0,π) ≤ (|αn|+ |δn|).

The convergence of An implies that {||un||W 1,2(0,π)×W 1,2(0,π)}∞n=1 is bounded.

Due to Eberlain-Šmuljan characterization of the reflexivity, we can choose a
weakly convergent subsequence of {un}. Because of the compact embedding of
W 1,2(0, π) into L2(0, π), we obtain even that

(un; vn) → (u; v) in
(
L2(0, π)

)2
.

Obviously,
√
2 = ||un||L2(0,π)×L2(0,π) → ||u||L2(0,π)×L2(0,π) and u is nontrivial.

By the compact embedding of W 1,2(0, π) into C([0, π]), vn converge to v uni-
formly. It is evident that |v±n − v±| ≤ |vn − v|. Therefore, v±n → v± in L2(0, π).

Let ϕ ∈ K. We can estimate

∣∣∣∣αn

∫ π

0

v+n ϕ− α

∫ π

0

v+ϕ

∣∣∣∣

=

∣∣∣∣αn

∫ π

0

v+n ϕ− αn

∫ π

0

v+ϕ+ αn

∫ π

0

v+ϕ− α

∫ π

0

v+ϕ

∣∣∣∣

≤ |αn|
∣∣∣∣
∫ π

0

v+n ϕ−
∫ π

0

v+ϕ

∣∣∣∣+ |αn − α|
∣∣∣∣
∫ π

0

v+ϕ

∣∣∣∣ → 0.

Since {αn} is bounded and
∣∣∫ π

0 (v+n − v+)ϕ
∣∣ ≤ ‖v+n − v+‖L2 · ‖ϕ‖L2 , the first term

goes to zero. The convergence of αn → α and
∣∣∫ π

0 v+ϕ
∣∣ ≤ ‖v+‖L2 · ‖ϕ‖L2 imply

the convergence of the second term.
Thus, it holds that

(6) αn

∫ π

0

v+n ϕ− α

∫ π

0

v+ϕ→ 0.

The proof is analogous for other parameters.
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As un ⇀ u in W 1,2(0, π)×W 1,2(0, π), we obtain for any ϕ ∈ K that

∫ π

0

u′nϕ
′ →

∫ π

0

u′ϕ′,(7)

∫ π

0

v′nϕ
′ →

∫ π

0

v′ϕ′.(8)

Combining (6) and its analogies for other parameters and (7) and (8), it follows
that (u; v) is a nontrivial weak solution of the problem (5) with parameters α, β, δ.

�

Lemma 7. Let {An}∞n=1 be a subset of Σ̂ satisfying An → A as n → ∞. Let
(un; vn) be the nontrivial solutions corresponding to An. Let un (vn respectively)
take the zero value on (0, π) at the same number of points. Then the limit function
u (v respectively) has the same number of zero values.

Proof: From the proof of the previous theorem, we know that (u; v) is a non-
trivial solution of the equation (5) with parameters given by A = limn→∞An.

Without loss of generality, we prove the claim for the limit function u. The
proof for v is analogous. Denote the number of zero points of un by k.

First, we prove that u has only finitely many zero points. For contradiction,
suppose that u takes the zero value in at least countably many points on [0, π].
Thus, by Bolzano-Weierstrass Theorem, there exists a limit point of the set {t ∈
[0, π];u(t) = 0}. Let us denote it by z. Exactly, there exists a sequence {xn}∞n=1

satisfying u(xn) = 0 for all n ∈ N and xn → z as n approaching the infinity. But,
since un ∈ C2([0, π]) and un takes an extreme value on (xn, xn+1) (or (xn+1, xn)
respectively), there also exists a sequence {yn}∞n=1 such that yn ∈ (xn, xn+1) (or
yn ∈ (xn+1, xn) respectively), u

′(yn) = 0 and obviously, yn → z as n approaches
the infinity. Since u ∈ C2([0, π]), it holds that u(z) = 0 = u′(z), but this is a
contradiction with Lemma 5.

From now on, the zero points of u are denoted by xi, i = 0, 1, . . . , N , 0 = x0 <
x1 < · · · < xN < π.

Without loss of generality, suppose that u is positive in a right neighborhood
of the origin. As un converge uniformly to u, using Lemma 5, for any ε > 0
sufficiently small, we can find nε such that un are strictly positive on (x2i +
ε, x2i+1 − ε) and strictly negative on (x2i+1 + ε, x2i+2 − ε) for every n ≥ nε. It
implies that N ≤ k. Indeed, for n large enough, un has to take zero value at least
once on (xi − ε, xi + ε) since un are continuous on [0, π]. Moreover, un can take
the zero value only on these intervals.

For contradiction, suppose now that N < k. First, assume that there exists a
sequence {yn}∞n=1 ⊂ [0, π) such that un(yn) = 0 and yn → π as n approaching the
infinity. But then u(π) = u′(π) = 0 and we get a contradiction with Lemma 5.

Secondly, if N < k, then necessarily there exist two sequences

{yn}∞n=1 ⊂ [0, π) and {zn}∞n=1 ⊂ [0, π)
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such that yn < zn, un(yn) = un(zn) = 0, un 6= 0 on (yn, zn) and

lim
n→∞

yn = lim
n→∞

zn = x ∈ {xi}Ni=0.

But simultaneously, for all n ∈ N there exists ξn ∈ (yn, zn) such that u′n(ξn) = 0.
Necessarily, limn→∞ ξn = x. By using regularity of the problem, the solutions
un, u belong to W 2,2(0, π) and there exists a subsequence of {un(k)} such that
u′
n(k) ⇒ u′. This fact and the continuity of u′n imply that

|u′(x) − u′n(k)(ξk)| ≤ |u′(x)− u′(ξk)|+ |u′(ξk)− u′n(k)(ξk)| → 0 as k → ∞.

The conclusion is that u(x) = u′(x) = 0, which contradicts Lemma 5. �
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[4] Massa E., Ruf B., On the Fuč́ık spectrum for elliptic systems, Topol. Methods Nonlinear
Anal. 27 (2006), 195–228.

[5] Massa E., Ruf B., A global characterization of the Fuč́ık spectrum for a system of ordinary
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