Mohamed Louzari
On McCoy condition and semicommutative rings

Commentationes Mathematicae Universitatis Carolinae, Vol. 54 (2013), No. 3, 329--337

Persistent URL: http://dml.cz/dmlcz/143304

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2013

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use.*
On McCoy condition and semicommutative rings

MOHAMED LOUZARI

Abstract. Let R be a ring and σ an endomorphism of R. We give a generalization of McCoy’s Theorem [Annihilators in polynomial rings, Amer. Math. Monthly 64 (1957), 28–29] to the setting of skew polynomial rings of the form $R[x;\sigma]$. As a consequence, we will show some results on semicommutative and σ-skew McCoy rings. Also, several relations among McCoyness, Nagata extensions and Armendariz rings and modules are studied.

Keywords: Armendariz rings; McCoy rings; Nagata extension; semicommutative rings; σ-skew McCoy

Classification: 16S36, 16U80

1. Introduction

Throughout the paper, R will always denote an associative ring with identity and M_R will stand for a right R-module. Given a ring R, the polynomial ring with an indeterminate x over R is denoted by $R[x]$. According to Nielsen [20] and Rege and Chhawchharia [22], a ring R is called right McCoy (resp., left McCoy) if, for any polynomials $f(x), g(x) \in R[x] \setminus \{0\}$, $f(x)g(x) = 0$ implies $f(x)r = 0$ (resp., $sg(x) = 0$) for some $0 \neq r \in R$ (resp., $0 \neq s \in R$). A ring is called McCoy if it is both left and right McCoy. By McCoy [18], commutative rings are McCoy rings. Recall that a ring R is reversible if $ab = 0$ implies $ba = 0$ for $a, b \in R$, and R is semicommutative if $ab = 0$ implies $aRb = 0$ for $a, b \in R$. It is obvious that commutative rings are reversible and reversible rings are semicommutative, but the converse does not hold, respectively. With the help of [8, Theorem 2.2], R is a McCoy ring when $R[x]$ is semicommutative. Nielsen [20, Theorem 2] showed that reversible rings are McCoy and he gave an example of a semicommutative ring which is not right McCoy. Recall that a ring is reduced if it has no nonzero nilpotent elements. Rege and Chhawchharia called R an Armendariz ring [22, Definition 1.1], if whenever any polynomials $f(x), g(x) \in R[x]$ satisfy $f(x)g(x) = 0$, then $ab = 0$ for each coefficient a of $f(x)$ and b of $g(x)$. Any reduced ring is Armendariz by [2, Lemma 1] and Armendariz rings are clearly McCoy. We have the following diagram:

\[
\begin{align*}
R \text{ is reversible} & \quad \Rightarrow \quad R \text{ is Armendariz} \\
R[x] \text{ is semicommutative} & \quad \quad \Rightarrow \quad R \text{ is McCoy}
\end{align*}
\]
The Ore extension of a ring R is denoted by $R[x; \sigma, \delta]$, where σ is an endomorphism of R and δ is a σ-derivation, i.e., $\delta: R \to R$ is an additive map such that $\delta(ab) = \sigma(a)\delta(b) + \delta(a)b$ for all $a, b \in R$. Recall that elements of $R[x; \sigma, \delta]$ are polynomials in x with coefficients written on the left. Multiplication in $R[x; \sigma, \delta]$ is given by the multiplication in R and the condition $xa = \sigma(a)x + \delta(a)$, for all $a \in R$. For $\delta = 0$, we put $R[x; \sigma, 0] = R[x; \sigma]$. Başer et al. [6], introduced a concept of σ-skew McCoy for an endomorphism σ of R. A ring R is called σ-skew McCoy, if for any nonzero polynomials $p(x) = \sum_{i=0}^{n} a_i x^i$ and $q(x) = \sum_{j=0}^{m} b_j x^j \in R[x; \sigma]$, $p(x)q(x) = 0$ implies $p(x)c = 0$ for some nonzero $c \in R$, and they have proved the following:

$$R[x; \sigma] \text{ is right McCoy } \frac{R[x; \sigma] \text{ is reversible}}{\Rightarrow R \text{ is } \sigma\text{-skew McCoy}}$$

Hong et al. [13, Theorem 1] proved that if σ is an automorphism of R and I a right ideal of $S = R[x; \sigma, \delta]$ then $r_S(I) \neq 0$ implies $r_R(I) \neq 0$, which extends McCoy’s Theorem [17].

In this paper, we give another generalization of McCoy’s Theorem, by showing that for any right ideal I of $S = R[x; \sigma]$, we have $r_S(I) \neq 0$ implies $r_R(I) \neq 0$ when R is σ-compatible or $r_S(I)$ is σ-ideal. As a consequence, if $R[x; \sigma]$ is semicommutative then R is σ-skew McCoy. Furthermore, we show some results on Nagata extensions. For a commutative ring R, we have

1) If R is a domain, then

 (a) M_R is Armendariz if and only if $R \oplus_\sigma M_R$ is Armendariz;

 (b) the ring $R \oplus_\sigma M_R$ is semicommutative and right McCoy.

A module M_R is called Armendariz if whenever polynomials $m = \sum_{i=0}^{n} m_i x^i \in M[x]$ and $f = \sum_{j=0}^{m} a_j x^j \in R[x]$ satisfy $mf = 0$, then $m_i a_j = 0$ for each i, j.

2) If R and M_R are Armendariz such that M_R satisfies the condition (C^2_σ) (see Definition 2.7), then $R \oplus_\sigma M_R$ is Armendariz.

2. A generalization of McCoy’s Theorem

McCoy [17] proved that for any right ideal I of $S = R[x_1, x_2, \ldots, x_n]$ over a ring R, if $r_S(I) \neq 0$ then $r_R(I) \neq 0$. This result was extended by Hong et al. [13] to the Ore extensions of several types, the skew monoid rings and the skew power series rings over noncommutative rings, where σ is an automorphism of R. Herein, we will extend McCoy’s Theorem to skew polynomial rings of the form $R[x; \sigma]$ with σ an endomorphism of R. According to Annin [3], a ring R is σ-compatible, if for any $a, b \in R$, $ab = 0$ if and only if $\sigma(a)(b) = 0$. Let σ be an endomorphism of R and I an ideal of R, we say that the ideal I is σ-ideal, if $\sigma(I) \subseteq I$. Let σ be an endomorphism of a ring R, then for any $f(x) = \sum_{i=0}^{n} a_i x^i \in R[x; \sigma]$, we denote by $\sigma(f(x))$ the polynomial $\sum_{i=0}^{n} \sigma(a_i)x^i \in R[x; \sigma]$.

Theorem 2.1. Let R be a ring, σ an endomorphism of R and I a right ideal in $S = R[x; \sigma]$. Suppose that R is σ-compatible or $r_S(I)$ is σ-ideal. If $r_S(I) \neq 0$ then $r_R(I) \neq 0$.

Proof: Suppose that $r_S(I) \neq 0$. If $I = 0$, then it's trivial. Assume that $I \neq 0$. Let $g(x) = \sum_{j=0}^{m} b_j x^j \in r_S(I)$ with $b_m \neq 0$. If $m = 0$, then we are done, so we can suppose that $m \geq 1$. In this situation, if $I b_m = 0$, then we are done. Otherwise, there exists $0 \neq f(x) = \sum_{i=0}^{n} a_i x^i \in I$ such that $f(x)b_m \neq 0$. Suppose that $r_S(I) = 0$ and then $0 \neq f(x)g(x) = \sum_{i=0}^{n} a_i x^i \in I$.

If R is σ-compatible, then (\ast) implies $a_i \sigma^i(b_m) \neq 0$ for some $i \in \{0,1,\ldots,n\}$, so $a_i b_m = 0$ because R is σ-compatible, therefore $a_i g(x) \neq 0$ for some $i \in \{0,1,\ldots,n\}$. Take $p = \max\{i | a_i g(x) \neq 0\}$, so $a_p g(x) \neq 0$ and $a_{p+1} g(x) = \cdots = a_n g(x) = 0$. On the other hand, we get $a_p b_m = 0$ from $f(x)g(x) = 0$. So that the degree of $a_p g(x)$ is less than m such that $a_p g(x) \neq 0$. But $I(a_p g(x)) = (I a_p) g(x) = 0$ since I is a right ideal of S, so $0 \neq a_p g(x) \in r_S(I)$. We can write $a_p g(x) = \sum_{k=0}^{\ell} a_p b_k x^k$ with $a_p b_\ell \neq 0$ and $\ell < m$. We have the two possibilities: If $\ell = 0$ then $a_p g(x)$ is a nonzero element in $r_R(I)$. Otherwise, $\ell \geq 1$. Then we will consider $a_p g(x)$ in place of $g(x)$. We have two cases $I(a_p b_\ell) = 0$ or $I(a_p b_\ell) \neq 0$. The first implies $0 \neq a_p b_\ell \in r_R(I)$, for the second, there exists $h(x) = \sum_{k=0}^{n} c_k x^k \in I$ such that $h(x) a_p b_\ell \neq 0$. Here, we can find q as the largest integer such that $c_q a_p g(x) \neq 0$ and then $0 \neq c_q a_p g(x) \in r_S(I)$ such that the degree of $c_q a_p g(x)$ is smaller than one of $a_p g(x)$.

If $r_S(I)$ is σ-ideal, then (\ast) implies $a_i x^i b_m = 0$ for some $i \in \{0,1,\ldots,n\}$, therefore $a_i x^i g(x) = 0$. Take $p = \max\{i | a_i x^i g(x) \neq 0\}$, then $a_p \sigma^p(g(x)) \neq 0$ and $a_{p+1} x^i g(x) = 0$ for $i \geq p + 1$. We obtain $a_p \sigma^p(b_m) = 0$ from $f(x)g(x) = 0$. Also, we have $I(a_p \sigma^p(g(x))) = (I a_p) \sigma^p(g(x)) = 0$ because I is a right ideal of S and $\sigma^p(g(x)) \in r_S(I)$. So $0 \neq a_p \sigma^p(g(x)) \in r_S(I)$. We can write $a_p \sigma^p(g(x)) = a_p \sigma^p(b_0) + a_p \sigma^p(b_1) x + \cdots + a_p \sigma^p(b_\ell) x^\ell$, where $a_p \sigma^p(b_\ell) \neq 0$ and $\ell < m$. If $\ell = 0$ then $a_p \sigma^p(b_\ell) = 0$, so $0 \neq a_p \sigma^p(b_\ell) \in r_R(I)$.

Corollary 2.2 ([8, Theorem 2.2]). Let $f(x) \in R[x]$. If $r_R[f(x)R[x]] \neq 0$ then $r_R[f(x)R[x]] \cap R \neq 0$.

Proof: Consider the right ideal $I = f(x)R[x]$.

Corollary 2.3. Let R be a ring, σ an endomorphism of R and I a right ideal of $S = R[x; \sigma]$. If S is semicommutative, then $r_S(I) \neq 0$ implies $r_R(I) \neq 0$.

\[\square\]
Proof: Let I be a right ideal of $S = R[x; \sigma]$, $f(x) \in r_S(I)$ and $g(x) \in I$. Then $g(x)f(x) = 0$. Since S is semicommutative we have $g(x)Sf(x) = 0$, in particular, $g(x)x f(x) = g(x)\sigma(f)(x) = 0$, so $\sigma(f)(x) \in r_S(I)$. Thus $r_S(I)$ is σ-ideal and we have the result by Theorem 2.1. \hfill \Box

Corollary 2.4. Let σ be an endomorphism of a ring R. If $R[x; \sigma]$ is a semicommutative ring then R is σ-skew McCoy.

Proof: It follows directly from Corollary 2.3, by letting $I = f(x)R[x; \sigma]$. \hfill \Box

From Corollary 2.4, we obtain immediately [6, Corollary 6] and [8, Corollary 2.3]. According to Clark [7], a ring R is said to be quasi-Baer if the right annihilator of each right ideal of R is generated (as a right ideal) by an idempotent. Following Başer et al. [4] and Zhang and Chen [24], a ring R is said to be σ-semicommutative if, for any $a, b \in R$, $ab = 0$ implies $aR\sigma(b) = 0$. A ring R is called right (left) σ-reversible [5, Definition 2.1] if whenever $ab = 0$ for $a, b \in R$, $b\sigma(a) = 0$ ($\sigma(b)a = 0$). A ring R is called σ-reversible if it is both right and left σ-reversible. Hong et al. [9], proved that, if R is σ-rigid then R is quasi-Baer if and only if $R[x; \sigma]$ is quasi-Baer. Hong et al. [12] have proved the same result when R is semi-prime and all ideals of R are σ-ideals.

Proposition 2.5. Let R be a σ-semicommutative ring. If $R[x; \sigma]$ is quasi-Baer then R is so.

Proof: Let I be a right ideal of R. We have $r_{R[x; \sigma]}(IR[x; \sigma]) = eIR[x; \sigma]$ for some idempotent $e = e_0 + e_1x + \cdots + e_mx^m \in R[x; \sigma]$. By [4, Proposition 3.9], $r_R(IR[x; \sigma]) = e_0R$. Clearly, $r_R(IR[x; \sigma]) \subseteq r_R(I)$. Conversely, let $b \in r_R(I)$ then $Ib = 0$. Since R is σ-semicommutative, we have $IR[x; \sigma]b = 0$, so $b \in r_R(IR[x; \sigma])$. Therefore $r_R(I) = e_0R$. \hfill \Box

Example 2.6. Let Z be the ring of integers and consider the ring

$$R = \{(a, b) \in Z \oplus Z \mid a \equiv b \pmod{2}\}$$

and $\sigma: R \rightarrow R$ defined by $\sigma(a, b) = (b, a)$.

1) $R[x; \sigma]$ is quasi-Baer and R is not quasi-Baer, by [9, Example 9].

2) R is not σ-semicommutative. Let $a = (2, 0), b = (0, 2)$. We have $ab = 0$, but $a\sigma(b) = (2, 0)(2, 0) = (4, 0) \neq 0$. Thus R is not σ-semicommutative. Therefore the condition “R is σ-semicommutative” is not a superfluous condition in Proposition 2.5.

Definition 2.7. Let R be a ring, M_R an R-module and σ an endomorphism of R. For $m \in M_R$ and $a \in R$, we say that M_R satisfies the condition (C^1_σ) (resp., (C^2_σ)) if $ma = 0$ (resp., $m\sigma(a)a = 0$) implies $m\sigma(a) = 0$.

On McCoy condition and semicommutative rings

Proposition 2.8. Let σ be an endomorphism of a ring R.

1. If R is semicommutative and satisfies the condition (C_3') then it is σ-skew McCoy.

2. If R is reduced and right σ-reversible then it is σ-skew McCoy.

Proof: (1) Immediately from [23, Proposition 3.4]. (2) Clearly from (1).

3. Nagata extensions and McCoyness

Let R be a commutative ring, M_R be an R-module and σ an endomorphism of R. The R-module $R \oplus_{\sigma} M_R$ acquires a ring structure (possibly noncommutative), where the product is defined by $(a, m)(b, n) = (ab, n\sigma(a) + mb)$, for $a, b \in R$ and $m, n \in M_R$. We shall call this extension the Nagata extension of R by M_R and σ. If $\sigma = id_R$, then $R \oplus id_R M_R$ (denoted by $R \oplus M_R$) is a commutative ring. Anderson and Camillo [1] have proved that if R is a commutative domain then M_R is Armendariz if and only if $R \oplus M_R$ is Armendariz. We will see that this result holds for $R \oplus_{\sigma} M_R$ as well. Kim et al. [21] have proved that, if R is a commutative domain and σ is a monomorphism of R then $R \oplus_{\sigma} R$ is reversible, and so it is McCoy. Recall that if σ is an endomorphism of a ring R, then the map $R[x] \rightarrow R[x]$ defined by $\sum_{i=0}^{n} a_i x^i \mapsto \sum_{i=0}^{n} \sigma(a_i)x^i$ is an endomorphism of the polynomial ring $R[x]$ and clearly this map extends σ. We shall also denote the extended map $R[x] \rightarrow R[x]$ by σ and the image of $f \in R[x]$ by $\sigma(f)$. In this section, we will discuss when the Nagata extension $R \oplus_{\sigma} M_R$ is McCoy.

Let R be a commutative domain. The set $T(M) = \{m \in M | r_R(m) \neq 0\}$ is called the torsion submodule of M_R. If $T(M) = M$ (resp., $T(M) = 0$) then M_R is torsion (resp., torsion-free).

Lemma 3.1. If M_R is a torsion-free module then it is Armendariz.

Proof: Let $m(x) = m_0 + m_1 x + \cdots + m_p x^p \in M[x]$ and $f(x) = a_0 + a_1 x + \cdots + a_q x^q \in R[x]$ such that $m(x)f(x) = 0$. We may assume that $a_0 \neq 0$ (if not, set $f(x) = f'(x)x^k$ with a minimal k such that $a_k \neq 0$). This implies the following system of equations:

\[
\begin{align*}
0 & : m_0a_0 = 0, \\
1 & : m_0a_1 + m_1a_0 = 0, \\
2 & : m_0a_2 + m_1a_1 + m_2a_0 = 0, \\
\vdots & ,
(p + q) & : m_pa_q = 0.
\end{align*}
\]

Since M_R is a torsion-free module, then from these equations, we obtain $m_i = 0$ for all $i \in \{0, 1, \ldots, p\}$. Thus M_R is an Armendariz module.

Proposition 3.2. Let R be a commutative domain and M_R an R-module. Then $R \oplus_{\sigma} M_R$ is Armendariz if and only if M_R is Armendariz. In particular, if M_R is torsion-free then $R \oplus_{\sigma} M_R$ is Armendariz.
PROOF: Let $R' = R \oplus_{\sigma} M_R$, then we have $R'[x] = R[x] \oplus_{\sigma} M[x]$. Suppose that R' is Armendariz. Let $m = \sum_{i=0}^{p} m_i x^i \in M[x]$ and $f = \sum_{j=0}^{q} a_j x^j \in R[x]$ with $mf = 0$. We have $(0, m) = \sum_{i=0}^{p} (0, m_i) x^i \in R'[x]$ and $(f, 0) = \sum_{j=0}^{q} (a_j, 0) x^j \in R'[x]$, since R' is Armendariz then $(0, m_i)(a_j, 0) = (0, m_i a_j) = (0, 0)$ for all i, j. Thus $m_i a_j = 0$ for all i, j. Conversely, suppose that M_R is Armendariz. Let $f, g \in R[x]$ and $m, n \in M[x]$ such that $(f, m)(g, n) = (0, 0)$. Write $(f, m) = \sum (a_i, m_i) x^i \in R'[x]$ and $(g, n) = \sum (b_j, n_j) x^j \in R'[x]$. From $(f, m)(g, n) = (0, 0)$, we have $(fg, n\sigma(f) + mg) = (0, 0)$. Since $R[x]$ is a commutative domain, then $f = 0$ or $g = 0$. If $f = 0$, we get $mg = 0$. Then $m_i b_j = 0$ and $a_i = 0$ for all i, j. Thus $(a_i, m_i)(b_j, n_j) = (a_i b_j, n_j \sigma(a_i) + m_i b_j) = (0, 0)$. Otherwise, we get $n\sigma(f) = 0$. Then $b_j = 0$ and $n_j \sigma(a_i) = 0$ for all i, j. Thus $(a_i, m_i)(b_j, n_j) = (a_i b_j, n_j \sigma(a_i) + m_i b_j) = (0, 0)$. Therefore $R \oplus_{\sigma} M_R$ is Armendariz. In particular, if M_R is torsion-free then M_R is Armendariz by Lemma 3.1. Therefore $R \oplus_{\sigma} M_R$ is Armendariz.

Corollary 3.3. Let R be a commutative domain and M_R an R-module satisfying the condition (C^2_{idR}). Then $R \oplus_{\sigma} M_R$ is Armendariz.

PROOF: Since M_R is semicommutative then it is Armendariz by [23, Lemma 3.3].

Proposition 3.4. Let R be a commutative ring and M_R an R-module such that R satisfies (C_1^1) and M_R satisfies (C_2^2). Then $R \oplus_{\sigma} M_R$ is a semicommutative ring.

PROOF: We will use freely the conditions (C_1^1) and (C_2^2). Let $(r, m), (s, n) \in R \oplus_{\sigma} M_R$ such that

\[(1) \quad (r, m)(s, n) = (rs, n\sigma(r) + ms) = (0, 0). \]

We will show that for any $(t, u) \in R \oplus_{\sigma} M_R$

\[(2) \quad (r, m)(t, u)(s, n) = (rts, n\sigma(r)t + u\sigma(r)s + mts) = (0, 0). \]

It suffices to show $n\sigma(rt) + u\sigma(r)s + mts = 0$. Multiplying $n\sigma(r) + ms = 0$ of equation (1) on the right hand by r, gives $n\sigma(r)r = 0$, so we get $n\sigma(r) = 0$ and hence $ms = 0$. Thus $n\sigma(rt) = mts = 0$. Clearly $rs = 0$ implies $\sigma(r)s = 0$ and so $u\sigma(r)s = 0$. Therefore $n\sigma(rt) + u\sigma(r)s + mts = 0$.

Proposition 3.5. Let R be a commutative domain and M_R an R-module. Then $R \oplus_{\sigma} M_R$ is a semicommutative right McCoy ring.

PROOF: Consider equations (1) and (2) of Proposition 3.4. From equation (1), we get $r = 0$ or $s = 0$ since R is a domain. Say $r = 0$, then $rts = n\sigma(rt) = u\sigma(r)s = 0$, and $mats = 0$ from (1), hence we have (2). Next say $s = 0$, it follows $rts = u\sigma(r)s = mts = 0$ and $n\sigma(rt) = 0$ from (1), and so we have (2). Therefore $(r, m)(R \oplus_{\sigma} M)(s, n) = 0$. For McCoyness, let $(r, m), (s, n) \in R' = R \oplus_{\sigma} M_R$. Suppose that $(r, m)(s, n)^2 = (rs^2, n\sigma(r^2) + n\sigma(r) + ms^2) = 0$, then $r = 0$ or $s = 0$ which implies $(r, m)(s, n) = (rs, n\sigma(r) + ms) = 0$. Thus by Proposition 2.8(1), $R \oplus_{\sigma} M_R$ is right McCoy.
The next example shows that under the conditions of Proposition 3.5, \(R \oplus_\sigma M_R \) cannot be reversible.

Example 3.6. Let \(D \) be a commutative domain and \(R = D[x] \) be the polynomial ring over \(D \) with an indeterminate \(x \). Consider the endomorphism \(\sigma: R \to R \) defined by \(\sigma(f(x)) = f(0) \). Since \((x,1)(0,1) = (0,0) \) and \((0,1)(x,1) = (0,x) \neq (0,0) \), then \(R \oplus_\sigma R \) is not reversible. Thus \(R \oplus_\sigma M_R \) cannot be reversible under the conditions of Proposition 3.5.

Lemma 3.7. Let \(M_R \) be an Armendariz module, \(m(x) \in M[x] \) and \(f(x), g(x) \in R[x] \) such that \(m(x) = \sum_{i=0}^{n} m_i x^i \), \(f(x) = \sum_{j=0}^{p} a_j x^j \) and \(g(x) = \sum_{k=0}^{q} b_k x^k \). Then

\[
m(x)f(x)g(x) = 0 \iff m_i a_j b_k = 0 \quad \text{for all} \quad i, j, k.
\]

Proof: (\(\Leftarrow \)) Clear. (\(\Rightarrow \)) If \(m(x)f(x) = 0 \) then \(m(x)a_j = 0 \) for all \(j \). Now, if \(m(x)f(x)g(x) = 0 \) then \(m(x)[f(x)b_k] = 0 \) for all \(k \). Since \(M_R \) is Armendariz we have \(m_i(a_j b_k) = 0 \) for all \(i, j, k \). Thus \(m_i a_j b_k = 0 \) for all \(i, j, k \).

Lemma 3.8. If \(M_R \) is an Armendariz module satisfying the condition \((C^2_\sigma)\). Then \(M[x]_{R[x]} \) satisfies the condition \((C^2_\sigma)\).

Proof: Let \(m(x) = \sum_{i=0}^{n} m_i x^i \in M[x] \) and \(f(x) = \sum_{j=0}^{p} a_j x^j \in R[x] \). Suppose that \(m(x)f(x)g(x) = 0 \). By Lemma 3.7, \(m_i(a_j b_k) = 0 \) for all \(i, j, k \). In particular, \(m_i(a_j b_k) = 0 \) for all \(i, j \). Then \(m_i a_j b_k = 0 \) for all \(i, j \). Therefore \(m(x)f(x)g(x) = 0 \).

Theorem 3.9. Let \(R \) be a commutative Armendariz ring, \(\sigma \) an endomorphism of \(R \) and \(M_R \) a module satisfying the condition \((C^2_\sigma)\). Then \(M_R \) is Armendariz if and only if \(R \oplus_\sigma M_R \) is Armendariz.

Proof: Let \(f, g \in R[x] \) and \(m, n \in M[x] \) such that \((f,m)(g,n) = (0,0)\). Write \((f,m) = \sum (a_i, m_i) x^i \in R'[x] \) and \((g,n) = \sum (b_j, n_j) x^j \in R'[x] \). From \((f,m)(g,n) = (0,0)\), we have \((fg, n\sigma(f) + mg) = (0,0)\). Since \(R \) is Armendariz, then \(a_i b_j = 0 \) for all \(i, j \). Multiplying \(n\sigma(f) + mg = 0 \) on the right by \(f \). By Lemma 3.8, we have \(n\sigma(f)f = 0 \), then \(n\sigma(f) = 0 \) and so \(mg = 0 \). Since \(M_R \) is Armendariz we have \(m_i b_j = 0 \) and \(n_i \sigma(a_j) = 0 \) for all \(i, j \). Thus \((a_i, m_i)(b_j, n_j) = (a_i b_j, n_j \sigma(a_i) + m_i b_j) = (0,0)\). Therefore \(R' \) is Armendariz. The converse is clear.

Corollary 3.10. If \(R \) is a commutative reduced ring which satisfies the condition \((C^1_\sigma)\) then \(R \oplus_\sigma R \) is semicommutative and Armendariz.

Proof: Immediately by Proposition 3.4 and Theorem 3.9.

Example 3.11. Consider the ring \(R = \mathbb{Z}_2 \oplus \mathbb{Z}_2 \) with the usual addition and multiplication. Let \(\sigma: R \to R \) be defined by \(\sigma(a,b) = (b,a) \). Clearly \(R \) is a commutative reduced ring but not a domain. Let \(A = ((0,1),(0,1)) \), \(B = ((1,0),(0,1)) \) and \(C = ((1,0),(1,0)) \). We have

\[
AB = (((0,1),(0,1))((1,0),(0,1)) = ((0,0),((0,1)\sigma(0,1) + (0,1)(1,0))) = 0.
\]
But
\[ACB = ((0, 1), (0, 1))((1, 0), (1, 0))((1, 0), (0, 1)) = ((0, 0), (1, 0))((1, 0), (0, 1)) = ((0, 0), (1, 0)) \neq 0. \]

Hence \(R \oplus \sigma R \) is not semicommutative. On other hand, we have \((1, 0)(0, 1) = 0, \) but \((1, 0)\sigma((0, 1)) = (1, 0)(1, 0) = (1, 0) \neq 0, \) so \(R \) does not satisfy the condition \((C^1_\sigma). \) Thus the condition \((C^1_\sigma) \) in Corollary 3.10 is not superfluous.

Acknowledgments. The author would like to thank the referee for his/her helpful suggestions that improved the paper. The author also wishes to thank Professor Chan Yong Hong from Kyung Hee University, Korea for valuable remarks and helpful comments.

References

On McCoy condition and semicommutative rings

Lycée Technique Al Khawarizmi, Chefchaouen, 91 000, Maroc

E-mail: mlouzari@yahoo.com

(Received August 27, 2012, revised January 23, 2013)