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1. Introduction and notation

Many authors have studied the Banach-Saks property, the weak Banach-Saks prop-

erty and operators with these properties (see [8], [10], [11], [12], [13]). The notions of

Banach-Saks property and weak Banach-Saks property are introduced in [12]. Note

that the later property was introduced for the first time in [8] with the name Banach-

Saks-Rosenthal property.

A Banach space X is said to have the Banach-Saks property if every bounded

sequence (xn) in X has a subsequence (xnk
) which is Cesàro convergent. The origin

of the Banach-Saks property can be traced back to a result of S. Mazur. If a sequence

(xn) in a Banach space is weakly convergent to some point x, then there is a sequence

formed by convex combinations of (xn) that converges in norm to x. It is proved

that a space with the Banach-Saks property must be reflexive but not all reflexive

spaces have the Banach-Saks property.

Also, a Banach space X is said to have the weak Banach-Saks property if every

weakly null sequence (xn) in X has a Cesàro convergent subsequence. Note that a

Banach space with the Banach-Saks property satisfies the weak Banach-Saks prop-

erty, and that not all spaces have the weak Banach-Saks property.
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We say that an operator T : X → Y is weak Banach-Saks if every weakly null

sequence (xn) in X has a subsequence such that (Txnk
) is Cesàro convergent. As

examples, the identity operator of the Banach lattice l1 is weak Banach-Saks but the

identity operator of the Banach lattice l∞ is not.

On the other hand, let us recall that an operator T from a Banach lattice E into

a Banach space X is said to be b-weakly compact whenever T carries each b-order

bounded subset of E into a relatively weakly compact subset of X . For information

on this class of operators see [3], [4], [5].

Note that a b-weakly compact operator is not necessarily weak Banach-Saks. In

fact, the identity operator of the Banach lattice L2(c0) is b-weakly compact (because

L2(c0) is a KB-space), but it is not weak Banach-Saks (because L2(c0) does not

have the weak Banach-Saks property). Conversely, there exists a weak Banach-Saks

operator which is not b-weakly compact. In fact, the identity operator of c0 is weak

Banach-Saks (because c0 has the weak Banach-Saks property) but it is not b-weakly

compact (because c0 is not a KB-space).

The goal of this paper is to characterize Banach lattices on which each weak

Banach-Saks operator is b-weakly compact. In another paper, we will look at the

reciprocal problem. In fact, in this paper we will prove that if E and F are two

Banach lattices such that the norm of E is order continuous, then each weak Banach-

Saks operator T : E → F is b-weakly compact if and only if E or F is a KB-space.

As consequences, we will obtain some characterizations for KB-spaces. Also, we will

characterize Banach lattices under which the second power of each weak Banach-Saks

operator is b-weakly compact.

To state our results, we need to fix some notation and recall some definitions. Let E

be a vector lattice. For each x, y ∈ E with x 6 y, the set [x, y] = {z ∈ E : x 6 z 6 y}

is called an order interval. A subset of E is said to be order bounded if it is included in

some order interval. Recall that a nonzero element x of a vector lattice E is discrete

if the order ideal generated by x equals the subspace generated by x. The vector

lattice E is discrete, if it admits a complete disjoint system of discrete elements.

A Banach lattice is a Banach space (E, ‖ · ‖) such that E is a vector lattice and

its norm satisfies the following property: for each x, y ∈ E such that |x| 6 |y|, we

have ‖x‖ 6 ‖y‖. If E is a Banach lattice, its topological dual E′, endowed with the

dual norm, is also a Banach lattice. A norm ‖ · ‖ of a Banach lattice E is order

continuous if for each generalized sequence (xα) such that xα ↓ 0 in E, the sequence

(xα) converges to 0 for the norm ‖ · ‖ where the notation xα ↓ 0 means that the

sequence (xα) is decreasing, its infimum exists and inf(xα) = 0.

Let us recall that a Banach lattice E is said to be a KB-space whenever every

increasing norm bounded sequence of E+ is norm convergent. As an example, each

reflexive Banach lattice is a KB-space.
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We refer the reader to [1] for unexplained terminology on Banach lattice theory.

2. Main results

We will use the term operator T : E → F between two Banach lattices to mean a

bounded linear mapping. It is positive if T (x) > 0 in F whenever x > 0 in E. An

operator T : E → F is regular if T = T1−T2 where T1 and T2 are positive operators

from E into F . It is well known that each positive linear mapping on a Banach

lattice is continuous. For terminology concerning positive operators, we refer the

reader to the excellent book of Aliprantis-Burkinshaw [1].

Recall that the definition of b-weakly compact operators is based on the notion

of b-order bounded subsets. A subset A of a Banach lattice E is called b-order

bounded if it is order bounded in the topological bidual E′′. It is clear that every

order bounded subset of E is b-order bounded. However, the converse is not true

in general. A Banach lattice E is said to have the (b)-property if A ⊂ E is order

bounded in E whenever it is order bounded in its topological bidual E′′.

Let E be a Banach lattice and let X be a Banach space. An operator T : E → X

is said to be b-weakly compact whenever T carries each b-order bounded subset of

E into a relatively weakly compact subset of X .

It follows from Aliprantis-Burkinshaw ([1], p. 222) that a Banach lattice E is

lattice embeddable into another Banach lattice F whenever there exists a lattice

homomorphism T : E → F and there exist two positive constantsK andM satisfying

K‖x‖ 6 ‖T (x)‖ 6 M‖x‖ for all x ∈ E.

T is called a lattice embedding from E into F . In this case T (E) is a closed sublattice

of F which can be identified with E.

Note that each KB-space has the (b)-property but a Banach lattice with the (b)-

property is not necessarily a KB-space. However, by Proposition 2.1 of [3], a Banach

lattice E is a KB-space if and only if it has the (b)-property and its norm is order

continuous.

We note that there exists a Banach lattice with an order continuous norm without

the (b)-property. In fact, the norm of c0 is order continuous but c0 does not have

the (b)-property.

On the other hand, the norm of l∞ is not order continuous and l∞ has the (b)-

property, but does not contain a complemented copy of c0.

Before stating our main results, we would like to recall that “E has an order

continuous norm” does not imply “E has the weak Banach-Saks property”. In fact,

it follows from [12] that E has the Banach-Saks property if, and only if, E has the
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weak Banach-Saks property and is reflexive. By way of contradiction, suppose that

E is a KB-space implies E has the weak Banach-Saks property. Then every reflexive

Banach lattice would have the Banach-Saks property, and this is impossible (because

Baernstein’s space is a reflexive Banach lattice without the Banach-Saks property).

So, there is an operator which is not weak Banach-Saks, however, E has an order

continuous norm. In fact, L2(c0) has an order continuous norm, but its identity

operator is not weak Banach-Saks.

Also, the class of weak Banach-Saks operators is a two sided ideal of the space of

all operators on a Banach lattice.

Theorem 2.1. Let E be a Banach lattice with an order continuous norm, and F

a Banach lattice. Then the following assertions are equivalent:

(1) Each operator T : E → F is b-weakly compact.

(2) Each weak Banach-Saks operator T : E → F is b-weakly compact.

(3) Each positive weak Banach-Saks operator T : E → F is b-weakly compact.

(4) One of the following assertions holds:

(a) E is a KB-space.

(b) F is a KB-space.

P r o o f. (1) =⇒ (2) Obvious.

(2) =⇒ (3) Obvious.

(3) =⇒ (4) By way of contradiction, we suppose that neither E nor F is a KB-

space and we construct a positive weak Banach-Saks operator which is not b-weakly

compact. In fact, since E has an order continuous norm, Proposition 2.1 of [3] implies

that E does not have the (b)-property. So it follows from Lemma 2.1 of [7] that the

Banach lattice E contains a complemented copy of c0. Denote by P : E → c0 the

positive projection of E in c0 and by i : c0 → E the canonical injection of c0 into E.

As F is not a KB-space, Theorem 4.61 of [1] implies that c0 is lattice embeddable

in F , so there exists a lattice embedding T from c0 into F . Hence, there exists a

constant K > 0 such that ‖T ((γn))‖ > K‖(γn)‖∞ for all (γn) ∈ c0. Note that the

embedding T : c0 → F is not b-weakly compact. Otherwise, as the canonical basic

(en) of c0 is a disjoint b-order bounded sequence, it would follow from Proposition 2.8

of [3] that lim
n

‖T ((en))‖ = 0, but this is false because ‖T ((en))‖ > K‖(en)‖∞ = K

for each n.

Now, we consider the composed operator T ◦ P : E → c0 → F. Since T ◦ P = T ◦

Idc0
◦P and the identity operator Idc0

: c0 → c0 is weak Banach-Saks, hence T ◦P is

also weak Banach-Saks. But it is not a b-weakly compact operator. Otherwise, the

composed operator T ◦ P ◦ i, which is exactly the embedding T : c0 → F , would be

b-weakly compact, but this is a contradiction.
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(4a) =⇒ (1) Follows from Proposition 2.1 of [4].

(4b) =⇒ (1) Follows from Corollary 2.3 of [5].

R em a r k. The assumption “E with an order continuous norm” is essential in

Theorem 2.1. In fact, each positive operator T from l∞ into c0 is b-weakly compact,

but neither l∞ nor c0 is a KB-space.

As consequences, we obtain the following characterizations of KB-spaces.

Corollary 2.2. Let E be a Banach lattice with an order continous norm. Then

the following assertions are equivalent:

(1) Each operator T : E → E is b-weakly compact.

(2) Each weak Banach-Saks operator T : E → E is b-weakly compact.

(3) Each positive weak Banach-Saks operator T : E → E is b-weakly compact.

(4) E is a KB-space.

Corollary 2.3. Let E be a Banach lattice with an order continous norm. Then

the following assertions are equivalent:

(1) Each operator T : E → c0 is b-weakly compact.

(2) Each weak Banach-Saks operator T : E → c0 is b-weakly compact.

(3) Each positive weak Banach-Saks operator T : E → c0 is b-weakly compact.

(4) E is a KB-space.

Corollary 2.4. Let F be a Banach lattice. Then the following assertions are

equivalent:

(1) Each operator T : c0 → F is b-weakly compact.

(2) Each weak Banach-Saks operator T : c0 → F is b-weakly compact.

(3) Each positive weak Banach-Saks operator T : c0 → F is b-weakly compact.

(4) F is a KB-space.

Now, we note that there exists an operator which is weak Banach-Saks but its

second power is not b-weakly compact. In fact, the identity operator of the Ba-

nach lattice c0 is weak Banach-Saks, but its second power which is also the identity

operator of c0 is not b-weakly compact.

In the next result we give necessary and sufficient conditions under which the

second power of each weak Banach-Saks operator is b-weakly compact.

Theorem 2.5. Let E be a Banach lattice with an order continuous norm. Then

the following assertions are equivalent:
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(1) For all positive operators S and T from E into E with 0 6 S 6 T and T weak

Banach-Saks, S is b-weakly compact.

(2) Each positive weak Banach-Saks operator T : E → E is b-weakly compact.

(3) For each positive weak Banach-Saks operator T : E → E, the second power T 2

is b-weakly compact.

(4) E is a KB-space.

P r o o f. (1) =⇒ (2) Let T : E → E be a positive weak Banach-Saks operator.

Since 0 6 T 6 T , by our hypothesis T is b-weakly compact.

(2) =⇒ (3) By our hypothesis T is b-weakly compact and hence T 2 is b-weakly

compact.

(3) =⇒ (4) By way of contradiction, suppose that E is not a KB-space. As the

norm of E is order continuous, it follows from Proposition 2.4 of [4] and Lemma 2.1 of

[7] that E contains a complemented copy of c0, and there exists a positive projection

P : E → c0. Denote by i : c0 → E the canonical injection.

Consider the operator T = i ◦ P : E → c0 → E. Clearly the operator T is weak

Banach-Saks (because T = i ◦ Idc0
◦P ) but it is not b-weakly compact. Otherwise,

the operator P ◦T ◦ i = Idc0
would be b-weakly compact, and this is a contradiction.

Hence, the operator T 2 = T is not b-weakly compact.

(4) =⇒ (1) Follows from Corollary 2.2 and [3], Corollary 2.9.

Recall from [6] that an operator T from a Banach lattice E into a Banach space

X is said to be b-AM-compact if it carries each b-order bounded subset of E into a

relatively compact subset of X .

Note that each b-AM-compact operator is b-wealy compact but the converse is

false in general. In fact, the identity operator of the Banach lattice L1[0, 1] is b-weakly

compact (because L1[0, 1] is a KB-space), but it is not b-AM-compact (because

L1[0, 1] is not a discrete KB-space). Also, there exists a weak Banach-Saks operator

which is not b-AM-compact. In fact, the identity operator of the Banach lattice

c0 is weak Banach-Saks but it is not b-AM-compact (because c0 is not a discrete

KB-space).

However, we have the following necessary conditions.

Theorem 2.6. Let E be a Banach lattice with an order continuous norm and let

F be a Banach lattice. If each positive weak Banach-Saks operator T : E → F is

b-AM-compact, then one of the following assertions holds:

(1) E is a KB-space.

(2) F is a KB-space.
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P r o o f. Suppose that neither E nor F is a KB-space. Consider the same

operator T ◦P as that used in the proof of Theorem 2.1. This operator is positive and

weak Banach-Saks but it is not b-AM-compact (because it is not b-weakly compact).

R em a r k. The assumption “E with an order continuous norm” is essential in

Theorem 2.6. In fact, each positive operator T : l∞ → c0 is b-AM-compact, but

neither l∞ nor c0 is a KB-space.

R em a r k. The converse of Theorem 2.6 is false, i.e. there exist KB-spaces E

and F such that a positive weak Banach-Saks operator T : E → F is not necessarily

b-AM-compact. In fact, it follows from Theorem 5 of [10] that there exists a positive

operator T : L1[0, 1] → l∞ which is not b-AM-compact. However, the operator

T : L1[0, 1] → l∞ is weak Banach-Saks and L1[0, 1] is a KB-space. As another

example, put E = L1[0, 1]⊕ l2; the identiy operator of the Banach lattice E is weak

Banach-Saks, but it is not b-AM-compact. However, E is KB-space.
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