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Abstract. In the theory of normed spaces, we have the concept of bounded linear function-
als and dual spaces. Now, given an n-normed space, we are interested in bounded multilinear
n-functionals and n-dual spaces. The concept of bounded multilinear n-functionals on an
n-normed space was initially intoduced by White (1969), and studied further by Batkunde
et al., and Gozali et al. (2010). In this paper, we revisit the definition of bounded multilin-
ear n-functionals, introduce the concept of n-dual spaces, and then determine the n-dual
spaces of ℓp spaces, when these spaces are not only equipped with the usual norm but also
with some n-norms.
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1. Introduction

Let n be a nonnegative integer and X a real vector space of dimension d > n.

A real-valued function ‖·, . . . , ·‖ on Xn satisfying the following four properties,

(1) ‖x1, . . . , xn‖ = 0 if and only if x1, . . . , xn are linearly dependent,

(2) ‖x1, . . . , xn‖ is invariant under permutation,

(3) ‖αx1, . . . , xn‖ = |α|‖x1, . . . , xn‖ for all α ∈ R,

(4) ‖x1 + x′
1, . . . , xn‖ 6 ‖x1, x2, . . . , xn‖ + ‖x′

1, x2, . . . , xn‖,

is called an n-norm on X , and the pair (X, ‖·, . . . , ·‖) is called an n-normed space [2],

[3], [4]. Note that on an n-normed space (X, ‖·, . . . , ·‖) we have ‖x1, x2, . . . , xn‖ =

‖x1 + y, x2, . . . , xn‖ for any linear combination y of x2, . . . , x2 ∈ X .

This research was supported by ITB Research and Innovation Program 2012.
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To give an example, let 1 6 p < ∞ and 1/p + 1/q = 1. Then we can equip the

space ℓp of p-summable sequences with an n-norm ‖·, . . . , ·‖G
p which is given by

‖x1, . . . , xn‖
G
p := sup

yj∈ℓq, ‖yj‖q61

∣

∣

∣

∣

det

[ ∞
∑

k=1

xikyjk

]

i,j

∣

∣

∣

∣

, x1, . . . , xn ∈ ℓp.

Here ℓq is the dual space of ℓp, and ‖ · ‖q denotes the usual norm on ℓq (see, for

instance, [8]). The above n-norm is due to Gähler [2], [3], [4]. Another n-norm can

be defined on ℓp, namely

‖x1, . . . , xn‖
H
p :=

(

1

n!

∞
∑

k1=1

. . .
∞
∑

kn=1

| det[xikj
]i,j |

p

)1/p

, x1, . . . , xn ∈ ℓp.

This n-norm was introduced by Gunawan [6]. As shown in [12], these two n-norms

on ℓp are equivalent, that is,

(1.1) (n!)1/p−1 ‖x1, . . . , xn‖
H
p 6 ‖x1, . . . , xn‖

G
p 6 (n!)1/p ‖x1, . . . , xn‖

H
p

for all x1, . . . , xn ∈ ℓp.

Any real-valued function f on Xn, where X is a real vector space of dimension

d > n, is called an n-functional on X . Furthermore, an n-functional f satisfying the

following two properties:

(1) f(x1 + y1, . . . , xn + yn) =
∑

hi∈{xi,yi}, 16i6n

f(h1, . . . , hn),

(2) f(α1x1, . . . , αnxn) = α1 . . . αnf(x1, . . . , xn),

is called a multilinear n-functional on X .

Next, suppose that f is an n-functional on a normed space (X, ‖·‖) [an n-normed

space (X, ‖·, . . . , ·‖)]. If there exists a constant K > 0 such that

|f(x1, . . . , xn)| 6 K‖x1‖ . . . ‖xn‖ [|f(x1, . . . , xn)| 6 K‖x1, . . . , xn‖]

for all x1, . . . , xn ∈ X , then f is said to be bounded on (X, ‖·‖) [bounded on

(X, ‖·, . . . , ·‖), respectively], see [5] and [11].

It is easy to check that every bounded multilinear n-functional f on an n-normed

space (X, ‖·, . . . , ·‖) satisfies

f(x1, . . . , xn) = 0

whenever x1, . . . , xn are linearly dependent. Further, it is antisymmetric, that is,

f(x1, . . . , xn) = sgn(σ)f(xσ(1), . . . , xσ(n))
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for any x1, . . . , xn ∈ X and any permutation σ of (1, . . . , n). Here sgn(σ) = 1 if σ is

an even permutation and sgn(σ) = −1 if σ is an odd permutation. These properties

do not hold for bounded multilinear n-functionals on a normed space (X, ‖ · ‖).

Inspired by the concept of the dual space of a normed space, the space of bounded

multilinear n-functionals on (X, ‖·‖) [on (X, ‖·, . . . , ·‖)] is called the n-dual space of

(X, ‖·‖) [the n-dual space of (X, ‖·, . . . , ·‖), respectively]. This space can be equipped

with the norm

‖f‖n,1 := sup
‖x1‖,...,‖xn‖6=0

|f(x1, . . . , xn)|

‖x1‖ . . . ‖xn‖
[

‖f‖n,n := sup
‖x1,...,xn‖6=0

|f(x1, . . . , xn)|

‖x1, . . . , xn‖
, respectively

]

.

In the subsequent sections, we shall focus on X = ℓp, where 1 6 p < ∞. For

convenience, we shall first discuss the 2-dual spaces of ℓp, and then generalize the

result for all n > 2. This work is part of the first author thesis [10].

2. The 2-dual spaces of ℓp

We shall here identify the 2-dual space of ℓp as a normed space, and then use the

result to determine the 2-dual space of ℓp as a 2-normed space, equipped with Gähler’s

2-norm as well as Gunawan’s 2-norm. From now on, we shall always assume that

1 6 p < ∞ and q is the dual exponent of p, that is, 1/p + 1/q = 1, unless otherwise

stated.

To achieve our goals, we need to introduce the following normed space. We say

that a double index sequence θ := (θkj) (of real numbers) belongs to the space Y q
N×N

if

‖θ‖Y q

N×N

:= sup
‖x‖p=1

( ∞
∑

j=1

∣

∣

∣

∣

∞
∑

k=1

xkθkj

∣

∣

∣

∣

q)1/q

< ∞.

Here ‖·‖Y q

N×N

defines a norm on Y q
N×N
. For q = ∞, a double index sequence θ := (θkj)

is in Y ∞
N×N

if

‖θ‖Y ∞

N×N

:= sup
‖x‖1=1

sup
j∈N

∣

∣

∣

∣

∞
∑

k=1

xkθkj

∣

∣

∣

∣

< ∞.

Our first result is

Theorem 2.1. If 1 < p < ∞, then the 2-dual space of (ℓp, ‖·‖p) is identified

by (Y q
N×N

, ‖·‖Y q

N×N

). Moreover, the mapping f 7→ θ := (f(ek, ej)) is an isometric

bijection from the 2-dual space of (ℓp, ‖·‖p) to (Y q
N×N

, ‖ · ‖Y q

N×N

).
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P r o o f. For θ := (θkj) ∈ Y q
N×N
, we define a 2-functional f on ℓp by

f(x, y) :=

∞
∑

j=1

∞
∑

k=1

xkyjθkj ,

where x := (xi) =
∞
∑

i=1

xiei and y := (yi) =
∞
∑

i=1

yiei. Note that f(ek, ej) = θkj for

k, j ∈ N. Further, f is a bilinear 2-functional on (lp, ‖·‖p), and for x, y ∈ ℓp with

‖x‖p = ‖y‖p = 1, we have

|f(x, y)| =

∣

∣

∣

∣

∞
∑

j=1

(

yj

∞
∑

k=1

xkθkj

)∣

∣

∣

∣

6

( ∞
∑

j=1

|yj|
p

)1/p( ∞
∑

j=1

∣

∣

∣

∣

∞
∑

k=1

xkθkj

∣

∣

∣

∣

q)1/q

=

( ∞
∑

j=1

∣

∣

∣

∣

∞
∑

k=1

xkθkj

∣

∣

∣

∣

q)1/q

6 sup
‖z‖p=1

( ∞
∑

j=1

∣

∣

∣

∣

∞
∑

k=1

zkθkj

∣

∣

∣

∣

q)1/q

= ‖θ‖Y q

N×N

.

Hence, for x, y 6= 0 we have

|f(x, y)|

‖x‖p‖y‖p
6 ‖θ‖Y q

N×N

.

This means that f is a bounded bilinear 2-functional on (ℓp, ‖·‖p) with

(2.1) ‖f‖2,1 6 ‖θ‖Y q

N×N

.

Conversely, let f be a bounded bilinear 2-functional on (ℓp, ‖·‖p). We claim that

θ := (f(ek, ej)) ∈ Y q
N×N
. For each x ∈ ℓp with ‖x‖p = 1, let fx be the functional on

(ℓp, ‖·‖p) given by

fx(y) := f(x, y), y ∈ ℓp.

It is clear that fx is a linear functional on (ℓp, ‖ · ‖p). Moreover, if y 6= 0, then

|fx(y)|

‖y‖p
=

|f(x, y)|

‖x‖p‖y‖p
6 ‖f‖2,1.

Hence fx is bounded with ‖fx‖ 6 ‖f‖2,1. Since the dual space of (ℓp, ‖ · ‖p) is

(ℓq, ‖ ·‖q), the bounded linear functional fx is identified by (fx(ej)) = (f(x, ej)) with

( ∞
∑

j=1

|f(x, ej)|
q

)1/q

= ‖fx‖ 6 ‖f‖2,1.
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Therefore, we obtain

(2.2) ‖θ‖Y q

N×N

= sup
‖x‖p=1

( ∞
∑

j=1

∣

∣

∣

∣

∞
∑

k=1

xkf(ek, ej)

∣

∣

∣

∣

q)1/q

6 ‖f‖2,1,

and this proves our claim.

It follows from (2.1) and (2.2) that the mapping f 7→ θ := (f(ek, ej)) is an isometric

bijection from the 2-dual space of (ℓp, ‖·‖p) to (Y q
N×N

, ‖·‖Y q

N×N

). �

For p = 1, we can also prove easily that the 2-dual space of (ℓ1, ‖·‖1) is identified

by (Y ∞
N×N

, ‖·‖Y ∞

N×N

). Hence we have the following corollary.

Corollary 2.2. For 1 6 p < ∞ and 1/p + 1/q = 1, the 2-dual space of (ℓp, ‖·‖p)

is identified by (Y q
N×N

, ‖ · ‖Y q

N×N

).

Now we shall discuss the 2-dual space of (ℓp, ‖·, ·‖G
p ). For this purpose, we need to

invoke the concept of g-orthogonality on ℓp, where g is the semi-inner product on ℓp

given by the formula

g(x, y) := ‖x‖2−p
p

∞
∑

j=1

|xj |
p−1sgn(xj)yj , x := (xj), y := (yj).

If g(x, y) = 0, then we say that x and y are g-orthogonal, and we write x ⊥g y.

(See [9] for some properties of g-orthogonality.)

As in [7], we may define the “volume” of the parallelepiped spanned by linearly

independent x1, . . . , xn ∈ ℓp by the formula

V (x1, . . . , xn) := ‖x◦
1‖p . . . ‖x◦

n‖p,

where {x◦
1, . . . , x

◦
n} is the left g-orthogonal sequence obtained from {x1, . . . , xn}

through a Gram-Schmidt process. If x1, . . . , xn are linearly dependent, then we

simply define V (x1, . . . , xn) = 0.

In [12] it is shown that

(2.3) V (xi1 , . . . , xin
) 6 ‖x1, . . . , xn‖

G
p

for all x1, . . . , xn ∈ ℓp and any permutation (i1, . . . , in) of (1, . . . , n). Using this fact

(for the case n = 2), we get the following theorem.

Theorem 2.3. A bilinear 2-functional f is bounded on (ℓp, ‖·, ·‖G
p ) if and only if

f is antisymmetric and bounded on (ℓp, ‖·‖p). Furthermore, we have

1

2
‖f‖2,1 6 ‖f‖G

2,2 6 ‖f‖2,1,

where ‖·‖G
2,2 is the norm on the 2-dual space of (ℓp, ‖·, ·‖G

p ).
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P r o o f. Suppose that f is bounded on (ℓp, ‖·, ·‖G
p ). It is clear that f is anti-

symmetric, that is, f(x, y) = −f(y, x) for all x, y ∈ ℓp. Next, for x, y ∈ ℓp we have

‖x, y‖G
p 6 21/p‖x, y‖H

p (by (1.1) for n = 2) and ‖x, y‖H
p 6 21−1/p‖x‖p‖y‖p (see [6]),

so that ‖x, y‖G
p 6 2 ‖x‖p‖y‖p. Thus, for any linearly independent x, y ∈ ℓp we obtain

1

2

|f(x, y)|

‖x‖p‖y‖p
6

|f(x, y)|

‖x, y‖G
p

6 ‖f‖G
2,2.

Hence f is bounded on (ℓp, ‖·‖p) with

(2.4)
1

2
‖f‖2,1 6 ‖f‖G

2,2.

Conversely, suppose that f is antisymmetric and bounded on (ℓp, ‖·‖p). Given

linearly independent x, y ∈ ℓp, we observe that f(x, y) = f(x◦, y◦) where {x◦, y◦} is

the left g-orthogonal set obtained from {x, y}. Moreover, we have

|f(x, y)|

‖x, y‖G
p

6
|f(x, y)|

V (x, y)
=

|f(x◦, y◦)|

‖x◦‖p‖y◦‖p
6 ‖f‖2,1.

Since f is also antisymmetric, we have

|f(x, y)| 6 ‖f‖2,1‖x, y‖G
p

for all x, y ∈ ℓp, that is, f is bounded on (ℓp, ‖·, ·‖G
p ) with

(2.5) ‖f‖G
2,2 6 ‖f‖2,1.

Finally, from (2.4) and (2.5) we conclude that

1

2
‖f‖2,1 6 ‖f‖G

2,2 6 ‖f‖2,1,

as desired. �

To identify the 2-dual space of (ℓp, ‖·, ·‖G
p ), we consider some subspace of Y q

N×N
.

A double index sequence θ := (θkj) belongs to Zq
N×N
if θ ∈ Y q

N×N
and θkj = −θjk for

all k, j ∈ N. Note that Zq
N×N

can be viewed as a normed space equipped with the

norm inherited from Y q
N×N
.

Previously, we have shown that the 2-dual space of (ℓp, ‖ · ‖p) is identified by

(Y q
N×N

, ‖·‖Y q

N×N

). Hence the space of all antisymmetric bounded bilinear 2-functionals

on (ℓp, ‖·‖p) can be identified by (Zq
N×N

, ‖·‖Y q

N×N

). From this and the previous theorem

we get the following corollaries.
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Corollary 2.4. The function ‖ · ‖G
Zq

N×N

on Zq
N×N

defined by

‖θ‖G
Zq

N×N

:= sup
‖x,y‖G

p 6=0

∣

∣

∣

∞
∑

j=1

∞
∑

k=1

xkyjθkj

∣

∣

∣

‖x, y‖G
p

defines a norm on Zq
N×N
. Furthermore, ‖·‖G

Zq

N×N

and ‖·‖Y q

N×N

are equivalent norms on

Zq
N×N
, with

1

2
‖θ‖Y q

N×N

6 ‖θ‖G
Zq

N×N

6 ‖θ‖Y q

N×N

for all θ ∈ Zq
N×N
.

Corollary 2.5. The 2-dual space of (ℓp, ‖·, ·‖G
p ) is identified by (Zq

N×N
, ‖ · ‖G

Zq
N×N

).

Using (1.1) for the case n = 2, we obtain the following corollaries.

Corollary 2.6. The function ‖ · ‖H
Zq

N×N

on Zq
N×N

defined by

‖θ‖H
Zq

N×N

:= sup
‖x,y‖H

p 6=0

∣

∣

∣

∞
∑

j=1

∞
∑

k=1

xkyjθkj

∣

∣

∣

‖x, y‖H
p

defines a norm on Zq
N×N
. Furthermore, ‖ · ‖H

Zq

N×N

and ‖·‖G
Zq

N×N

are equivalent norms

on Zq
N×N
, with

21/p−1‖θ‖G
Zq

N×N

6 ‖θ‖H
Zq

N×N

6 21/p‖θ‖G
Zq

N×N

for all θ ∈ Zq
N×N
.

Corollary 2.7. The 2-dual space of (ℓp, ‖·, ·‖H
p ) is identified by (Zq

N×N
, ‖·‖H

Zq

N×N

).

R em a r k. Here ‖ · ‖H
Zq

N×N

, ‖ · ‖G
Zq

N×N

, and ‖·‖Y q

N×N

are three equivalent norms on

Zq
N×N
.
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3. The n-dual spaces of ℓp

The results for the case n = 2 can be extended easily to the case n > 2. For

1 6 p < ∞ and 1/p + 1/q = 1, we define Y q
Nn to be the space of all (real) n-index

sequence θ := (θk1...kn
) where

‖θ‖Y q

N

n
:= sup

‖a1‖p=...=‖an−1‖p=1

[ ∞
∑

kn=1

∣

∣

∣

∣

∞
∑

k1,...,kn−1=1

a1k1
. . . an−1,kn−1

θk1...kn

∣

∣

∣

∣

q]1/q

< ∞.

For q = ∞, an n-index sequence θ := (θk1...kn
) belongs to the space Y ∞

Nn if

‖θ‖Y ∞

N

n
:= sup

‖a1‖1=...=‖an−1‖1=1

sup
kn∈N

∣

∣

∣

∣

∞
∑

k1,...,kn−1=1

a1k1
. . . an−1,kn−1

θk1...kn

∣

∣

∣

∣

< ∞.

Here Nn := N× . . .×N (n factors). Note also that the inner sum above is a multiple

sum.

We also define the generalization of Zq
N×N

spaces as follows. An n-index sequence

θ := (θk1...kn
) belongs to the space Zq

Nn if θ ∈ Y q
Nn and θk1...kn

= sgn(σ)θσ(k1)...σ(kn),

for all k1, . . . , kn ∈ N and any permutation σ of (k1, . . . , kn).

Analogously to the case n = 2, we have the following result for n > 2. (We leave

the proof to the reader.)

Theorem 3.1. The n-dual space of (ℓp, ‖·‖p) is identified by (Y q
Nn , ‖·‖Y q

N

n
). More-

over, the mapping f 7→ θ := (f(ek1
, . . . , ekn

)) is an isometric bijection from the

n-dual space of (ℓp, ‖·‖p) to (Y q
Nn , ‖·‖Y q

N

n
).

Using (2.3) and the following two inequalities from [6], [12]:

‖x1, . . . , xn‖
G
p 6 (n!)1/p‖x1, . . . , xn‖

H
p

and

‖x1, . . . , xn‖
H
p 6 (n!)1−1/p‖x1‖p . . . ‖xn‖p,

we can prove the following theorem by using arguments similar the case n = 2.

Theorem 3.2. A multilinear n-functional f is bounded on (ℓp, ‖·, . . . , ·‖G
p ) if and

only if it is antisymmetric and bounded on (ℓp, ‖·‖p). Furthermore, we have

1

n!
‖f‖n,1 6 ‖f‖G

n,n 6 ‖f‖n,1

where ‖ · ‖G
n,n is the norm on the n-dual space of (ℓp, ‖·, . . . , ·‖G

p ).
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From Theorems 3.1 and 3.2 we get the following result.

Corollary 3.3. The n-dual space of (ℓp, ‖·, . . . , ·‖G
p ) is identified by (Zq

Nn , ‖·‖G
Zq

N

n
),

where ‖·‖G
Zq

N

n
is given by

‖θ‖G
Zq

N

n
:= sup

‖x1,...,xn‖G
p 6=0

∣

∣

∑∞
k1,...,kn=1 x1k1

. . . xnkn
θk1...kn

∣

∣

‖x1, . . . , xn‖G
p

.

Using (1.1), we also get the following theorem.

Corollary 3.4. The n-dual space of (ℓp, ‖·, . . . , ·‖H
p ) is identified by (Zq

Nn , ‖·‖H
Zq

N

n
),

where ‖·‖H
Zq

N

n
is given by

‖θ‖H
Zq

N

n
:= sup

‖x1,...,xn‖H
p 6=0

∣

∣

∑∞
k1,...,kn=1 x1k1

. . . xnkn
θk1...kn

∣

∣

‖x1, . . . , xn‖H
p

.

4. Concluding remarks

In the theory of normed spaces, we know that the dual space of (ℓp, ‖·‖p) is (iden-

tified by) (ℓq, ‖·‖q), where 1 6 p < ∞ and 1/p + 1/q = 1. Here we show that the

n-dual space of (ℓp, ‖·‖p) is identified by (Y q
Nn , ‖ · ‖Y q

N

n
). We see similarities between

the two results. Similar relations also occur for the n-dual space of ℓp when ℓp is

viewed as an n-normed space with Gähler’s n-norm or Gunawan’s n-norm. All these

results are identical in the case where n = 1. For n > 2, however, we still have

a question whether the norm ‖·‖Y q

N

n
on Y q

Nn , as well as the norms ‖·‖H
Zq

N

n
and ‖·‖G

Zq

N

n

on Zq
Nn , can be reduced to

‖θ‖∗Y q

N

n
:=

( ∞
∑

k1,...,kn=1

|θk1...kn
|q

)1/q

and

‖θ‖∗Zq

N

n
:=

( ∞
∑

k1,...,kn=1

|θk1...kn
|q

)1/q

.

One may easily check that if θ := (θk1...kn
) satisfies

( ∞
∑

k1,...,kn=1

|θk1...kn
|q

)1/q

< ∞,

then ‖θ‖Y q

N

n
, ‖θ‖H

Zq

N

n
, and ‖θ‖G

Zq

N

n
are all dominated by

( ∞
∑

k1,...,kn=1

|θk1...kn
|q

)1/q

. We

just do not know whether the converse is also true. See [1] for related problems.
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