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SIMPLE GAMES IN  LUKASIEWICZ CALCULUS
AND THEIR CORES

Petr Cintula and Tomáš Kroupa

We propose a generalization of simple coalition games in the context of games with fuzzy
coalitions. Mimicking the correspondence of simple games with non-constant monotone for-
mulas of classical logic, we introduce simple  Lukasiewicz games using monotone formulas of
 Lukasiewicz logic, one of the most prominent fuzzy logics. We study the core solution on the
class of simple  Lukasiewicz games and show that cores of such games are determined by finitely-
many linear constraints only. The non-emptiness of core is completely characterized in terms
of balanced systems and by the presence of strong veto players.

Keywords: simple game, game with fuzzy coalitions, core, McNaughton function,
 Lukasiewicz logic

Classification: 91A12, 06D35

1. INTRODUCTION

Simple games are coalitional games [12] that describe voting in committees and legislative
bodies. For example, the United Nations Security Council, which consists of 15 members,
approves its decisions by a weighted majority system in which any of the 5 permanent
members can veto a proposal. Specifically, decisions on all substantive matters require
the affirmative votes of at least 9 members of the council. A simple game is determined
by a finite player set and by a family of all winning coalitions, which (i) contains the
set of all players, (ii) does not contain the empty set, and (iii) is closed with respect
to supersets. Equivalently, every simple game can be identified with a non-constant
monotone Boolean function.

Games with fuzzy coalitions, which are just vectors in the unit cube, were introduced
by Aubin [2] and since then the theory has been developed in a number of papers and
books—see e.g. [4, 5, 6]. The main goal of this paper is to investigate the class of games
with fuzzy coalitions that results from changing the logical framework for simple games.
Namely, we use the infinite-valued  Lukasiewicz logic [8] in place of the Boolean logic
and work with the associated logical functions (the so-called McNaughton functions).
In this way, we define the class of simple  Lukasiewicz games (Definition 3.3), which are
argued to be suitable many-valued generalizations of simple games. This step has a few
methodological consequences: (i) we obtain a faithful ‘completion’ of simple games over
all fuzzy coalitions since the restriction of every McNaughton function to coalitions is
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a Boolean function, (ii) we replace the yes/no voting interpretation of simple games by
the degree-based utility interpretation of simple  Lukasiewicz games. Further, we focus
on the core solution concept for simple  Lukasiewicz games, which was defined for general
games with fuzzy coalitions by Aubin [2].

The paper is structured as follows. In Section 2 we recall basic notions and results in
coalitional games (simple games, in particular) and games with fuzzy coalitions. The for-
mal analogues of simple games in  Lukasiewicz calculus, the so-called simple  Lukasiewicz
games, are introduced and studied in Section 3, which also includes the necessary back-
ground on  Lukasiewicz logic. The main result therein is Corollary 3.6 showing that each
simple fuzzy game can be described by a non-constant monotone formula of  Lukasiewicz
logic; this generalizes the well-known fact about classical simple games. The Aubin’s
core of simple fuzzy games is investigated thoroughly in Section 4, where we give a wealth
of examples and prove that the core of a simple  Lukasiewicz game is a convex polytope
included in the standard unit simplex (Theorem 4.4). Finally, in Section 5, we find two
necessary and sufficient conditions for existence of a payoff distribution in the core: first,
using the notion of balanced system of fuzzy coalitions (Theorem 5.1) and, second, using
the notion of strong veto players (Theorem 5.5).

2. BASIC NOTIONS

We repeat the basic terminology regarding cooperative coalitional games with transfer-
able utilities [12]. Let the player set be N = {1, . . . , n} for some n ∈ N. Each element
i ∈ N is called a player and each element A in the set 2N of all subsets of N is a coali-
tion. The coalition of all the players N is said to be the grand coalition. A (coalition)
game is a function v : 2N → R such that v(∅) = 0. The value v(A) is said to be a worth
of coalition A ⊆ N . Worth v(A) is the total amount of utility resulting from the co-
operation among members of A on some economic or social project. In particular, if
the range of a game v is the two-valued scale {0, 1} only, then each coalition A ⊆ N
is either winning (v(A) = 1) or loosing (v(A) = 0). Moreover, it is natural to assume
that a winning coalition cannot become loosing after any player joins it. In this way we
obtain the class of simple games cite[Section 2.2.3]PelegSudholter07.

Definition 2.1. A simple game is a {0, 1}-valued game such that v(N) = 1 and v is
non-decreasing: v(A) ≤ v(B), whenever A ⊆ B for each A,B ⊆ N .

Each simple game v can be associated with a unique Boolean function fv. To this end,
notice that a coalition A ⊆ N can be viewed as a vector 1A ∈ {0, 1}n with coordinates

(1A)i =

{
1 if i ∈ A,
0 otherwise.

In case that A = {i}, we write simply 1i in place of 1{i}. Consequently, put fv(1A) =
v(A) for each A ⊆ N . Clearly, fv : {0, 1}n → {0, 1} is a non-decreasing Boolean function
such that fv(1∅) = 0 and fv(1N ) = 1.
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Example 2.2. (Majority voting) Assume that N = {1, 2, 3} is the set of players. The
majority voting is captured by a simple game w such that

w(A) =

{
1 if |A| ≥ 2,
0 otherwise.

The corresponding Boolean function is

fw(a1, a2, a3) = (a1 ∧ a2) ∨ (a1 ∧ a3) ∨ (a2 ∧ a3), a1, a2, a3 ∈ {0, 1}.

The next game is a simplified version of the UNSC voting.

Example 2.3. Let us consider two groups of players, N1 = {1, 2, 3} and N2 = {4, 5}.
The simple coalition game over the player set N = N1 ∪N2 is given by

u(A) =

{
1 if A ) N1,

0 otherwise.

This game is associated with the Boolean function

fu(a1, a2, a3, a4, a5) = a1 ∧ a2 ∧ a3 ∧ (a4 ∨ a5), ai ∈ {0, 1}, i = 1, . . . , 5.

It is well-known that each Boolean function corresponds to a formula of classical
(Boolean) logic, and vice-versa. We say that a formula of classical logic is monotone
whenever it is equivalent to a formula built from propositional variables and truth con-
stants 0 and 1 using disjunction and conjunction only.

Theorem 2.4. (Wegener [16, Theorem 4.1]) Let v : 2N → {0, 1} be a non-constant
function. Then v is a simple game iff there is a monotone formula ϕ such that fv is the
Boolean function corresponding to ϕ.1

We use Theorem 2.4 as a guideline in order to single out our class of ‘simple’ games
with fuzzy coalitions in the next section.

The core is one of the basic solution concepts in cooperative game theory [12, Chap-
ter 3]. Let v be a (not necessarily simple) coalition game. The core of v is the set of all
efficient payoff vectors x ∈ Rn upon which no coalition can improve, that is,

C(v) =

{
x ∈ Rn

∣∣∣∣∣ ∑
i∈N

xi = v(N) and
∑
i∈A

xi ≥ v(A) for each A ⊆ N

}
.

The Bondareva–Shapley theorem [12, Theorem 3.1.4] gives a necessary and sufficient
condition for the core non-emptiness in terms of the so-called balanced systems, which
we discuss in Section 4 in case of simple fuzzy games. If v is a simple game, then we can
employ another criterion for the core non-emptiness. This condition is related to the
notion of veto player (see Section 5 for explanation of this notion). A player i ∈ N is
said to be a veto player provided that v(N \ {i}) = 0. Observe that no veto players are

1In fact, we can assume that ϕ is in the irreducible disjunctive normal form.
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present in the game described by Example 2.2 and, in the same time, its core is empty.
Such a situation is no coincidence. If the set of veto players M ⊆ N in a simple game v
is non-empty, we can uniformly distribute all the payoffs among the veto players only:
let

xi =

{
1
|M | if i ∈M,

0 otherwise.

Then x ∈ C(v). This situation applies, for example, to the United Nations Security
Council voting game in which any of the five permanent members is a veto player.
Similarly, in Example 2.3 each player from set N1 is a veto player. The following fact
follows easily.

Proposition 2.5. A simple game has a non-empty core if and only if there is at least
one veto player in the game.

Since the publication of Aubin’s seminal paper [2], cooperative scenarios involving
fractional membership degrees in coalitions have been studied. In such situation, the
subsets of N are no longer proper models for coalitions. Instead, fuzzy coalitions have
to be introduced in order to represent the intermediate membership degrees. We assume
that a membership degree of player i ∈ N is determined by a number ai in the unit
interval I = [0, 1]. A fuzzy coalition is a vector a = (a1, . . . , an) ∈ In. The n-dimensional
cube In is thus identified with the set of all fuzzy coalitions. Several definitions of fuzzy
games appear in the literature (see e. g. [2, 7]). We adopt the one used by Azrieli and
Lehrer [4].

Definition 2.6. Let the set of players be N = {1, . . . , n}. A game (with fuzzy coalitions)
is a bounded function v : In → R satisfying v(1∅) = 0.

Most solution concepts (the core, in particular) have been generalized to games with
fuzzy coalitions—see [5] for a survey. In our paper we introduce a new subclass of fuzzy
games that represent a formal counterpart of Boolean voting systems. This is achieved
by considering logical functions corresponding to a logic weaker than the classical two-
valued logic. Example 3.7 in Section 3 provides a possible motivation for our approach
by describing a game in which players are represented by groups of players in some
classical simple game (e.g. game u from Example 2.3).

3. SIMPLE GAMES IN  LUKASIEWICZ CALCULUS

We provide a survey of  Lukasiewicz infinite-valued propositional logic and its associated
Lindenbaum algebra (for more details see e.g. [8, Chapter 4]). We restrict ourselves to
finitely-many propositional variables A1, . . . , An; formulas ϕ, ψ, . . . are then constructed
from these variables and the truth-constant 0 using the following basic connectives:
negation ¬ and strong disjunction ⊕. The set of all such formulas is denoted by FORMn.

The standard semantics for connectives of  Lukasiewicz logic is given by the corre-
sponding operations of the standard MV-algebra [8], which is just the real unit inter-
val I endowed with constant falsum 0 and the operations of negation ¬ and strong
disjunction ⊕ defined as:

0 = 0, ¬a = 1− a, a⊕ b = min(1, a+ b).
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We also introduce derived connectives (we list them together with their standard seman-
tics; the same symbol is used to denote the connective and the corresponding binary
operation on I2):

implication → ϕ→ ψ = ¬ϕ⊕ ψ min{1, 1− a+ b}
strong conjunction � ϕ� ψ = ¬(¬ϕ⊕ ¬ψ) max{0, a+ b− 1}
lattice disjunction ∨ ϕ ∨ ψ = (ϕ→ ψ) → ψ max{a, b}
lattice conjunction ∧ ϕ ∧ ψ = ¬(¬ϕ ∨ ¬ψ) min{a, b}
verum 1 1 = ¬0 1

The operations � and ⊕ are also known as  Lukasiewicz t-norm and  Lukasiewicz t-
conorm, respectively (see [9]). A valuation is a mapping ν : FORMn → I such that for
each ϕ,ψ ∈ FORMn:

ν(0) = 0, ν(¬ϕ) = 1− ν(ϕ), ν(ϕ⊕ ψ) = min{1, ν(ϕ) + ν(ψ)}.

Formulas ϕ,ψ ∈ FORMn are called equivalent when ν(ϕ) = ν(ψ) for every valuation ν.
The equivalence class of ϕ is denoted by [ϕ]. Another example of an MV-algebra is the
Lindenbaum algebra Mn of  Lukasiewicz logic over n propositional variables, which is
the set of all equivalence classes [ϕ] endowed with the operations:2

0 = [0], ¬[ϕ] = [¬ϕ], [ϕ]⊕ [ψ] = [ϕ⊕ ψ].

Since every valuation ν is completely determined by its restriction to the propositional
variables ν 7→ (ν(A1), . . . , ν(An)) ∈ In, every ‘possible world’ ν is matched with a unique
point xν ∈ In. Conversely, for any x ∈ In, let νx be the valuation uniquely defined by
(νx(A1), . . . , νx(An)) = x. Therefore, for each formula ϕ, its equivalence class [ϕ] can
be viewed as a function [ϕ] : In → I defined as [ϕ](x) = νx(ϕ) for every x ∈ In.
Accordingly, Mn can be rendered as an algebra of functions with operations ¬ and ⊕
defined pointwise and with 0 being the constant zero function.

It is easy to see by induction on the complexity of formula ϕ that each such func-
tion [ϕ] is continuous and piecewise linear with pieces having integer coefficients. The
celebrated McNaughton theorem [10] states that those conditions are also sufficient for
a function v : In → I to belong to Mn.

McNaughton theorem. Let v : In → I. Then v ∈ Mn (i.e., v = [ϕ] for some
ϕ ∈ FORMn), if and only if, v is continuous and piecewise linear with each linear piece
having integer coefficients.

Each function in Mn is called an (n-variable) McNaughton function. Before we
proceed further, we need to recall some facts about McNaughton functions, especially
their well-known decomposition by min-max combinations of linear polynomials [1, 14].
For any real function f : In → R we define f ](x) = min{1,max{0, f(x)}. In that follows,
by a polytope we mean a convex hull of finitely-many points in Rn.

2The Lindenbaum algebra Mn is usually presented as the free n-generated MV-algebra, our way is
equivalent due to the so-called standard completeness theorem, see [8, Proposition 4.5.5].
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Proposition 3.1. (Aguzzoli [1, Theorem 1.4.4]) For each McNaughton function v,
there are unique sets

• Polyv of linear polynomials pv
1, . . . , p

v
k : In → R with integer coefficients and

• Pv of n-dimensional polytopes P v
1 , . . . , P

v
m ⊆ In

such that
⋃m

i=1 P
v
i = In, for each i ≤ m there is ji ≤ k such that for each x ∈ P v

i holds
v(x) = pv

ji
(x), and

v =
m∧

i=1

ji∨
j=1

(pv
j )].

Remark 3.2. This proposition is formulated in a simplified form sufficient for our needs,
for a precise elaboration the reader is advised to consult [1]. Let us now just hint how
Pv is determined by Polyv. Given a permutation π of the set { 1, . . . , k }, define Pπ ⊆ In

by
Pπ =

{
a ∈ In

∣∣ pπ(1)(a) ≤ · · · ≤ pπ(k)(a)
}
.

Each Pπ is a (possibly empty) polytope since Pπ is the intersection of cube In with
finitely-many halfspaces. If Π is the set of all permutations π of { 1, . . . , k } making
polytope Pπ n-dimensional, then Pv = { Pπ | π ∈ Π }.

We can say that pv
1, . . . , p

v
k are the linear pieces of v and P v

1 , . . . , P
v
m are the corre-

sponding ‘domains of linearity’. We omit the superscript v when clear from the context.
The McNaughton theorem shows that McNaughton functions stand to  Lukasiewicz

logic as Boolean functions stand to classical two-valued logic: they are functions ‘express-
ible’ by the formulas of the logic. Therefore we can think of them the key ingredients for
developing many-valued analogues of simple games in coalitional game theory. Analo-
gously to simple games, which can be identified with non-decreasing Boolean functions,
we define simple  Lukasiewicz games as non-decreasing McNaughton functions. As our
intuition here is based on a particular fuzzy logic we opt for a more specific name than
just ‘simple fuzzy games’.

Definition 3.3. Let the player set be N = { 1, . . . , n }. A simple  Lukasiewicz game is
a non-decreasing McNaughton function v : In → I such that v(1∅) = 0 and v(1N ) = 1.
By S LGn we denote the set of all simple  Lukasiewicz games over In.

Every simple  Lukasiewicz game is indeed a game with fuzzy coalitions in the sense of
Definition 2.6. Note that the conditions v(1∅) = 0 and v(1N ) = 1 could be replaced by
demanding that v is non-constant.

The rest of this section is dedicated to generalizing Theorem 2.4, which will justify
the notion of simple  Lukasiewicz game. We say that ϕ ∈ FORMn is monotone if ϕ is
equivalent to a formula ψ over the propositional language containing only the symbols
A1, . . . , An,⊕,�,∨,∧,0,1. We start with the proof of an important lemma.

Lemma 3.4. Let p : In → R be a non-decreasing linear polynomial with integer co-
efficients. Then there exists a monotone formula ϕ of  Lukasiewicz logic such that the
McNaughton function p] = [ϕ].
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P r o o f . We know that

p(a1, . . . , an) =
n∑

j=1

αjaj + β, for every (a1, . . . , an) ∈ In,

and that αj ≥ 0 for each j ≤ n (as p is non-decreasing). We proceed by induction on
α =

∑n
j=1 αj . First suppose that α = 0, i.e., p(a1, . . . , an) = β. Then clearly:

ϕ =

{
1 if β > 0,
0 otherwise.

Induction step: let max(α1, . . . , αn) = αj ≥ 1. Put q = p − aj and, by induction
hypothesis, we know that there are monotone formulas χ, δ ∈ FORMn such that [χ] = q]

and [δ] = (q + 1)]. We can routinely check that the equation

(q(a) + aj)] = (q(a)] ⊕ aj)� (q(a) + 1)]

is satisfied for every a = (a1, . . . , an) ∈ In (see e.g. [8, Lemma 3.1.9]). Therefore we can
get the sought formula as ϕ = (χ⊕Aj)� δ. �

Theorem 3.5. A function v : In → I is a monotone McNaughton function iff there is
a monotone formula of  Lukasiewicz logic ϕ such that v = [ϕ].

P r o o f . Left-to-right direction: let us consider p ∈ Polyv. Because v is non-decreasing,
so is p and thus we can employ Lemma 3.4 to recover a monotone formula ϕp such
that [ϕp] = p]. To complete the proof we use Proposition 3.1 to entail that the sought
formula can be defined as:

ϕ =
m∧

i=1

ji∨
j=1

ϕpj .

The converse direction is an easy consequence of monotonicity of all the operations
involved. �

Corollary 3.6. Let v : In → I be a non-constant function. Then the game v is a simple
 Lukasiewicz game iff there is a monotone formula of  Lukasiewicz logic ϕ such that
v = [ϕ].

The game u from Example 2.3 describes the UNSC-style voting with two distinguished
player sets. The model can be further improved by assessing how results of voting in the
two groups contribute to the overall result. This naturally results in a simple  Lukasiewicz
game.

Example 3.7. Let the player set be N = {1, 2}, where each i = 1, 2 corresponds to
the respective set of players Ni from Example 2.3. Each degree of membership ai ∈ I
captures the ratio of affirmative votes within the group. Hence we have the following
membership degrees: a1 ∈

{
0, 1

3 ,
2
3 , 1

}
and a2 ∈

{
0, 1

2 , 1
}

. Put

v0(a1, a2) =

{
0 if a2 = 0,
a1 if a2 ∈

{
1
2 , 1

}
.
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Values of v0(a1, a2) are thus the ratios of affirmative votes within the group of veto
players, provided that a2 6= 0. If v is a linear interpolation of v0 on the square I2 subdi-
vided into two triangles meeting at the segment with endpoints (0, 1

2 ) and (1, 0), then we
obtain a simple  Lukasiewicz game v(a1, a2) = a1∧ (a1 + 2a2−1)]. By Corollary 3.6, this
game corresponds to a formula A1 ∧ (A1� (A2⊕A2)). Although the linear interpolation
of v0 may seem artificial, observe that we have arrived at a simple closed-form formula
for v. Moreover, we will show in next section that already function v0 contains sufficient
information about payoff distributions.

4. THE CORES OF SIMPLE  LUKASIEWICZ GAMES

The core of a game v with fuzzy coalitions and the player set N = { 1, . . . , n } is a set
of payoff vectors x = (x1, . . . , xn) ∈ Rn, each of which is efficient (the players can
redistribute the total worth v(1N ) of the grand coalition N among themselves) and
coalitionally rational (no fuzzy coalition a can contest payoff x due to obtaining strictly
less than worth v(a) resulting from a’s own activity). For every a, b ∈ Rn, let 〈a, b〉
denote the standard scalar product in Rn, that is, 〈a, b〉 =

∑n
i=1 aibi.

Definition 4.1. The core of a game with fuzzy coalitions v is the set

C(v) = { x ∈ Rn | 〈1N , x〉 = v(1N ) and 〈a, x〉 ≥ v(a) for each a ∈ In } .

This is a generalization of the classical core (see Section 2) introduced by Aubin [2],
which was subsequently investigated in a number of papers (see [4, 5], for example).
In contrast to classical coalition games, the core of a game with fuzzy coalitions is the
intersection of infinitely-many halfspaces with the affine hyperplane. For each a ∈ In

we define:

Ca(v) =

{
{ x ∈ Rn | 〈1N , x〉 = v(1N ) } if a = 1N ,

{ x ∈ Rn | 〈a, x〉 ≥ v(a) } otherwise,

and observe that we can write

C(v) =
⋂

a∈In

Ca(v).

In general, the structure of the core for games with fuzzy coalitions can be fairly
complicated. Azrieli and Lehrer provide a complete characterization (based on the
notion of a balanced system introduced in the sequel) of games with fuzzy coalitions
whose core is non-empty [4, Theorem 1(i)]. Besides, Branzei et al. proved that the core
of convex fuzzy games is fully given by Boolean coalitions only [5, Theorem 8.38]. We
call a game with fuzzy coalitions v convex, whenever the condition

v(a⊕ d)− v(a) ≤ v(b⊕ d)− v(b)

holds true for all fuzzy coalitions a, b, d ∈ In such that a ≤ b and b� d = 1∅. It is worth
emphasizing that, in general, convexity of a game v does not imply and is not implied
by convexity of v as an n-variable real function [4].
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Theorem 4.2. (Branzei et al. [5]) If v is a convex game with fuzzy coalitions, then

C(v) =
⋂

A⊆N

C1A
(v) 6= ∅.

The previous result enables us to reduce the core of convex simple  Lukasiewicz games
to the intersection of finitely-many linear constraints. We obtain, however, a more
general result for the whole class of simple  Lukasiewicz games S LGn.

We start with Example 4.3 suggesting the core structure of all games in S LGn. In that
follows, N (v) denotes the set of all nodes of a piecewise linear function v ∈ S LGn, that
is, the finite set of all fuzzy coalitions a ∈ In such that a is a vertex of some polytope in
Pv, where Pv denotes the set of all linearity domains of v (see Proposition 3.1). Notice
that N (v) ⊇ {0, 1}n.

Example 4.3. Assume that the player set is N = {1, 2}. Let co{a1, . . . , ak} denote the
convex hull of vectors a1, . . . , ak ∈ Rn. Put

P = co
{

(1, 9
13 ), ( 9

13 , 1), (1, 7
10 ), ( 7

10 , 1)
}
,

Q = co
{

(1, 7
10 ), ( 7

10 , 1), 1N

}
.

Define a function v : In → R by

v(a) =


13a1 + 13a2 − 22 if a ∈ P,
3a1 + 3a2 − 5 if a ∈ Q,
0 otherwise.

Then v ∈ S LGn and its node set is

N (v) =
{

1∅, 11, 12, (1, 9
13 ), ( 9

13 , 1), (1, 7
10 ), ( 7

10 , 1), 1N

}
.

We can directly verify that its core coincides with the line segment

co
{

( 1
10 ,

9
10 ), ( 9

10 ,
1
10 )

}
=

⋂
a∈N (v)

Ca(v).

The previous example is just an instance of the general phenomenon: the core of
every simple  Lukasiewicz game v is fully determined by the values of v at all nodes
a ∈ N (v). Remarkably, the core is thus given by the intersection of finitely-many linear
constraints only.

Theorem 4.4. If v ∈ S LGn, then C(v) =
⋂

a∈N (v) Ca(v). Moreover, C(v) is a (possibly
empty) polytope included in the standard (n− 1)-dimensional simplex

∆n = { x ∈ Rn | 〈1N , x〉 = 1 and xi ≥ 0 for every i ∈ N } .
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P r o o f . As for the first part of the proposition, we only need to show that

C(v) ⊇
⋂

a∈N (v)

Ca(v). (1)

Assume that x ∈
⋂

a∈N (v) Ca(v). We will check that no fuzzy coalition b ∈ In \N (v) can
improve upon the choice of payoff vector x, that is, the inequality 〈b, x〉 ≥ v(b) holds
true for every b ∈ In \ N (v).

There exists a polytope P ∈ Pv such that b ∈ P and v is linear over P . Let V(P ) be
the set of all vertices of P . Minkowski theorem presents b as a convex combination of
vertices of P : there exist real numbers αc ∈ I, one for each vertex c ∈ V(P ), such that
b =

∑
c∈V(P ) αcc and

∑
c∈V(P ) αc = 1. Hence

〈b, x〉 =
∑

c∈V(P )

αc 〈c, x〉 ≥
∑

c∈V(P )

αcv(c) = v

 ∑
c∈V(P )

αcc

 = v(b),

which proves (1) and thus C(v) =
⋂

a∈N (v) Ca(v). Next we show that C(v) is contained
in ∆n; we know that N (v) ⊇ {0, 1}n and thus

C(v) =
⋂

a∈N (v)

Ca(v) ⊆
⋂
i∈N

C1i(v) ∩ C1N
(v) ⊆ ∆n.

This also implies that C(v) is a polytope since it is a bounded intersection of finitely-
many halfspaces Ca(v). �

The previous proposition makes it possible to discuss examples of cores of particular
simple  Lukasiewicz games. For example, the core of v∧(a) = a1∧ · · ·∧an equals ∆n and
therefore it is the maximal possible core. Indeed, since N (v∧) = {0, 1}n we have

C(v∧) =
⋂

A⊆N

C1A
(v∧).

However, for A 6= N we have C1A
(v) =

{
x ∈ Rn

∣∣ ∑
i∈A xi ≥ 0

}
and so each such set is

redundant in the above intersection, unless A is a singleton. This yields⋂
A⊆N

C1A
(v∧) =

⋂
i∈N

C1i(v∧) ∩ C1N
(v∧) = ∆n.

The core can collapse to a point. In case of a ‘dictatorial’ game given by the ith
coordinate projection vi(a) = ai, we obtain C(vi) = {1i}, the singleton assigning the
whole unit payoff to player i: indeed,

C(vi) =
⋂

a∈{0,1}n

Ca(vi) = C1i(vi) ∩ C1N
(vi) = {1i}.

Examples of games with empty cores are easily found: take, for instance, the game
defined by v⊕(a) = a1⊕· · ·⊕an. It results that C(v⊕) = ∅, since C1N

(v⊕)∩C1i(v⊕) = {1i}
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and so the intersection C1N
(v⊕) ∩ C1i(v⊕) ∩ C1j (v⊕) is empty for i 6= j. The similarity

of game v⊕ with majority voting game in Example 2.2 is intuitively appealing. By the
same token, we can say that no players with veto power are present in game v⊕. The
role of (generalization of) veto players in simple  Lukasiewicz games will be shown in
Theorem 5.5.

Remark 4.5. We may view the core C(v) of each simple  Lukasiewicz game v as the
set of states on the unit cube In [11, 13], where each such state majorize the game.
Specifically, for each x ∈ C(v), let sx : In → I be the linear function

sx(a) = 〈a, x〉 .

Since x ∈ ∆n by Theorem 4.4, it follows that sx is a non-decreasing function with
sx(1N ) = 1. Moreover, sx is additive in the sense of  Lukasiewicz calculus:

sx(a⊕ b) = sx(a) + sx(b), whenever a, b ∈ In satisfy a� b = 0.3

The last condition a�b = 0 is a natural expression for the disjointness of fuzzy coalitions
a and b: two fuzzy coalitions are disjoint unless the sum of each player’s membership
degree in those coalitions exceeds 1. Every payoff vector x = (x1, . . . , xn) ∈ C(v), which
is imputed to individual players i ∈ N , is distributed by state sx linearly to each fuzzy
coalition a ∈ In according to the levels of participation ai of individual members of a.
This distribution scheme provides the usual interpretation of states and measures in
coalitional game theory (cf. [3]).

5. CHARACTERIZATIONS OF GAMES WITH NON-EMPTY CORES

Azrieli and Lehrer proved a necessary and sufficient condition for non-emptiness of the
core on the whole class of games with fuzzy coalitions [4, Theorem 1(i)]. We improve
this result for simple  Lukasiewicz games in two ways. First we use the notion of balanced
families of fuzzy coalitions. Let B be a finite set of fuzzy coalitions in In and (λa)a∈B
be a real vector with λa ∈ I. We say that a pair (B, (λa)a∈B) is a balanced system if∑

a∈B
λaa = 1N .

Theorem 5.1. Let v ∈ S LGn. The core C(v) is non-empty if and only if the inequality∑
a∈N (v)

λav(a) ≤ 1 (2)

is true for every balanced system (N (v), (λa)a∈N (v)).

3This easily follows from the fact that a� b = 0 iff a + b ≤ 1, which gives a⊕ b = a + b.
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P r o o f . Given v ∈ S LGn, consider the following linear program:

minimize 〈1N , x〉 subject to 〈a, x〉 ≥ v(a) for every a ∈ N (v). (3)

Using Theorem 4.4, the value of (3) is v(1N ) = 1 iff C(v) 6= ∅. Moreover, the program
(3) is feasible: for each player i ∈ N , define

âi = min { ai | (a1, . . . , an) ∈ N (v) and ai > 0 } , x̂i = 1
âi
, x̂ = (x̂1, . . . , x̂n).

If a = 1∅, then 〈1∅, x̂〉 = 0 = v(1∅). If a ∈ N (v) \ {1∅}, then

〈a, x̂〉 =
n∑

i=1

ai

âi
≥ 1 ≥ v(a)

and the program (3) is thus feasible.
The dual program of (3) is

maximize
∑

a∈N (v)

λav(a) subject to
∑

a∈N (v)

λaa = 1N where λa ∈ I. (4)

The dual program is feasible too; indeed we use the fact that {0, 1}n ⊆ N (v) and set:

λa =

{
1 if a = 1i for some i ∈ N ,
0 otherwise.

Then the system (N (v), (λa)a∈N (v)) is balanced. By the duality theorem of linear pro-
gramming (see e. g. [15, Theorem 4.3.4]), both programs (3) and (4) have necessarily the
same value. This implies that the core of v is non-empty if and only if∑

a∈N (v)

λav(a) ≤ 1,

for every feasible vector (λa)a∈N (v) of (4). The desired conclusion follows by observing
that the feasible set of (4) coincides with the set of all balanced systems over N (v). �

The condition (2) may not be easy to check. Therefore, we provide a sufficient
condition for the core non-emptiness based on the notion of strong veto player. For
every v ∈ S LGn and i ∈ N , let vi(a) : I → I be defined by

vi(a) = v(1, . . . , 1︸ ︷︷ ︸
i−1

, a, 1, . . . , 1), a ∈ I.

Loosely speaking, function vi measures a marginal influence of player i with respect
to the grand coalition: the more increasing vi is in the neighborhood of 1, the greater
coalition potential player i executes in the grand coalition. Based on behavior of this
function, we define a degree di ∈ I in which player i ∈ N vetoes a proposition: put

di = inf
{
a ∈ I

∣∣ vi(a) = 1
}
.
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Definition 5.2. Let v ∈ S LGn. We say that player i ∈ N is a

• null player if di = 0,

• weak veto player if 0 < di < 1,

• strong veto player if di = 1,

• veto player if i is not null player.

Note that the null player can be equivalently defined by condition v(1N\i) = 1, which is
usual in coalitional game theory. Analogously, the veto player can be defined as a player
for which v(1N\i) = 0 or, equivalently, vi ∈ S LG1. Moreover, i is a strong veto player iff
vi is strictly increasing over the line segment [c, 1] for some c < 1.

Clearly, any veto player i can effectively turn the (winning) grand coalition 1N into
the loosing coalition 1N\i, that is, v(1N\i) = 0. A finer classification arises, however, in
case of fuzzy games than in case of classical coalition games. The strong veto player’s
actions cause a loss to each fuzzy coalition because ai < 1 implies v(a) < 1, whereas the
weak veto player’s level of membership ai in a winning fuzzy coalition a can be strictly
less than 1. The strong veto players are indispensable in decision-forming since they can
profit from any cooperative situation by raising threats to other coalition members.

Example 5.3. Player 1 from Example 3.7 is a strong veto player and player 2 is null.
In particular, Theorem 4.4 shows that the core of v is the singleton {(1, 0)}.

The situation in the example above can be generalized. A game with strong veto
players is a game v ∈ S LGn such that there exists a strong veto player in game v. We
show that games with strong veto players have non-empty cores. In order to prove this,
the following purely technical lemma is needed.

Lemma 5.4. If p ∈ S LGn and i is a strong veto player, then pi(a) ≤ a for every a ∈ I.

P r o o f . Let us write v instead of pi. We proceed by contradiction: assume that there is
a ∈ (0, 1) with v(a) > a. Due to the continuity of v there has to be interval [c′, c] ⊆ [a, 1]
such that v(c′) > c′, v(c) = c, and [c′, c] is a subset of one domain of linearity of v, i.e.,
there is a linear polynomial f(x) = αx+ β, where α, β ∈ Z, and v(x) = f#(x) for each
x ∈ [c′, c]. Therefore we get

α =
c− v(c′)
c− c′

.

We distinguish three cases: first, assuming c < v(c′) yields α < 0, a contradiction with
the fact that v is non-decreasing. Second, if c > v(c′), then

0 < c− v(c′) < c− c′

and thus we get 0 < α < 1, a contradiction with α ∈ N. Finally, assume that c = v(c′),
then we have f(x) = β. Again, we distinguish two cases: if β ≤ 0, we obtain a v(c′) = 0
a contradiction. If β ≥ 1, we get v(c′) = 1, a contradiction with the fact that i is a strong
veto player. �

The following result is a generalization of Proposition 2.5.
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Theorem 5.5. Any game v ∈ S LGn is a game with strong veto players iff it has a non-
empty core.

P r o o f . Let M ⊆ N be a non-empty set of strong veto players. Put m = |M | and

xi =

{
1
m if i ∈M,

0 otherwise.

We show that x ∈ C(v). Clearly x ∈ C1N
(v):

〈1N , x〉 =
∑
i∈M

xi = m · 1
m = 1.

Second, using Theorem 4.4, it is sufficient to show that x ∈ Ca(v) for any fuzzy coalition
a ∈ N (v) \ {1N}. Consider the following chain of (in)equalities:

v(a) ≤
∧

j∈M

vj(aj) ≤
∧

j∈M

aj = 1
m

∑
i∈M

∧
j∈M

aj ≤ 1
m

∑
i∈M

ai = 〈a, x〉 .

The first one follows from v(a) ≤ vj(aj) (v is non-decreasing); the second uses Lemma 5.4
and the assumption that player j ∈ M is a strong veto player, and the remaining ones
are trivial.

The converse direction: assume that there are no strong veto players, i. e., for each
i ≤ n there is ci < 1 such that vi(ci) = 1. Let us take c = max{c1, . . . , cn} < 1 and
define fuzzy coalitions ai as

ai = (1, . . . , 1︸ ︷︷ ︸
i−1

, c, 1, . . . , 1).

We proceed by contradiction: assume there is x ∈ C(v). Then x ∈ Cai(v) for each i ≤ n,
which means that:

cx1 + x2 + · · · + xn ≥ v(a1) = v1(c) = 1

x1 + cx2 + · · · + xn ≥ v(a2) = v2(c) = 1
...
x1 + x2 + · · · + cxn ≥ v(an) = vn(c) = 1

Summing up these inequations we get:

(n− 1 + c)x1 + (n− 1 + c)x2 + · · ·+ (n− 1 + c)xn = (n− 1 + c)
n∑

i=1

xi ≥ n.

Using the fact x ∈ C1N
(v) yields

n∑
i=1

xi = 1 and thus we obtain c ≥ 1, a contradiction. �
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