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PROBLEMS IN HEISENBERG GROUPS
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Abstract. We study regularity results for solutions u ∈ HW 1,p(Ω) to the obstacle problem

∫
Ω

A(x,∇Hu)∇H(v − u) dx > 0 ∀v ∈ Kψ,u(Ω)

such that u > ψ a.e. in Ω, where Kψ,u(Ω) = {v ∈ HW 1,p(Ω) : v − u ∈ HW
1,p
0
(Ω)v >

ψ a.e. in Ω}, in Heisenberg groups Hn. In particular, we obtain weak differentiability in
the T -direction and horizontal estimates of Calderon-Zygmund type, i.e.

Tψ ∈ HW 1,p
loc
(Ω)⇒ Tu ∈ Lp

loc
(Ω),

|∇Hψ|
p ∈ L

q
loc
(Ω)⇒ |∇Hu|

p ∈ Lq
loc
(Ω),

where 2 < p < 4, q > 1.

Keywords: obstacle problem, weak solution, regularity, Heisenberg group

MSC 2010 : 35D30, 35J20

1. Introduction

The aim of this paper is the study of some regularity results for solutions of one-

side obstacle problems in the Heisenberg group. More precisely, let Ω be an open and

bounded domain in the Heisenberg group H
n. We will consider the weak solution

u ∈ HW 1,p(Ω) of the obstacle problem

(1.1)

∫

Ω

A(x,∇Hu)∇H(v − u) dx > 0 ∀v ∈ Kψ,u(Ω)
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such that u > ψ a.e. in Ω, where ∇H and HW
1,p(Ω) are respectively the horizontal

gradient and the horizontal Sobolev space introduced in (2.5), ψ ∈ HW 1,p(Ω) is a

given obstacle function and

(1.2) Kψ,u(Ω) = {v ∈ HW 1,p(Ω): v − u ∈ HW 1,p
0 (Ω), v > ψ a.e. in Ω},

where HW 1,p
0 (Ω) is the closure of C∞

0 (Ω) in HW 1,p(Ω).

We need the following assumptions, with positive constants α and β, to hold for

the operator A : Ω × R
2n → R

2n:

x 7→ A(x, ξ) is measurable for all ξ ∈ R
2n;(1.3)

ξ 7→ A(x, ξ) is continuous for almost all x ∈ Ω;(1.4)

A(x, ξ) · ξ > α|ξ|p for almost all x ∈ Ω and ξ ∈ R
2n;(1.5)

|A(x, ξ)| 6 β(|ξ|p−1 + 1) for almost all x ∈ Ω and ξ ∈ R
2n;(1.6)

〈(A(x, η) −A(x, ξ)), (η − ξ)〉 > c∗(α)(µ2 + |η|2 + |ξ|2)(p−2)/2|η − ξ|2(1.7)

for almost all x ∈ Ω and ξ 6= η ∈ R
2n.

We may assume that α 6 β, by choosing β larger, if necessary. We will refer to this

set of conditions as the structure conditions of A.
It is worth noticing that the first four structural conditions are not strong enough

to give a unique solution to the Kψ,u-obstacle problem. However, if A satisfies the
monotonicity condition

(1.8) (A(x, ξ1) −A(x, ξ2)) · (ξ1 − ξ2) > 0, ξ1 6= ξ2

for a.e. x ∈ R
n, then it can be shown, working as in the Euclidean case, that the

Kψ,u-obstacle problem admits a unique solution provided that Kψ,u 6= ∅ (see for
instance [23], Chapters 3 and 7).

The study of the classical obstacle problem, which started in the sixties with the

pioneering work of Stampacchia, Lewy and Lions [26], [27], [35] has led in the last

decades to deep developments in the calculus of variations and partial differential

equations; among other, some fundamental results have been achieved by Caffarelli

([3], [4]) concerning the theory of free boundaries for the obstacle problem. From

that moment onwards many authors have contributed, also following different points

of view bringing regularity results for single and double obstacle problem (see among

others [8], [12], [18], [19], [20], [33], [34] together with the references therein).

As already mentioned, the aim of this paper is to prove some basic regularity

results for the solution to the obstacle problem (1.1) in the Heisenberg group. Beside

his mathematical importance as a model of the metric space, the interest in the

532



Heisenberg group has grown in the last years due to its many applications. The

former has been in the modellizations of nonholonomic mechanic (see [7] and reference

therein), other ones have been in control theory and in engineering (for instance the

motion of robot arms) [37] and neurobiology (models of perceptual completion) [9].

The study of regularity properties of solutions to sub-elliptic equations in Heisenberg

groups and in more general Carnot groups started with Hormander [24] and has been

developed more recently by the works of Capogna, Garofalo, Danielli, Manfredi,

Mingione, Goldstein-Zatorska, and Domokos [5], [6], [12], [14], [15], [16], [17], [21],

[28], [29], [32]. We quote the recent and important papers of Mingione and coworkers

[32] and Domokos [14], [15], which are fundamental in the techniques of proofs of

our results.

As we said we obtain integrability estimates on Tu and ∇Hu, where u is the weak

solution of the obstacle problem (1.1). The regularity result in the vertical direction

T is obtained under the assumption A(x,∇Hu) = A(∇Hu). We implement iteration

methods on fractional difference quotients, using the techniques of Domokos in [14],

[15]. In particular, we consider as test functions in the weak form of (1.1), the

fractional difference quotients of the weak solution multiplied by a corresponding

cut-off function. Notice that this method has been applied in the Euclidean setting

to regularity problems of nonlinear second order equations ([32]). The results we

prove (see Theorems 3.4, 3.5) can be summarized as follows.

Theorem 1.1. Let Ω ⊂ H
n be an open set, 2 6 p < 4 and let u ∈ HW 1,p

loc (Ω) be a

weak solution of the obstacle problem (1.1)with Tψ ∈ W 1,p
H,loc(Ω), whereA(x,∇Hu) =

A(∇Hu). Then Tu ∈ Lploc(Ω).

The second result we achieve goes along the lines of the nonlinear Calderón-

Zygmund theory; indeed, due to the recent result provided by Mingione and cowork-

ers [32] we are able to obtain a Calderón-Zygmund type estimate for the solution u

to the obstacle problem in the following sense: provided that the obstacle function

ψ belongs to HW 1,q(Ω) with some q > p, p being the natural growth exponent ap-

pearing in the structure conditions for A, then also u ∈ HW 1,q(Ω). The study of

nonlinear Calderón-Zygmund type estimates goes back to the fundamental paper of

Iwaniec [25] in the case of elliptic equations with constant p growth, and to the paper

of Di Benedetto and Manfredi [13] in the case of elliptic systems. Recently, Acerbi

and Mingione proved estimates of this kind for parabolic systems in [1] and Bögelein,

Duzaar and Mingione proved similar results in the elliptic and in the parabolic case

in [2], using the technique introduced by [1]. The result of [2] has been subsequently

extended by Eleuteri and Habermann to the variable exponent case, see [19]. Fur-

thermore, Mingione [30], [31] developed a natural extension of the Calderón Zygmund
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theory for problems with measure data, showing appropriate fractional differentia-

bility of the solution. The result we prove extends to the subelliptic case the original

result of [2] and can be summarized as follows.

Theorem 1.2. Let u ∈ HW 1,p(Ω) be a solution to the obstacle problem (1.1)

under the assumptions (1.3)–(1.8) and 2 < p < 4. If |∇Hψ|p ∈ Lqloc(Ω) for some

q > 1, then |∇Hu|p ∈ Lqloc(Ω).

The proof of this result goes through several steps. As in the Euclidean case,

the key point to the proof of a quantified higher integrability of the gradient of the

solution u to the obstacle problem (1.1) is a decay estimate of the level sets of the

maximal function of |∇Hu|p to increasing levels, as we can see in (4.24) (recall also
the definitions of µ1 and µ2 in (4.20)). Iteration of (4.24) in combination with the

well known Lp estimates for the maximal function then directly provides the desired

integrability result. To prove (4.24), we make use of Lemma 4.2 which is a direct

consequence of a Calderón-Zygmund type covering argument. To apply this lemma

on super level sets of the maximal function (see the definitions of E and G in (4.22)

and (4.23)), it turns out to be crucial to show that assumption (ii) in Lemma 4.2

is fulfilled. This is the statement of Lemma 4.3. In order to prove Lemma 4.3, the

strategy consists in a comparison of the solution to the original obstacle problem to

the solution to the Dirichlet problem

(1.9)

{

divHA(x0,∇Hz) = 0 in B,

z = u on ∂B.

The structure conditions of this problem—a nonlinear degenerate elliptic equation

with constant growth exponent—guarantee an L∞ estimate for the gradient of z,

namely the following theorem which is the novelty brought by Mingione and cowork-

ers in [32]:

(1.10) sup
BR/2

|∇Hu| 6 c

( ∫

BR

(µ+ |∇Hu|p) dh

)1/p

.

To compare the solution to the original obstacle problem to the solution to (1.9), it

turns out to be necessary to include further two comparison processes, in order to

be able, through the different comparison estimates, to pass the sup estimate on the

solution u to the original obstacle problem.

The structure of the paper is the following: in Section 2 we recall some preliminary

results and definitions in the Heisenberg group, Section 3 is devoted to the study of

the vertical derivative Tu and Section 4 to the Calderón-Zygmund type estimates of

the horizontal gradient ∇Hu.
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2. Heisenberg groups

The Heisenberg group H
n = C

n × R = R
2n+1 is the simplest example of the

Carnot group, endowed with a left-invariant metric d∞, which is not equivalent to

the Euclidean metric.

We shall denote the points of Hn by x = (x1, . . . , xn, xn+1, . . . , x2n, t). If x =

(x′, t), y = (y′, s) ∈ H
n, we define the group operation

(2.1) x · y :=
(

x′ + y′, t+ s− 1

2

∑

i

[yixi+n − xiyi+n]
)

and the family of non isotropic dilations δr(x) := (Rx′, R2t), for R > 0. The Heisen-

berg Lie algebra h is (linearly) generated by

(2.2) Xj =
∂

∂xj
− xj+n

2

∂

∂t
, Xj+n =

∂

∂xj+n
+
xj
2

∂

∂t
for j = 1, . . . , n; T =

∂

∂t
,

the only non-trivial commutator relations are [Xj , Xj+n] = T for j = 1, . . . , n. Let

us define ‖x‖∞ := max{|x′|, |t|1/2} and the distance d∞, defined as d∞(x, y) :=

‖x−1 · y‖∞.

Proposition 2.1. For any bounded subset Ω ∈ H
n there exist positive constants

c1(Ω), c2(Ω) such that

(2.3) c1(Ω)|x− y|R2n+1 6 d∞(x, y) 6 c2(Ω)|x− y|1/2
R2n+1 for x, y ∈ Ω.

Hence, the topologies defined by d∞ and by the Euclidean distance coincide on H
n,

therefore the topological dimension of Hn is 2n+ 1. On the contrary, the Hausdorff

dimension of (Hn, d∞) is Q = 2n+2. Q is called the homogeneous dimension of Hn.
We will indicate the ball with center x0 ∈ H

n and radius R with respect to the

distance d∞ by B(x0, R) := {x ∈ H
n : d∞(x, x0) 6 R}. The ball B(x0, R) has a

doubling property, i.e. there exists a constant C, depending only on the homogeneous

dimension Q such that

(2.4) L2n+1(B(x0, 2R)) 6 CL2n+1(B(x0, R)).

When the center of the ball is not important, we shall use the notationBR = B(x0, R)

and when no ambiguity may arise, we shall also denote λB = B(x0, λR) for λ > 0.

There is a natural measure dx on H
n which is given by the Lebesgue measure

dL2n+1 = dx on R
2n+1. The measure dx is left (and right) invariant and it is the

Haar measure of the group.

535



Definition 2.2. Let BR ⊂ H
n be a ball and f : BR → R

k an intagrable function.

Let us define the average of f over BR as

(f)R :=

∫

BR

f(x) dx =
1

L2n+1(BR)

∫

BR

f(x) dx.

We shall identify vector fields and associated first order differential operators; thus

the vector fields X1, . . . , Xn, Xn+1, . . . , X2n generate a vector bundle on H
n, the so

called horizontal vector bundle HH
n according to the notation of Gromov (see [22]),

that is a vector subbundle of TH
n, the tangent vector bundle of Hn.

Let Ω ⊂ H
n be an open set and u ∈ C0(Ω). We will define in the sense of

distributions as the horizontal gradient of u the vector

∇Hu := (X1u, . . . , Xnu,Xn+1u, . . . , X2nu).

It is well-known that ∇H acts as a gradient operator in H
n. Let us denote by C1

H
(Ω)

the set of continuous real functions in Ω such that ∇Hu is continuous in Ω. The

notion of Ck
H
(Ω) is given analogously. Finally, let us define the horizontal Sobolev

space

(2.5) HW 1,p(Ω) := {u ∈ C0(Ω): ∇Hu ∈ Lp(Ω;R2n)};

HW 1,p(Ω) is a Banach space with the norm

‖u‖HW 1,p(Ω) := ‖u‖Lp
H

(Ω) + ‖∇Hu‖Lp
H

(Ω;R2n).

As already mentioned, HW 1,p
0 (Ω) is defined in the usual way, as the closure of C∞

0 (Ω)

in HW 1,p(Ω). We will write u ∈ HW 1,p
loc (Ω) if u ∈ HW 1,p(K) for every compact set

K ⊂ Ω.

To conclude this section, let us recall that if Z is an invariant vector field, then

for some P = (x1, . . . x2n, t) we can write

Z =

2n∑

i=1

xiXi + tT.

The exponential mapping in canonical coordinates is defined by eZ = P . Let us

finally recall the Baker-Campbell-Hausdorff formula for the invariant vector fields

Z, V

eZeV = eZ+V+ 1
2
[Z,V ].
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3. A regularity result for the vertical derivative

In this section we consider the obstacle problem (1.1) in the case A(x,∇Hu) =

A(∇Hu), i.e.

(3.1)

∫

Ω

A(∇Hu)∇H(v − u) dx > 0 ∀v ∈ Kψ,u(Ω)

under the assumptions (1.3)–(1.8). Let us recall some preliminary definitions and

results about fractional difference quotients, following the notation of [14].

Definition 3.1. Let Ω ⊂ H
n be a bounded open set. Let x ∈ Ω, let Z be a left

invariant vector field, s ∈ R, 0 < α, θ 6 1 and let u : Ω → R. We define

DZ,s,θu(x) :=
u(x · esZ) − u(x)

|s|θ ,

DZ,−s,θu(x) :=
u(x · e−sZ) − u(x)

−|s|θ ,

∆Z,su(x) := u(x · esZ) − u(x),

∆2
Z,su(x) := u(x · esZ) + u(x · e−sZ) − 2u(x).

Let us notice that

DZ,−s,αDZ,s,θu(x) = DZ,s,θDZ,−s,αu(x)

=
u(x · esZ) + u(x · e−sZ) − 2u(x)

|s|α+θ
=

∆2
Z,su(x)

|s|α+θ
.

If θ = 1, we will denote DZ,s,1u ≡ DZ,su. We will use the following results from [5],

[14], [24].

Proposition 3.2. Let Ω ⊂ H
n be an open set, K ⊂ Ω a compact set, Z a left

invariant vector field and u ∈ Lploc(Ω). If there exist constants σ,C > 0 such that

sup
0<|s|<σ

∫

K

|DZ,s,1u(x)|p dx 6 Cp,

then Zu ∈ Lp(K) and ‖Zu‖Lp(K) 6 C. Conversly, if Zu ∈ Lp(K) then for some

σ > 0

sup
0<|s|<σ

∫

K

|DZ,s,1u(x)|p dx 6 (2‖Zu‖Lp(K))
p.
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Proposition 3.3. Let Ω ⊂ H
n be an open set, 1 < p < ∞, let u ∈ HW 1,p

loc (Ω),

x0 ∈ Ω, and R > 0 be such that B3R = B(xo, 3R) ⊂ Ω. Then there exists a positive

constant c independent of u such that

∫

BR

|DT,s, 1
2
u(x)|p dx 6 c

∫

B2R

(|u|p + |∇Hu|p) dx.

We are now able to show our result.

Theorem 3.4. Let Ω ⊂ H
n be an open set, let u ∈ HW 1,p

loc (Ω) be a weak solution

of the obstacle problem (3.1) with Tψ ∈ HW 1,p
loc (Ω), x0 ∈ Ω, R > 0 such that

BR = B(x0, R) ⊂ Ω. Let us suppose that there exist c > 0, σ > 0, and α ∈ [0, 1/2)

such that

(3.2) sup
06=|s|6σ

∫

BR

|DT,s, 1
2
+αu(x)|p dx 6 c

∫

B2R

(µ2 + |∇Hu(x)|2)p/2 + |u(x)|p dx.

If (1 + 2α)/p < 1/2 then with possibly different c > 0 and σ > 0 we have

(3.3) sup
06=|s|6σ

∫

BR/2

|DT,s,1/2+1/p+(2/p)αu(x)|p dx

6 c

∫

B2R

(µ2 + |∇Hu(x)|2)p/2 + |u(x)|p + |Tψ(x)|p + |∇HTψ(x)|p dx.

If (1 + 2α)/p > 1/2 then

∫

BR/4

|Tu(x)|p dx(3.4)

6 c

∫

B2R

(µ2 + |∇Hu(x)|2)p/2 + |u(x)|p + |Tψ(x)|p + |∇HTψ(x)|p dx.

P r o o f. Let u ∈ HW 1,p(Ω) be a weak solution of the problem (3.1) and let η

be a cut-off function between BR/2 and BR such that there exists Cη > 0 such that

|∇Hη| 6 Cη/R. Let us define the function

(3.5) ϕ(x) := u(x) +DT,−s,γ(η
2DT,s,γ [u− ψ]).
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Let us verify that ϕ is a good test function. Indeed,

ϕ(x) := u(x) +DT,−s,γ(η
2DT,s,γ [u− ψ]) = u(x) +DT,−s,γ(η

2DT,s,γu)

−DT,−s,γ(η
2DT,s,γψ) = u(x) +DT,−s,γ

(

η2(x)
u(x · esT ) − u(x)

sγ

)

−DT,−s,γ

(

η2(x)
ψ(x · esT ) − ψ(x)

sγ

)

= u(x)

+
1

s2γ
[−η2(x · e−sT )u(x) + η2(x)u(x · esT ) + η2(x · e−sT )u(x · e−sT ) − η2(x)u(x)]

+
1

s2γ
[η2(x · e−sT )ψ(x) − η2(x)ψ(x · esT ) − η2(x · e−sT )ψ(x · e−sT ) − η2(x)ψ(x)]

= u(x)
[

1 − 1

s2γ
η2(x · e−sT ) − 1

s2γ
η2(x)

]

+
1

s2γ
η2(x)u(x · e−sT )

+
1

s2γ
η2(x · e−sT )u(x · e−sT ) +

1

s2γ
[η2(x · e−sT ) + η2(x)]ψ(x)

− 1

s2γ
η2(x)ψ(x · e−sT ) − 1

s2γ
η2(x · e−sT )ψ(x · e−sT )

> ψ(x)
[

1 − 1

s2γ
η2(x · e−sT ) − 1

s2γ
η2(x)

]

+
1

s2γ
η2(x)ψ(x · e−sT )

+
1

s2γ
η2(x · e−sT )ψ(x · e−sT ) +

1

s2γ
[η2(x · e−sT ) + η2(x)]ψ(x)

− 1

s2γ
η2(x)ψ(x · e−sT ) − 1

s2γ
η2(x · e−sT )ψ(x · e−sT ) = ψ(x).

Let us consider now the equation

∫

BR

A(∇Hu(x))(∇H(DT,−s,γ(η
2DT,s,γ [u− ψ]))) dx > 0.

Since DT,s,γ , DT,−s,γ and Xi are commutative, we have

∫

BR

DT,s,γ(A(∇Hu(x)))∇H(η2DT,s,γ [u− ψ]) dx 6 0,

∫

BR

DT,s,γ(A(∇Hu(x)))η
2∇H(DT,s,γ [u− ψ]) dx

+

∫

BR

DT,s,γ(A(∇Hu(x)))2η∇HηDT,s,γ [u− ψ] dx 6 0.

Then

(3.6)

∫

BR

DT,s,γ(A(∇Hu(x)))η
2∇H(DT,s,γu) dx 6 A−B + C,
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where

A =

∫

BR

DT,s,γ(A(∇Hu(x)))η
2∇H(DT,s,γψ) dx,

B =

∫

BR

DT,s,γ(A(∇Hu(x)))2η∇HηDT,s,γu dx,

C =

∫

BR

DT,s,γ(A(∇Hu(x)))2η∇HηDT,s,γψ dx.

Using the same estimates of equation (3.9) as in Lemma 3.1 of [14] and denoting

A(x) := µ2 + |∇Hu(x)|2 + |∇Hu(x · esT )|2,

we obtain
∫

BR

DT,s,γ(A(∇Hu(x)))η
2∇H(DT,s,γu) dx

6 c

∫

BR

η2A(x)(p−2)/2|DT,s,γ∇Hu(x)| |DT,s,γ∇Hψ(x)| dx
︸ ︷︷ ︸

A′

+ 2c

∫

BR

η|∇Hη|A(x)(p−2)/2|DT,s,γ∇Hu(x)| |DT,s,γu(x)| dx
︸ ︷︷ ︸

B′

+ 2c

∫

BR

η|∇Hη|A(x)(p−2)/2|DT,s,γ∇Hu(x)| |DT,s,γ∇Hψ(x)| dx
︸ ︷︷ ︸

C′

.

Applying the ε-Young inequality to A′, B′ and C′, we obtain with a possible different

constant c > 0

(3.7) A′ +B′ + C′ 6 c

∫

BR

εη2A(x)(p−2)/2|DT,s,γ∇Hu(x)|2 dx

+
c

ε

∫

BR

η2A(x)(p−2)/2|DT,s,γ∇Hψ(x)|2 dx

+
c

ε

∫

BR

|∇Hη|2A(x)(p−2)/2|DT,s,γu(x)|2 dx

+
c

ε

∫

BR

|∇Hη|2A(x)(p−2)/2|DT,s,γψ(x)|2 dx.

Hence, we have that

∫

BR

η2A(x)(p−2)/2|DT,s,γ∇Hu(x)|2 dx 6 A′ +B′ + C′
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by the Young inequality and for all sufficiently small ε > 0 we obtain

∫

BR

η2A(x)(p−2)/2|DT,s,γ∇Hu(x)|2 dx

6 C

∫

B2R

(µ2 + |∇Hu(x)|2)(p)/2 + |u(x)|p dx+ C

∫

BR

|∇Hη|p|DT,s,γψ|p dx

+ C

∫

BR

ηp|DT,s,γ∇Hψ|p dx.

Since for every |s| < 1 the quantity DT,s,γψ is monotone increasing with respect to γ

and since γ < 1, we have

(3.8)

∫

BR

η2A(x)(p−2)/2|DT,s,γ∇Hu(x)|2 dx

6 C

∫

B2R

(µ2 + |∇Hu(x)|2)p/2 + |u(x)|p dx+ C

∫

BR

|∇Hη|p|DT,s,1ψ|p dx

+ C

∫

BR

ηp|DT,s,1∇Hψ|p dx.

Finally, applying Proposition 3.2 we deduce that for all s > 0 sufficiently small

(3.9)

∫

BR

η2A(x)(p−2)/2|DT,s,γ∇Hu(x)|2 dx

6 C

∫

B2R

(µ2 + |∇Hu(x)|2)p/2 + |u(x)|p dx

+
C

R
(2‖Tψ‖Lp(BR))

p + C(2‖∇HTψ‖Lp(BR))
p.

By virtue of

|DT,s,γ∇Hu(x)|p = |DT,s,γ∇Hu(x)|p−2 · |DT,s,γ∇Hu(x)|2

and the inequality

|sγDT,s,γ∇Hu(x)| 6
√

2(µ2 + |∇Hu(x)|2 + |∇Hu(x · esT )|)1/2,

formula (3.8) gives

(3.10)

∫

BR

η2s(p−2)γ |DT,s,γ∇Hu(x)|p dx

6 C

∫

B2R

(µ2 + |∇Hu(x)|2)p/2 + |u(x)|p dx+ C

∫

BR

|∇Hη|p|DT,s,1ψ|p dx

+ C

∫

BR

ηp|DT,s,1∇Hψ|p dx.
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Since

DT,s,γ∇H(η2u)(x) = DT,s,γ∇H(η2)(x)u(x · esT ) + ∇H(η2)(x)DT,s,γu(x)

+DT,s,γη
2(x)∇Hu(x · esT ) + η2(x)DT,s,γ∇Hu(x),

we have that

(3.11)

∫

BR

|DT,s,2γ/p∇Hu(x)|p dx 6 C

∫

B2R

(µ2 + |∇Hu(x)|2)p/2 + |u(x)|p dx

+ C

∫

BR

|∇Hη|p|DT,s,1ψ|p dx+ C

∫

BR

ηp|DT,s,1∇Hψ|p dx.

We denote the right-hand side of (3.11) by Mp. Using Proposition 3.3, we obtain

(3.12)

∫

BR

∣
∣
∣DT,−s,1/2DT,s,2γ/p(η

2u)(x)
∣
∣
∣

p

dx 6 Mp.

Therefore, for all s small enough we find that

(3.13)
‖∆2

T,s(η
2u)‖Lp(Ω)

s1/2+(1+2α)/p
6 M.

If (1 + 2α)/p < 1/2 then by Theorem 1.1 of [14] we get (3.3). If (1 + 2α)/p > 1/2

then, by Remark 2.2 of [14], we have Tu ∈ Lploc(Ω) and estimate (3.4) is valid.

If (1 + 2α)/p = 1/2, since α ∈ [0, (1/2)) we get 0 6 (p− 2)/4 < 1/2 which gives

2 6 p 6 4. By Theorem 1.1 of [14] it follows that we can use α′ arbitrarily close to

1/2, in particular α′ > (p− 2)/4, and the following form of (3.2):

sup
06=|s|6σ

∫

BR/2

∣
∣
∣DT,s,1/2+α′u(x)

∣
∣
∣

p

dx 6 c

∫

B2R

(

µ2 + (|∇Hu(x)|2)p/2 + |u(x)|p
)

dx.

Using a cut-off function η between BR/4 and BR/2 we get (3.13) with (1 + α′)/p > 1
2

and then the previous case. �

Following the proof of Theorem 1.2 in [14], we obtain now this result:

Theorem 3.5. Let Ω ⊂ H
n be an open set, 2 6 p < 4, and let u ∈ HW 1,p

loc (Ω)

be a weak solution of the obstacle problem (3.1) with Tψ ∈ HW 1,p
loc (Ω). Consider

x0 ∈ Ω, and R > 0 such that B(x0, 3R) ⊂ Ω. Then there exist a number k ∈ N

depending only on p and a constant c > 0 such that

(3.14)

∫

B(x0,R/2k+1)

|Tu(x)|p dx

6 c

∫

B(x0,2R)

((µ2 + |∇Hu(x)|2)p/2 + |u(x)|p + |Tψ(x)|p + |∇HTψ(x)|p) dx,

and hence Tu ∈ Lploc(Ω).
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4. Horizontal Calderón-Zygmund estimates

At the beginning of this section let us recall some preliminary material. The

following lemma can be found in [10].

Lemma 4.1. Let p ∈ [γ1, γ2] and µ ∈ (0, 1]. There exists a constant c ≡
c(k, γ1, γ2) such that, if v, w ∈ R

k, then

(µ2 + |v|2)p/2 6 c(µ2 + |w|2)p/2 + c(µ2 + |v|2 + |w|2)(p−2)/2|v − w|2.

The following lemma is a direct consequence of a Calderón-Zygmund type covering

argument and can be inferred from [19], [21], [32].

Lemma 4.2. Let BR0
∈ H

n be a ball with radius R0. Assume that E,G ⊂ BR0

are measurable sets satisfying the following conditions:

(i) there exists δ ∈ (0, 1) such that |E| 6 δ|BR0
|;

(ii) for any ball B(x0, R) centered in BR0
, with radius R 6 2R0 and such that

|E ∩B(x0, 5R)| > δ|BR0
∩B(x0, R)|, we have E ∩B(x0, 5R) ⊂ G.

Then it follows that |E| 6 δ|G|.

Let BR0
⊂ R

n be a ball. We will consider the Restricted Maximal Function

Operator relative to BR0
, which is defined as

(4.1) M∗
BR0

(f)(x) := sup
B⊂BR0

x∈B

∫

B

|f(x)| dx

whenever f ∈ L1(BR0
), where B denotes any ball contained in BR0

, not necessarily

with the same center, as long as it contains the point (x, y, t). In the same way, for

s > 1 we define

(4.2) M∗
s,BR0

(f)(x) := sup
B⊂BR0

x∈B

( ∫

B

|f(x)|s dx

)1/s

whenever f ∈ Ls(BR0
). We recall the following estimate for M∗

1,BR0
≡M∗

BR0
:

(4.3) |{x ∈ BR0
: |M∗

BR0
(f)(x)| > λ}| 6

cW
λγ

∫

BR0

|f(x)|γ dx ∀λ > 0, γ > 1,
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which is valid for any f ∈ L1(BR0
); the constant cW depends only on Q; for this and

related issues we refer to [36]. A standard consequence of the previous inequality is

then

(4.4)

∫

BR0

|M∗
BR0

(f)(x)|γ dx 6
c(Q, γ)
γ − 1

∫

BR0

|f(x)|γ dx, γ > 1.

A similar estimate for the M∗
s,BR0

operator is

(4.5)

∫

BR0

|M∗
s,BR0

(f)(x)|γ dx 6
c(Q, γ)
s(γ − s)

∫

BR0

|f(x)|γ dx, γ > s,

which can be deduced from (4.4), compare [25], Section 7.

Now let us fix an arbitrarily fixed open subset Ω′ ⋐ Ω; for the rest of the section

all balls B considered will be such that B ⋐ Ω′ unless otherwise specified, and in the

sequel all the regularity results we are going to prove are in Ω′. Since the choice of

Ω′ is arbitrary, the corresponding local regularity of ∇Hu in Ω will also follow.

In the following we shall concentrate on a ball BR0
such that B2R0

⊂ Ω′. The

symbol M∗ will denote the restricted maximal operator relative to the ball B2R0
in

the sense of (4.1): M∗ ≡M∗
B2R0
; accordingly we shall denote by M∗

q/p the restricted

maximal operator in the sense of (4.2), again relative to B2R0
, that is, M∗

q/p ≡
M∗
q/p,B2R0

.

We can now prove the following important lemma.

Lemma 4.3. Let u ∈ HW 1,p(Ω) be a solution to the Kψ,w(Ω)-obstacle problem

under assumptions (1.3)–(1.8) with 2 6 p < 4. Then there exist numbers ε ≡
ε(α, β, q, n, p) ∈ (0, 1) and A ≡ A(n, p, q, α, β) > 1 such that the following holds:

If B is a CC-ball centered in BR0
and with radius less than 2R0 satisfying

(4.6) |E ∩ 5B| > δ|B ∩BR0
|

then

(4.7) 5B ∩BR0
⊂ G,

where we set

E := {x ∈ BR0
: M∗(µp + |∇Hu|p|)(x) > Aλ and M∗

q/p(|∇Hψ|p + 1)(x) 6 ελ},

and

G := {x ∈ BR0
: M∗(µp + |∇Hu|p)(x) > λ}.
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P r o o f. We proceed by contradiction, therefore we assume that (4.7) fails and

we thus show that, if we operate a suitable choice of ε and A, also (4.6) fails (but

with the dependence on the constants as in the statement of the lemma).

Step 1: beginning

Indeed, assuming that (4.7) fails but (4.6) still holds true, we can infer that there

exists z1 ∈ 5B∩BR0
such thatM∗(µp+|∇Hu|p)(z1) 6 λ. On the other hand, E∩5B is

nonempty and therefore there exists z2 ∈ 5B∩BR0
such thatM∗

q/p(|∇Hψ|p)(z2) dx 6

(ελ). This means that we have

(4.8)

∫

40B

(µp + |∇Hu|p) dx 6 λ and

∫

40B

(|∇Hψ|q + 1) dx 6 (ελ)q/p.

Step 2: comparison to some reference problems

We define v ∈ u+HW 1,p
0 (20B) as the solution to the obstacle problem

(4.9)

∫

B

A(x0,∇Hv)(∇Hv −∇Hϕ) dx 6 0

for all ϕ ∈ Kψ,f(Ω), where x0 is the center of BR ≡ 20B.

Now we introduce w ∈ u + HW 1,p(BR) as the unique solution to the Dirichlet

problem

(4.10)

{

divHA(x0,∇Hw) = divHA(x0,∇Hϕ) in BR,

w = u on ∂BR.

Let us notice that by the maximum principle (see for instance Theorem 2.5 in [11])

we have w > ψ on B, since w > ψ on ∂B.

Finally, let z ∈ u+HW 1,p
0 (BR) be the unique solution to the Dirichlet problem

(4.11)

{

divHA(x0,∇Hz) = 0 in BR,

z = u on ∂BR.

By the recent results for degenerate elliptic equations in the Heisenberg group, for z

the following estimate holds true (for more details we refer to [32]):

(4.12) sup
BR/2

|∇Hz| 6 c

( ∫

BR

|∇Hz|p dx

)1/p

,

where c is a constant depending only on n, p, α, β.
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Step 3: comparison estimates—part I

We now establish the comparison estimates. First of all, we test (4.11) using z−u
as an admissible test function. We have

α

∫

BR

|∇Hz|p dx
(1.5)

6

∫

BR

〈A(x0,∇Hz),∇Hz〉dx

(4.11)
=

∫

BR

〈A(x0,∇Hz),∇Hu〉dx

(1.6)

6 β

∫

BR

(|∇Hz|p−1 + 1)|∇Hu| dx.

By averaging and applying Young’s inequality, we have that

(4.13)

∫

BR

|∇Hz|p dx 6 c

∫

BR

|∇Hu|p + 1 dx,

with a constant c only dependent on n, p, α, β.

On the other hand, (4.8), (4.12) together with (4.13) yield

(4.14) sup
BR/2

(µ2 + |∇Hz|2)p/2 6 cλ1/p,

where the constant c only depends on n, p, α, β.

On the other hand, if we test (4.10) by the admissible function w− u, again using

the structure conditions for the operator a and Young’s inequality, we immediately

deduce

α

∫

BR

|∇Hw|p dx
(1.5)

6

∫

BR

〈A(x0,∇Hw),∇Hw〉dx

(4.10)
=

∫

BR

〈A(x0,∇Hw),∇Hu〉dx+

∫

BR

〈A(x0,∇Hψ),∇Hw −∇Hu〉dx

(1.6)

6
α

2

∫

BR

|∇Hw|p dx+ c

∫

BR

|∇Hu|p dx+ c

∫

BR

|∇Hψ|p + 1 dx,

which gives after averaging

(4.15)

∫

BR

|∇Hw|p dx 6 c

∫

BR

|∇Hu|p dx+ c

∫

BR

|∇Hψ|p + 1 dx,

with a constant c which depends only on n, p, α, β.
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Finally we deduce the last comparison estimate for this part, which concerns v

and u; we exploit (4.9) in the following way:

α

∫

BR

|∇Hv|p dx
(1.5)

6

∫

BR

〈A(x0,∇Hv),∇Hv〉dx

=

∫

BR

〈A(x0,∇Hv),∇Hv −∇Hu〉dx+

∫

BR

〈A(x0,∇Hv),∇Hu〉dx

(1.6),(4.9)

6
α

2

∫

BR

|∇Hv|p dx+ c

∫

BR

|∇Hu|p + 1 dx,

which gives, once more after averaging,

(4.16)

∫

BR

|∇Hv|p dx 6 c

∫

BR

|∇Hu|p + 1 dx

with a constant c only dependent on n, p, α, β.

Step 4: comparison estimates—part II

We now establish the following three comparison estimates:

I :=

∫

BR

(µ2 + |∇Hw|2 + |∇Hz|2)(p−2)/2|∇Hw −∇Hz|2 dx 6 cε(p−1)/pRnλ,(4.17)

II :=

∫

BR

(µ2 + |∇Hv|2 + |∇Hw|2)(p−2)/2|∇Hv −∇Hw|2 dx 6 cε(p−1)/pRnλ,(4.18)

III :=

∫

BR

(µ2 + |∇Hu|2 + |∇Hv|2)(p−2)/2|∇Hu−∇Hv|2 dx 6 cε(p−1)/pRnλ(4.19)

with constants c ≡ c(n, p, α, β). First of all, exploiting the structure conditions on

the field A—notice that p > 2—the comparison problems (4.10) and (4.11) and

Hölder’s inequality, we have

c∗(α)I
(1.7)

6

∫

BR

〈A(x0,∇Hw) −A(x0,∇Hz),∇Hw −∇Hz〉dx

(4.11)
=

∫

BR

〈A(x0,∇Hw),∇Hw −∇Hz〉dx

(4.10)
=

∫

BR

〈A(x0,∇Hψ),∇Hw −∇Hz〉dx

(1.6)

6 β

∫

BR

(|∇Hψ|p−1 + 1)|∇Hw −∇Hz| dx

6 cRn
(∫

BR

(|∇Hψ|p−1 + 1)p/(p−1) dx

)(p−1)/p( ∫

BR

|∇Hw −∇Hz|p
)1/p

6 cRn
(∫

BR

|∇Hψ|p + 1 dx

)(p−1)/p( ∫

BR

|∇Hw|p + |∇Hz|p dx

)1/p

.
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Using the comparison estimates established at Step 3, namely (4.15) and (4.13), we

can immediately estimate the second integral as
∫

BR

(|∇Hw|p + |∇Hz|p) dx 6 c

∫

BR

|∇Hu|p dx+ c

∫

BR

|∇Hψ|p dx+ 1.

Putting together the last two estimates, we obtain by means of Hölder’s inequality

c∗(α)I 6 cRn
( ∫

BR

|∇Hψ|p + 1 dx

)(p−1)/p( ∫

BR

|∇Hu|p +

∫

BR

|∇Hψ|p + 1 dx

)1/p

= cRn
( ∫

BR

|∇Hψ|p + 1 dx

)

+ cRn
( ∫

BR

|∇Hψ|p + 1 dx

)(p−1)/p( ∫

BR

|∇Hu|p + 1 dx

)1/p

(4.8)

6 cRn
( ∫

BR

|∇Hψ|q + 1 dx

)p/q

+ cRn
( ∫

BR

|∇Hψ|q + 1 dx

)(p−1)/q( ∫

BR

|∇Hu|p + 1 dx

)1/p

6 cRn(ελ) + cRn(ελ)(p−1)/pλ1/p = cRn(ελ) + cRnε(p−1)/pλ

6 c(n, p, q, α, β)ε(p−1)/pRnλ,

where q > 1 appears in the assumption on the horizontal gradient of the obstacle

function.

Concerning the second comparison estimate, we again exploit the structure condi-

tions for the operator A but this time we also use the obstacle problem (4.9) together
with the comparison estimates established in Step 3, namely (4.15) and (4.16). We

thus deduce

c∗(α)II
(1.7)

6

∫

BR

〈A(x0,∇Hv) −A(x0,∇Hw),∇Hv −∇Hw〉dx

(4.9)

6

∫

BR

〈A(x0,∇Hw),∇Hw −∇Hv〉dx

(4.10)
=

∫

BR

〈A(x0,∇Hψ),∇Hw −∇Hv〉dx

(1.6)

6 β

∫

BR

(|∇Hψ|p−1 + 1)|∇Hw −∇Hv| dx

6 cRn
( ∫

BR

(|∇Hψ|p−1 + 1)p/(p−1) dx

)(p−1)/p( ∫

BR

|∇Hw −∇Hv|p
)1/p

6 cRn
( ∫

BR

|∇Hψ|p + 1 dx

)(p−1)/p(∫

BR

|∇Hw|p + |∇Hv|p dx

)1/p
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(4.15),(4.16)

6 cRn
( ∫

BR

|∇Hψ|p + 1 dx

)(p−1)/p( ∫

BR

|∇Hu|p +

∫

B

|∇Hψ|p + 1 dx

)1/p

6 cRn
( ∫

BR

|∇Hψ|p + 1 dx

)

+ cRn
( ∫

BR

|∇Hψ|p + 1 dx

)(p−1)/p( ∫

BR

|∇Hu|p + 1 dx

)1/p

6 c(n, p, α, β)ε(p−1)/pRnλ,

where the conclusion came working exactly as in the previous estimate of I.

We finally conclude with the estimate of III; we have

c∗(α)III 6

∫

BR

〈A(x0,∇Hu) −A(x0,∇Hv),∇Hu−∇Hv〉dx

(1.5)

6 β

∫

BR

2(1 + |∇Hu|p−1)|∇Hu−∇Hv| dx

6 cRn
( ∫

BR

(|∇Hu|p−1 + 1)p/(p−1) dx

)(p−1)/p(∫

BR

|∇Hu−∇Hv|p
)1/p

6 cRn
( ∫

BR

|∇Hu|p + 1 dx

)(p−1)/p( ∫

BR

|∇Hu|p + |∇Hv|p
)1/p

(4.8),(4.16)

6 c(n, p, α, β)Rnε(p−1)/pλ.

Using repeatedly Lemma 4.1, we deduce

(µ2 + |∇Hu|2)p/2 6 c̃[(µ2 + |∇Hz|2)p/2 + I + II + III]

where I, II, III have been introduced in (4.17)–(4.19), for a suitable c̃ ≡ c̃(n, p, q,

α, β).

Let us consider the restricted maximal operator to the ball 10B, denoted by M∗∗

we have M∗∗ ≡M∗
10B. By the previous estimates we obtain immediately

|{x ∈ BR0
: M∗∗(µp + |∇Hu|p)(x) > Aλ, M∗

q/p(µ
2 + |∇Hψ|p)(x) 6 ελ}|

6

∣
∣
∣
∣

{

x ∈ BR0
: M∗∗(c̃(µ2 + |∇Hz|2)p/2) >

Aλ

4c̃

}∣
∣
∣
∣

+

∣
∣
∣
∣

{

x ∈ BR0
: M∗∗(c̃I) >

Aλ

4c̃

}∣
∣
∣
∣
+

∣
∣
∣
∣

{

x ∈ BR0
: M∗∗(c̃II) >

Aλ

4c̃

}∣
∣
∣
∣

+

∣
∣
∣
∣

{

x ∈ BR0
: M∗∗(c̃III) >

Aλ

4c̃

}∣
∣
∣
∣
=: IV + V + V I + V II.

Estimate for IV : by (4.14) we obtain IV 6 cλ and therefore IV = 0.
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Estimate for V , V I, V II: we use estimate (4.3) for the maximal function and

the estimates (4.17), (4.18) and (4.19) to conclude that there exists a constant c̄ =

c̄(n, p, q, α, β) such that

V 6
c̃

cλ
ε(p−1)/pRnλ 6 c̄ε(p−1)/p|BR0

|,

V I 6 c̄ε(p−1)/p|BR0
|, V II 6 c̄ε(p−1)/p|BR0

|.

Taking ε and A small enough to have

|{x ∈ BR0
: M∗∗(µp + |∇Hu|p)(x) > Aλ}| < δ|BR0

∩B|,

following the argument of the proof of Lemma 10.3 of [32], by (2.4) we obtain

|{x ∈ BR0
: M∗(µp + |∇Hu|p)(x) > Aλ}| < δ|BR0

∩B|,

which contradicts (4.6). �

We are now able to give the proof of Theorem 1.2.

P r o o f. The proof of the theorem can be handled in a quite standard way,

following [32]. We will sketch the main steps for the reader’s convenience. We will

start by choosing an exponent s such that s > q; this implies of course that from

now on, all the constants depending on s will actually depend on q. We choose A

with the aim of using Lemma 4.3. In this manner we determine the choice of the

number ε, depending on the same quantities, once more in view of the application

of Lemma 4.3. Now let us set

(4.20) µ1(t) := |{x ∈ BR0
: M∗(µp + |∇Hu|p)(x) > t}|,

µ2(t) := |{x ∈ BR0
: M∗

q/p(|F |p)(x) > t}|

and keep in mind that the maximal operators M∗
q/p are restricted to the ball B2R0

.

The proof will proceed by iterating the function µ1(·) using information on µ2(·),
that is getting information on the measure of the level sets of |∇Hu|, in terms of
those of |∇Hψ|. We choose the starting level λ0 as

λ0 := C

∫

B2R0

(µp + |∇Hu|p) dx,

where C is a suitable constant depending on the doubling constant Cd and on cw;

the role of this constant in the sequel does not require any further detail. Therefore,

using (4.4) and the fact that A > 1, we find for any m ∈ N

(4.21) µ1(A
mλ0) 6 µ1(λ0) 6

δ

2
|BR0

|.
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Now we want to use Lemma 4.2; more precisely, for every m = 0, 1, 2, . . . we would

like to apply it with the choices

δ =
1

2Aq/p

and

E := {z ∈ BR0
: M∗(µp + |∇H|p) > Am+1λ0, and M

∗
q/p(|∇Hψ|p) < εAmλ0},(4.22)

G := {z ∈ BR0
: M∗(µp + |∇Hu|p) > Amλ0}.(4.23)

Thus we first check if the assumptions for Lemma 4.2 hold. First of all, we can

immediately see that |E| 6 µ1(A
m+1λ0), therefore, combining this information with

(4.21), we readily have

|E| 6
δ

2
|BR0

|,

which is the first assumption needed in the application of the lemma. The second

assumption is exactly given by Lemma 4.3, which is applied with λ ≡ Amλ0; there-

fore, recalling that |G| = µ1(A
mλ0) and that |E| > µ1(A

m+1λ0) − µ2(A
mελ0), the

thesis of Lemma 4.2 gives

(4.24) µ1(A
m+1λ0) 6

1

2Aq/p
µ1(A

mλ0) + µ2(A
mελ0)

for any m = 0, 1, 2, . . . Induction on the previous inequality easily gives

µ1(A
m+1λ0) 6

( 1

2Aq/p

)m+1

µ1(λ0) +

m∑

i=0

( 1

2A

)m−i

µ2(A
iελ0).

Therefore, if we multiply the previous equation by Aq(m+1)/p and sum over m from

0 to M ∈ N, we have

M∑

m=0

Aq(m+1)/pµ1(A
m+1λ0) 6

M∑

m=0

1

2m+1
µ1(λ0) +

M∑

m=0

m∑

i=0

Aq(i+1)/p
(1

2

)m−i

µ2(A
iελ0)

6 µ1(λ0) +

M∑

m=0

m∑

i=0

Aq(i+1)/p
(1

2

)m−i

µ2(A
iελ0).

Interchanging the order of summation in the second term of the last inequality and

exploiting the geometric series, we actually deduce after passing to the limit as

M → ∞

(4.25)

∞∑

m=0

Aq(m+1)/pµ1(A
m+1λ0) 6 µ1(λ0) + 2Aq/p

∞∑

m=0

2Aqm/pµ2(A
mελ0).
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Now we would like to turn the previous estimate into an estimate for the maximal

function. This can be done in a standard way by applying the elementary inequality

∫

BR0

gq dx =

∫ ∞

0

qλq−1(x ∈ BR0
: g(x) > λ) dλ,

which holds for g ∈ Lq(BR0
), g > 0, q > 1, to the function g ≡M∗(µp+ |∇Hu|p); we

just need to decompose the interval [0,∞) into intervals [0, λ0] and [Anλ0, A
n+1λ0]

and exploit (4.25) together with the monotonicity of the functions µ1, µ2 and the L
p

estimate for the maximal function. At the end, we come up with

∫

BR0

(µ+ |∇Hu|)q dx 6 c

∫

BR0

M∗(µp + |∇Hu|p)q/p dx = c

∫ ∞

0

λq/p−1µ1(λ) dλ

= c

∫ λ0

0

λq/p−1µ1(λ) dλ+ c
∞∑

m=0

∫ Am+1λ0

Amλ0

λq/p−1µ1(λ) dλ

6 λ
q/p
0 |BR0

| + cλ
q/p
0

∞∑

m=1

Aqm/pµ2(A
mελ0)

6 c

( ∫

B2R0

(µp + |∇Hu|p) dx

)q/p

|BR0
| + A

εq/p(A− 1)

∫ ∞

0

λq/p−1µ2(λ) dλ

6 c

( ∫

B2R0

(µp + |∇Hu|p) dx

)q/p

|BR0
| + c

∫

BR0

M∗
q/p(1 + |∇Hψ|p)q/p dx

6 c

( ∫

B2R0

(µp + |∇Hu|p) dx

)q/p

|BR0
| + c

∫

B2R0

|∇Hψ|q dx,

where the constants in the last line include the dependence on ε and A, and therefore,

due to our choices, these constants finally depend on n, p, q, α, β. Therefore, after

elementary manipulations, we finally come to the estimate

( ∫

BR0

(µ+ |∇Hu|)q dx

)1/q

6 c

( ∫

B2R0

(µp + |∇Hu|p) dx

)q/p

+ c

( ∫

B2R0

|∇Hψ|q dx

)1/q

,

which holds for any small radius R0 fulfilling the condition B2R0
⋐ Ω. The conclusion

comes due to a standard covering argument, in the spirit of [32]. �
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