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Abstract. Let S be a semigroup. For a, x ∈ S such that a = axa, we say that x is an
associate of a. A subgroup G of S which contains exactly one associate of each element of
S is called an associate subgroup of S. It induces a unary operation in an obvious way, and
we speak of a unary semigroup satisfying three simple axioms.
A normal cryptogroup S is a completely regular semigroup whose H -relation is a con-

gruence and S/H is a normal band. Using the representation of S as a strong semilattice
of Rees matrix semigroups, in a previous communication we characterized those that have
an associate subgroup.
In this paper, we use that result to find three more representations of this semigroup.

The main one has a form akin to the one of semigroups in which the identity element of
the associate subgroup is medial.

Keywords: semigroup, normal cryptogroup, associate subgroup, representation, strong
semilattice of semigroups, Rees matrix semigroup
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1. Introduction and summary

A normal cryptogroup S is a completely regular semigroup in which H is a con-

gruence and S/H is a normal band (i.e., satisfies the identity axya = ayxa). It is

faithfully represented as a strong semilattice Y of completely simple semigroups Sα,

in notation [Y ;Sα, σα,β ].

For elements a and x of an arbitrary semigroup S, x is an associate of a if a = axa.

A subgroup G of S is an associate subgroup of S if every element s of S has a unique

associate, say s∗, in G. This induces a unary operation s 7→ s∗ on S which is governed

by three simple axioms. By a sequence of generalizations, a structure theorem for

a special class of such semigroups is proved in [1].

We combine the two concepts evoked above arriving at the semigroups in the title

of the paper. Necessary and sufficient conditions on a strong semilattice of Rees
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matrix semigroups to contain an associate subgroup were established in [3]. They

are viewed as unary semigroups in which the unary operation implicitly contains the

concept of an associate subgroup. These conditions are simple enough: Y is a monoid

and all structure homomorphisms restricted to maximal subgroups are isomorphisms.

Since an associate subgroup is a maximal subgroup of the semigroup, all maximal

subgroups are isomorphic to the associate subgroup. Also other properties of these

semigroups can be found in [3].

The structure theorem in [1] arrives at a description in quite a different way. If the

two constructions in [1] and [3] are to represent cases of a common generalization,

it should be possible to bring their forms to sufficient similarity. Our aim here is

to find an isomorphic copy of our description cited above in [3] to a form similar to

the one in [1]. In the course of the needed argument, the most difficult part turned

out to be showing that our form in [3] can be “normalized” in the sense that in the

representation [Y ;Sα, σα,β ] we may assume that all structure groups Gα may be set

equal, and all the structure homomorphisms restricted to maximal subgroups may be

set equal to the identity transformation. After this all is smooth sailing: essentially

two successive changes of notation lead to the desired result.

In Section 2 we summarize the needed material, prove a theorem concerning com-

pletely simple semigroups, and briefly discuss the general case. In Section 3 we set

up the first representation of normal cryptogroups with an associate subgroup and

discuss some refinements of its parameters. Section 4 contains a long preparation

for the second representation based on the first. A change of notation in the second

representation in Section 5 leads to the third. Similarly, in Section 6, another change

of notation results in the fourth representation, the main goal of the paper.

2. Background

Let S be a semigroup with a unary operation s 7→ s∗ satisfying the following

axioms.

(A1) s = ss∗s (s ∈ S).

(A5) (s∗t∗)∗∗ = s∗t∗ (s, t ∈ S).

(A6) s = st∗s⇒ s∗ = t∗ (s, t ∈ S).

By [2, Lemma 3.5] we get s∗s∗∗ = t∗∗t∗ for all s, t ∈ S. We denote this common

value by z and call it the zenith of S.

We first state the precise relationship of the concepts of an associate subgroup and

of a unary semigroup satisfying the above axioms.
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Fact 2.1. Let S be a semigroup. For every s ∈ S, let A(s) be the set of all

associates of s. If S has an associate subgroup G, for every s ∈ S let us define the

element s∗ by

(A) A(s) ∩G = {s∗}.

Then the unary operation s 7→ s∗ satisfies the above axioms. Conversely, if S has

a unary operation s 7→ s∗ satisfying the above axioms with zenith z, then Hz is an

associate subgroup of S and (A) holds.

P r o o f. See [2, Theorem 3.1]. �

In view of this result, we will refer to the unary semigroup S satisfying axioms

(A1), (A5) and (A6) simply as a semigroup and to its unary homomorphisms simply

as homomorphisms.

For any regular semigroup S, we denote by C(S) the core of S, that is the sub-

semigroup of S generated by the set E(S) of its idempotents. Recall from [1] that

an idempotent z of S is medial if c = czc for all c ∈ C(S). We now state a structure

theorem for semigroups whose zenith is medial.

Fact 2.2. Let C be an idempotent generated semigroup with a medial idempo-

tent w. Let G be a group and ζ a homomorphism of G into the automorphism group

A (wCw) of wCw, in notation ζ : g 7→ ζg. On the set

{(x, g, a) ∈ Cw ×G× wC ; ζg(aw) = wx}

define a product by

(x, g, a)(y, h, b) = (xζg(ay), gh, ζh−1(ay)b)

and a unary operation by

(x, g, a)∗ = (w, g−1, w).

The algebra so obtained, denoted by [C,G;w, ζ], is a semigroup satisfying axioms

(A1), (A5) and (A6) whose zenith is medial. Conversely, every semigroup whose

zenith is medial is isomorphic to some [C,G;w, ζ].

P r o o f. See [1, Theorem 4]. �

In the proof of the converse of Fact 2.2, the isomorphism from a semigroup S onto

a semigroup [C,G;w, ζ] is of the form

s 7→ (ss∗, s∗∗, s∗s),
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where the product of such triples has the second component equal to s∗∗t∗∗, see the

multiplication in Fact 2.2. This is an essential feature of this product. As a bonus,

st(st)∗ and (st)∗st are computable in terms of ss∗, tt∗, s∗s and t∗t.

The structure of the general case remains open. It seems likely that a construction

for the general case is feasable, based on the above mapping, and that it should

represent a reasonable generalization of Fact 2.2. This is the principal motivation

for the present study. We are still far from attacking the general case, so we will

limit ourselves to the (very) special case of normal cryptogroups.

What we are aiming at is a case in which the first and the third entries multiply

coordinatewise and the second does not, just the diametrically opposite case of that

in Fact 2.2. We illustrate this on completely simple semigroups; in addition this

represents a special case of our main study of normal cryptogroups, the topic of the

present paper.

Theorem 2.3. Let I be a left and Λ a right zero semigroup, respectively, let

B = I × Λ be their direct product, G a group, and p : Λ × I → G a function, in

notation (λ, i) 7→ pλi. We write the elements of the cartesian product G × B as

(g; i, λ), and on it we define a multiplication by

(1) (g; i, λ)(h; j, µ) = (gpλjh; i, µ).

We fix an element 1 ∈ Λ ∩ I and assume that pλ1 = p1i = e, the identity element of

G, for all λ ∈ Λ and i ∈ I. Next we define a unary operation on G×B by

(g; i, λ)∗ = (1, g−1, 1).

The algebra so obtained, denoted by [G,B; p], is a unary completely simple semigroup

satisfying axioms (A1), (A5) and (A6).

Conversely, every such semigroup is isomorphic to some [B,G; p].

P r o o f. Direct. This requires simple verification.

Converse. Given a completely simple unary semigroup S satisfying axioms (A1),

(A5) and (A6), by the Rees theorem it is isomorphic to a Rees matrix semigroup,

say ϕ : S → T . If z is the zenith of S, its image zϕ can be used, in an obvious way,

to define an operation on T making ϕ an isomorphism.

Let T = M (I,G,Λ;P ) with a unary operation t 7→ t∗. We may denote its zenith

by z = (1, p−1
11 , 1) where 1 ∈ I ∩ Λ. We will change the matrix P to a matrix Q

according to [4, Lemma III.3.6], namely we let

qλi = p−1
λ1 pλip

−1
1i p11 (i ∈ I, i ∈ Λ),
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Q = (qλi) and U = M (I,G,Λ;Q). Also we define functions u and v by

u : i 7→ ui = p−1
11 p1i, v : λ 7→ vλ = pλ1 (i ∈ I, λ ∈ Λ).

By the above reference, Q is normalized at 1 and the mapping

χ : (i, g, λ) 7→ (i, uigvλ, λ) ((i, g, λ) ∈ T )

is an isomorphism of T onto U . Giving U the unary operation induced by (1, e, 1) as

a zenith, it is readily verified that χ preserves the unary operation. Therefore χ is an

isomorphism of T onto U , and the composition ϕχ is an isomorphism of S onto U .

We can easily convert U into the form [B,G; p], and the assertion of the converse

follows. �

Notice that the form of the multiplication in (1) is the often used notation for Rees

matrix semigroups. Observe the similarities and the differences between [B,G; p]

and [C,G;w, ζ]. We may consider the sandwich matrix of the former as a mapping

Bopp → G, where Bopp is the semigroup defined on B with “opposite multiplication”,

that is a ◦ b = ba for all a, b ∈ B. In Fact 2.2, we have a homomorphism G →

A (wCw), that is in the opposite direction. The basic difference is also between

the form of their product. It seems likely that the form of the general case will

incorporate the features of both of these examples.

3. First representation

We follow the book [4] for terminology and notation. For emphasis, we now state

a few of these.

For a nonempty set X , ιX denotes the identity map on X . Let S be a semigroup.

Then E(S) denotes the set of all idempotents in S. Further, S is completely regular

if it is a union of (maximal pairwise disjoint) groups. Alternatively, it is a semilattice

of completely simple semigroups, which we denote by S = (Y ;Sα). The latter will

be represented by Rees matrix semigroupsM (I,G,Λ;P ) where P may be assumed

normalized. If Green’s relationH is a congruence on a completely regular semigroup

S, we call it a cryptogroup. If, in addition, S/H is a normal band (that is, it satisfies

the identity axya = ayxa), then S is termed a normal cryptogroup. We will represent

these as strong semilattices of completely simple semigroups, defined as follows.

Let Y be a semilattice. For every α ∈ Y , let Sα be a semigroup and assume that

Sα ∩ Sβ = ∅ whenever α 6= β. For any α, β ∈ Y such that α > β, let σα,β : Sα → Sβ
be a homomorphism, and suppose that

σα,α = ιSα
(α ∈ Y ),

σα,βσβ,γ = σα,γ (α > β > γ in Y ).
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On S =
⋃

α∈Y

Sα let us define a multiplication by: for a ∈ Sα, b ∈ Sβ ,

a ◦ b = (aσα,αβ)(bσβ,αβ).

Then S is a semigroup said to be a strong semilattice Y of semigroups Sα, in notation

S = [Y ;Sα, σα,β ].

By [4, Theorem IV.1.6], a semigroup S is a normal cryptogroup if and only if S is

isomorphic to a strong semilattice of completely simple semigroups. The latter will

be represented as Rees matrix semigroupsM (I,G,Λ;P ).

Notation 3.1. Let Y be a semilattice. For all α ∈ Y , let Sα = M (Iα, Gα,Λα;Pα)

and let α, β ∈ Y be such that α > β. Let the following mappings be given:

Iα

ϕα,β

��
uα,β

��?
??

??
??

??
??

Gα

ωα,β

��

Λα

ψα,β

��
vα,β

��~~
~~

~~
~~

~~
~

Iβ Gβ Λβ

where ωα is a homomorphism, u
α,β : i 7→ uα,βi , v

α,β : λ 7→ vα,βλ , ϕα,α = ιIα
, uα,αi =

vα,αλ = eα is the identity element of Gα, ψα,α = ιΛα
for all i ∈ Iα, λ ∈ Λα. Define

a function σα,β by

σα,β : (i, g, λ) 7→ (iϕα,β, u
α,β
i (gωα,β)v

α,β
λ , λψα,β) ((i, g, λ) ∈ Sα)

with notation

σα,β = χ(ϕα,β , u
α,β, ωα,β, v

α,β , ψα,β).

The present paper is based on [3, Theorem 6.1] of which we now state the essential

part.

Fact 3.2. Let S be a normal cryptogroup. Then S has an associate subgroup if

and only if S ∼= [Y ;Sα, σα,β ] for some parameters, where Y is a monoid and all ωα,β

in σα,β = χ(ϕα,β , u
α,β, ωα,β, v

α,β , ψα,β) are isomorphisms.

If these conditions are satisfied, let ε be the identity element of Y and z =

(k, p−1
νκ , ν) ∈ Sε. Then Hz is an associate subgroup of [Y ;Sα, σα,β ] and for the

corresponding unary operation, for a = (i, g, λ) ∈ Sα,

(U) a∗ = (k, (vε,αν pανψε,α,i
gpαλ,kψε,α

uε,αk )−1ω−1
ε,α, ν).

P r o o f. In the light of [4, Theorem IV.1.6], this forms part of [3, Theorem 6.1].

�
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In view of this result, we may set

S = [Y, Sα, σα,β ] with zenith z = (k, p−1
νκ , ν).

The cited [3, Theorem 6.1] includes other characterizations of the class of normal

cryptogroups with an associate subgroup. In particular, it suffices to assume only

that all ωε,α be isomorphisms. In addition, a group G is an associate subgroup of S

if and only if G is a maximal subgroup of Sε. In view of the example in [3, Section 4]

this does not mean that the unary semigroups resulting from two associate subgroups

must be isomorphic.

Corollary 3.3. In a normal cryptogroup, the zenith uniquely determines the

unary operation.

In view of this, for normal cryptogroups, it suffices to give the idempotent which

will serve as the zenith z, for then a∗ is the unique solution of the equation a = axa

where x is in the group Hz. As a consequence we have

Corollary 3.4. Let S and T be normal cryptogroups. Then any multiplicative

homomorphism of S into T which preserves the zeniths is a (unary) homomorphism.

The converse of Corollary 3.4 holds trivially. The semigroup [Y ;Sα, σα,β ] is our

first representation.

We will need the following notation. Tacitly we continue with the notation already

introduced, but for the remainder of this section ignore the unary operation.

Notation 3.5. For any α, β, γ ∈ Y such that α > β > γ, let cα,β,γ be an element

of Gγ in the following conditions.

pαλiωα,β = vα,βλ pβλψα,β ,iϕα,β
uα,βi (λ ∈ Λα, i ∈ Iα).(H)

ϕα,βϕβ,γ = ϕα,γ , ψα,βψβ,γ = ψα,γ .(B)

(uβ,γiϕα,β
)(uα,βi ωβ,γ)c

−1
α,β,γ = uα,γi (i ∈ Iα).(L)

gωα,βωβ,γ = c−1
α,β,γ(gωα,γ)cα,β,γ (g ∈ Gα).(M)

cα,β,γ(v
α,β
λ ωβ,γ)(v

β,γ
λψα,β

) = vα,γλ (λ ∈ Λα).(R)

(H, B, L, M and R stand for a homomorphism, band, left, middle and right, respec-

tively.)

The next result combines some of the notation introducing certain refinements; it

will be used in the next section.
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Theorem 3.6. Let Y be a semilattice. For all α ∈ Y , let Sα = M (Iα, Gα,Λα;Pα)

and assume that Sα ∩ Sβ = ∅ whenever α 6= β. For any α > β, let

σα,β = χ(ϕα,β , u
α,β, ωα,β, v

α,β , ψα,β).

(i) For any α ∈ Y , σα,α = ιSα
.

(ii) For any α, β ∈ Y such that α > β, σα,β is a homomorphism if and only if

condition (H) holds.

(iii) For any α, β, γ ∈ Y such that α > β > γ, σα,βσβ,γ = σα,γ if and only if

conditions (B), (L), (M) and (R) hold.

(iv) If these conditions are satisfied, then [Y ;Sα, σα,β ] is a normal cryptogroup.

Conversely, if S is a normal cryptogroup, then S ∼= [Y ;Sα, σα,β ] for some pa-

rameters.

P r o o f. (i) This is trivial.

(ii) This is readily verified.

(iii) We let (i, g, λ) ∈ Sα and calculate

(i, g, λ)σα,βσβ,γ = (iϕα,γ , u
α,γ
i (gωα,β)v

α,β
λ , λψα,β)σβ,γ(1)

= (iϕα,βϕβ,γ , u
β,γ
iϕα,β

(uα,βi ωβ,γ)(gωα,βωβ,γ)(2)

× (vα,βλ ωβ,γ)v
β,γ
λψα,β

, λψα,βψβ,γ),

(i, g, λ)σα,γ = (iϕα,γ , u
α,γ
i (gωα,γ)v

α,γ
λ , λψα,γ).(3)

Direct. By hypothesis, the expressions in (2) and (3) are equal. Hence condition

(B) holds and

(4) uβ,γiϕα,β
(uα,βi ωβ,γ)(gωα,βωβ,γ)(v

α,β
λ ωβ,γ)v

β,γ
λψα,β

= uα,γi (gωα,γ)v
α,γ
λ .

If g = 1, this yields

(uβ,γiϕα,β
)(uα,βi ωβ,γ)(v

α,β
λ ωβ,γ)(v

β,γ
λψα,β

) = uα,γi vα,γλ

which implies

(uα,γi )−1(uβ,γiϕα,β
)(uα,βi ωβ,γ) = vα,γλ (vβ,γλψα,β

)−1(vα,βλ ωβ,γ)
−1,

where the left hand side depends only on i and the right hand side only on λ. We

may thus put the common value equal to a constant cα,β,γ . This implies (L) and

(R). Using these two equalities in (4) and cancelling yields condition (M).

Converse. Using conditions (L), (M) and (R) we get the equality in (4). This

together with the rest of the hypotheses gives the desired equality.

(iv) This follows from parts (i)–(iii) and [4, Theorem IV.1.6]. �
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4. Second representation

The second representation is a special case of the first: in it we require in addition

that Gα = Gε for all α ∈ Y and that all ωα,β be equal to ιGε
. The isomorphism

of the first onto the second representation is surprisingly simple but the procedure

establishing the second representation and proving all the details is relatively long.

Indeed, several lemmas interspersed with voluminous notation precede the proof of

the only theorem in this section.

Notation 4.1. We continue with the notation of the first representation.

For α > β and i ∈ Iα, λ ∈ Λα, set

sα,βi = (uα,βi c−1
ε,α,β)ω

−1
ε,β , tα,βλ = (cε,α,βv

α,β
λ )ω−1

ε,β .

For α > β > γ, let

dα,β,γ = cα,β,γω
−1
ε,γ , eα,β,γ = dε,α,γdα,β,γd

−1
ε,β,γd

−1
ε,α,β .

Lemma 4.2. Let α > β and g ∈ G. Then

gωα,βω
−1
ε,β = d−1

ε,α,β(gω
−1
ε,α)dε,α,β .

P r o o f. For any h ∈ Gβ , by condition (M) we have

hωε,αωα,β = c−1
ε,α,β(hωε,β)cε,α,β ,

so for g = hωε,α we get

gωα,βω
−1
ε,β = [c−1

ε,α,β(gω
−1
ε,αωε,β)cε,α,β ]ω

−1
ε,β = d−1

ε,α,β(gω
−1
ε,α)dε,α,β .

�

We start with the first component.

Lemma 4.3. For α > β > γ and i ∈ Iα we have

sβ,γiϕα,β
sα,βi = sα,γi dα,β,γ .

P r o o f. From Notation 4.1 we get uα,βi = (sα,βi ωε,β)cε,α,β . We substitute this

into (4) getting successively

(sβ,γiϕα,β
ωε,β)cε,β,γ [(s

α,β
i ωε,β)cε,α,β ]ωβ,γc

−1
α,β,γ = (sα,γi ωε,γ)cε,α,γ ,

(sβ,γiϕα,β
ωε,β)cε,β,γ(s

α,β
i ωε,βωβ,γ)(cε,α,βωβ,γ)c

−1
α,β,γ = (sα,γi ωε,γ)cε,α,γ ,

(sβ,γiϕα,β
ωε,β)cε,β,γc

−1
ε,β,γ(s

α,β
i ωε,γ)cε,β,γ(cε,α,βωβ,γ)c

−1
α,β,γ = (sα,γi ωε,γ)cε,α,γ ,
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and applying ω−1
ε,γ , we obtain

sβ,γiϕα,β
sα,βi dε,β,γ(cε,α,βωβ,γω

−1
ε,γ)d

−1
α,β,γ = sα,γi dε,α,γ .

Using Lemma 4.2, this becomes

sβ,γiϕα,β
sα,βi dε,β,γ(d

−1
ε,β,γdε,α,γdε,β,γ)d

−1
α,β,γ = sα,γi dε,α,γ

and the assertion follows. �

Next we treat the middle component.

Notation 4.4. For every α ∈ Y , i ∈ Iα, λ ∈ Λα, let

qαλi = pαλiω
−1
ε,α.

Lemma 4.5. For any α > β, i ∈ Iα, λ ∈ Λα, we have

qαλi = tα,βλ qβλψα,β ,iϕα,β
sα,βi .

P r o o f. Using Notations 4.1 and 4.4, we get

tα,βλ qβλψα,β ,iϕα,β
sα,βi = (cε,α,βv

α,β
λ )ω−1

ε,β(p
β
λψα,β ,iϕα,β

ω−1
ε,β)(u

α,β
i c−1

ε,α,β)ω
−1
ε,β

= [cε,α,β(v
α,β
λ pβλψα,β ,iϕα,β

uα,βi )c−1
ε,α,β ]ω

−1
ε,β

= [cε,α,β(p
α
λiωα,β)c

−1
ε,α,β ]ω

−1
ε,β by Theorem 3.6 (ii)

= dε,α,β(p
α
λiωα,βω

−1
ε,β)d

−1
ε,α,β

= dε,α,β [d
−1
ε,α,β(p

α
λiω

−1
ε,α)dε,α,β ]d

−1
ε,α,β by Lemma 4.2

= pαλiω
−1
ε,α = qαλi.

�

We finally come to the third component.

Lemma 4.6. For α > β > γ and λ ∈ Λα we have

tα,βλ tβ,γλψα,β
= d−1

α,β,γt
α,γ
λ .

P r o o f. From Notation 4.1 we get vα,βλ = c−1
ε,α,β(t

α,β
λ ωε,β). We substitute this

into (4) getting successively

cα,β,γ{[c
−1
ε,α,β(t

α,β
λ ωε,β)]ωβ,γ}c

−1
ε,β,γ(t

β,γ
λψα,β

ωε,γ) = c−1
ε,α,γ(t

α,γ
λ ωε,γ),

cα,β,γ(c
−1
ε,α,βωβ,γ)(t

α,β
λ ωε,βωβ,γ)c

−1
ε,β,γ(t

β,γ
λψα,β

ωε,γ) = c−1
ε,α,γ(t

α,γ
λ ωε,γ),

cα,β,γ(c
−1
ε,α,βωβ,γ)c

−1
ε,β,γ(t

α,β
λ ωε,γ)cε,β,γc

−1
ε,β,γ(t

β,γ
λψα,β

ωε,γ) = c−1
ε,α,γ(t

α,γ
λ ωε,γ),
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and applying ω−1
ε,γ , we obtain

dα,β,γ(c
−1
ε,α,βωβ,γω

−1
ε,γ)d

−1
ε,β,γt

α,β
λ tβ,γλψα,β

= d−1
ε,α,γt

α,γ
λ

and using Lemma 4.2, this becomes

dα,β,γd
−1
ε,β,γd

−1
ε,α,βdε,β,γt

α,β
λ tβ,γλψα,β

= d−1
ε,α,γt

α,γ
λ

whence the assertion. �

By virtue of Theorem 3.6 and Lemmas 4.3, 4.5 and 4.6 we are now able to introduce

Notation 4.7. For every α ∈ Y , let Qα = (qαλi) and

Tα = M (Iα, Gε,Λα;Qα).

For any α, β ∈ Y such that α > β, let

τα,β = χ(ϕα,β , s
α,β , ιGε

, tα,β , ψα,β).

Finally, let

T = [Y ;Tα, τα,β ],

with z = (k, p−1
νκ , ν) as the zenith of its unary operation.

Lemma 4.8. For every α ∈ Y , let ξα be an isomorphism of Sα onto Tα, and

assume that for any α > β, the diagram

Sα

σα,β

��

ξα // Tα

τα,β

��
Sβ

ξβ // Tβ

commutes. Then ξ =
⋃

α∈Y

ξα is an isomorphism of S onto T .

P r o o f. Straightforward verification. �

We are finally ready for the principal result of this section.
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Theorem 4.9. The mapping

ξ : (i, g, λ) 7→ (i, gω−1
ε,α, λ) ((i, g, λ) ∈ Sα, α ∈ Y )

is an isomorphism of S onto T .

P r o o f. For every α ∈ Y , let ξα = ξ|Sα
so that ξα is a bijection of Sα onto Tα.

For a = (i, g, λ), b = (j, h, µ) ∈ Sα we have

(aξα)(bξα) = (i, gω−1
ε,α, λ)(j, hω

−1
ε,α, µ) = (i, (gω−1

ε,α)qλj(hω
−1
ε,α), µ)

= (i, (gpλjh)ω
−1
ε,α, µ) = (ab)ξα

and ξα is an isomorphism of Sα onto Tα.

In view of Lemma 4.8 it remains to show that for α > β its diagram commutes.

Indeed, for a = (i, g, λ) ∈ Sα we have

aξατα,β = (iϕα,β , s
α,β
i (gω−1

ε,α)tα,βλ , λψα,β),(5)

aσα,βξβ = (iϕα,β , [u
α,β
i (gωα,β)v

α,β
λ ]ω−1

ε,β , λψα,β)(6)

and using Lemma 4.2 we get

sα,βi (gω−1
ε,α)tα,βλ = (uα,βi c−1

ε,α,β)ω
−1
ε,β(gω

−1
ε,α)(cε,α,βv

α,β
λ )ω−1

ε,β

= (uα,βi ωε,β)d
−1
ε,α,β(gω

−1
ε,α)dε,α,β(v

α,β
λ ω−1

ε,β)

= (uα,βi ω−1
ε,β)(gωα,βω

−1
ε,β)(v

α,β
λ ω−1

ε,β) = [uα,βi (gωα,β)v
α,β
λ ]ω−1

ε,β

which implies the equality of (5) and (6).

Obviously ξ fixes z, which in view of Corollary 3.4 implies that ξ is a homomor-

phism, and is thus an isomorphism. �

The semigroup [Y ;Tα, τα,β ] is our second representation.

5. Third representation

In the third representation we abandon the homomorphisms τα,β in the second

and write the product directly from the triples. In this procedure, we extend the

sandwich matrices of individual completely simple components to all the relevant

indices. We thus arrive at four functions from different domains into a group. This

prepares the ground for a new construction, the third representation.
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Notation 5.1. Let T be the second representation with all accompanying nota-

tion. For each α ∈ Y , provide Iα and Λα with the structure of a left and a right zero

semigroup, respectively. Set

I = [Y ; Iα, ϕα,β ], Λ = [Y ; Λα, ψα,β ]

so that I is a left and Λ is a right normal band, respectively.

Define a function q : (λ, i) 7→ qλi by

qλi = tα,αβλ qαβλψα,αβ ,iϕβ,αβ
sβ,αβi (λ ∈ Λα, i ∈ Iβ).

We also write

si,β = sα,αβi , tα,λ = tβ,αβλ (i ∈ Iβ , λ ∈ Λα).

For α = β, the new qλi coincides with q
α
λ so that the above represents an extension

of qαλi for λ ∈ Λα and i ∈ Iα to all α ∈ Y . The new notation si,β and tα,λ is less

precise but it will prove adequate.

The multiplication in T becomes: for a = (i, g, λ) ∈ Tα and b = (j, h, µ) ∈ Tβ,

ab = (aτα,αβ)(bτβ,αβ)

= (iϕα,αβ , s
α,αβ
i gtα,αβλ , λψα,αβ)(jϕβ,αβ , s

β,αβ
j htβ,αβµ , µψβ,αβ)

= (ij, sα,αβi g[tα,αβλ qαβλψα,αβ ,jϕβ,αβ
sβ,αβj ]htβ,αβµ , λµ)

= (ij, sα,αβi gqλjht
β,αβ
µ , λµ) = (ij, si,βgqλjhtα,µ, λµ),

and the unary operation is

a∗ = (k, [(tε,αν qανψε,α,i
sα,αi )g(tα,αλ qαλ,kϕε,α

sε,αk )]−1, ν)

= (k, (qνigqλk)
−1, ν) = (k, q−1

λk g
−1q−1

νi , ν).

Observe that these formulas are generalizations of those for a Rees matrix semi-

group. Abstractly we proceed as follows.

Construction 5.2. Let

I = [Y ; Iα, ϕα,β ], Λ = [Y ; Λα, ψα,β ]
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be a left and a right normal band, respectively, let G be a group with identity

element 1, and the functions

{(α, β, γ) ∈ Y 3 ; α > β > γ}

e

��
I × Y

s // G Y × Λ
too

Λ × I

q

OO

in notation

(i, α) 7→ si,α, (α, β, γ) 7→ dα,β,γ , (α, λ) 7→ tα,λ, (λ, ι) 7→ qλi.

Assume that the following conditions are satisfied:

si,α = tα,λ = 1 if i ∈ Iα, λ ∈ Λα,

siϕα,β ,γsi,β = si,γdα,β,γ if i ∈ Iα, α > β > γ,

qλi = tβ,λqλψα,αβ ,iϕβ,αβ
si,α if λ ∈ Λα, i ∈ Iβ ,

tβ,λtγ,λψα,β
= d−1

α,β,γtγ,λ if λ ∈ Λα, α > β > γ.

Let ε be the identity element of Y and fix k ∈ Iε, ν ∈ Λε. On the set

U = {(i, g, λ) ∈ Iα ×G× Λα ; α ∈ Y }

define a multiplication by: for i ∈ Iα, j ∈ Iβ ,

(i, g, λ)(j, h, µ) = (ij, si,βgqλjhtα,µ, λµ)

and a unary operation by

(i, g, λ)∗ = (k, q−1
λk g

−1q−1
νi , ν).

Denote the resulting algebra by [I,Λ, G; s, d, t, q].

With the notation established and by virtue of the above discussion, we conclude
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Lemma 5.3. The identity mapping is an isomorphism of T = [Y ;Tα, τα,β ] onto

U = [I,Λ, G; s, d, t, q].

As a consequence, we have that U is a normal cryptogroup with an associate

subgroup. We could verify this directly from the conditions imposed upon the pa-

rameters.

The relationship of [Y ;Tα, τα,β ] and [I,Λ, G; s, d, t, q] discussed above is sufficiently

transparent so that, by starting with the latter, by essentially reversing the steps we

can easily construct Tα’s and τα,β’s to obtain the relationship in the above lemma.

From Fact 3.2, Theorem 4.9 and Lemma 5.3, we derive

Theorem 5.4. The algebra [I,Λ, G; s, d, t, q] is a normal cryptogroup with

an associate subgroup. Conversely, every such semigroup is isomorphic to some

[I,Λ, G; s, d, t, q].

The semigroup [I,Λ, G; s, d, t, q] is our third representation.

We now discuss briefly the possibility of normalization in this representation.

Lemma 5.5. Let S = [Y ;Sα, σα,β ] where Sα = M (Iα, Gα,Λα;Pα) for all α ∈ Y .

There exists a normal cryptogroup Z = [Y ;Zα, ζα,β ] where Zα = M (Iα, Gα,Λα;Rα)

for every α ∈ Y is such that S ∼= Z and each Rα is normalized.

P r o o f. For each α ∈ Y , the semigroup Zα and the isomorphism ξα : Sα → Zα
needed in Lemma 4.8 are provided by [4, Lemma III.3.6]. For any α > β, we define

ζα,β = ξ−1
α σα,βξβ . Simple chasing of diagrams completes the proof. �

In view of this lemma, we may start in Section 3 with sandwich matrices Pα

normalized at 1α, say. The transition in Section 4 to Q
α, see Notation 4.4, retains

the normalization at 1α. However, in the extension of qλi to all λ ∈ Λ and i ∈ I, see

Notation 5.1, we do not have normalization.

It follows that in the completely simple case we do have possibility of normal-

ization. This is what happens in Theorem 2.3, for there P is normalized at 1 and

z = (1, e, 1) is used as the zenith which made it possible to have a simple expression

for a∗. But for the general normal cryptogroup that may not be possible.

Theorem 2.3 may now be interpreted as a special case of Theorem 5.4.
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6. Fourth representation

From the left and the right normal bands in the third representation we form their

spined product and use it as an “underlying” semigroup for the fourth representation.

Notation 6.1. With the notation of the preceding section, for every α ∈ Y let

Bα = Iα × Λα, the direct product of the left zero semigroup Iα and the right zero

semigroup Λα. For any α > β define

ηα,β : (i, λ) 7→ (iϕα,β , λψα,β)

and set

B = [Y ;Bα, ηα,β ],

that is, B is a spined product of I and Λ.

We also introduce

w = (k, ν) ∈ Bε where ε is the identity element of Y,

mx,β = si,β if i ∈ Iα, α > β, x = (i, νψε,α),

ra,x = qλi if a = (kϕε,α, λ), x = (i, νψε,β),

nβ,a = tβ,λ if λ ∈ Λα, α > β, a = (kϕε,α, λ).

Abstractly we proceed as follows.

Construction 6.2. Let B = [Y ;Bα, ηα,β] be a normal band, let ε be the identity

element of Y , w = (k, ν) ∈ Bε, let G be a group with identity element 1 and the

functions
{(α, β, γ) ∈ Y 3 ; α > β > γ}

d

��
Bw × Y

m // G Y × wB
noo

wB ×Bw

r

OO

in notation

(x, α) 7→ mx,α, (α, β, γ) 7→ dα,β,γ , (α, a) 7→ nα,a, (a, x) 7→ ra,x.

Assume that the following conditions are satisfied:

mx,α = nα,a = 1 if x ∈ Bαw, a ∈ wBα,

mxηα,β ,γmx,β = mx,γdα,β,γ if x ∈ Bαw, α > β > γ,

ra,x = nβ,araηα,αβ ,xηβ,αβ
mx,α if a ∈ wBα, x ∈ Bαw,

nβ,anγ,aηα,β
= d−1

α,β,γnγ,a if a ∈ wBα, α > β > γ.
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On the set

V = {(x, g, a) ∈ Bw ×G× wB ; aw = wx}

define a multiplication by: for x ∈ Bα, y ∈ Bβ,

(x, g, a)(y, h, b) = (xy,mx,βgra,yhnα,β, ab)

and a unary operation by

(x, g, a)∗ = (w, r−1
a,wg

−1r−1
w,x, w).

Denote the resulting algebra by [B,G;m, d, n, r].

With the above notation and in view of the relevant discussion, we derive

Lemma 6.3. The identity mapping is an isomorphism of U = [I,Λ, G; s, d, t, q]

onto V = [B,G;m, d, n, r].

It then follows that V is a normal cryptogroup with an associate subgroup. This

of course can be verified directly from the conditions imposed upon the parameters.

Given [B,G;m, d, n, r] with the accompanying conditions, we can easily reverse

the above discussion and construct the corresponding [I,Λ, G; s, d, t, q]. Now Theo-

rem 5.4 and Lemma 6.3 imply

Theorem 6.4. The algebra [B,G;m, d, n, r] is a normal cryptogroup with

an associate subgroup. Conversely, every such semigroup is isomorphic to some

[B,G;m, d, n, r].

Note that for V = [B,G;m, d, n, r] we have V/H ∼= B and any maximal subgroup

of V is isomorphic to G.

The semigroup [B,G;m, d, n, r] is our fourth representation. It is interesting to

compare this representation with Fact 2.2 for semigroups with a medial zenith.
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