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Abstract. Based on the fixed-point theorem in a cone and some analysis skill, a new
sufficient condition is obtained for the existence of positive periodic solutions for a class of
higher-order functional difference equations. An example is used to illustrate the applica-
bility of the main result.
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1. Introduction

The existence of periodic solutions of functional differential equations has been

studied extensively. Many authors [1], [9] have argued that the discrete time models

governed by difference equations sometimes are more appropriate than the contin-

uous ones, for example, the predator-prey system having nonoverlapping genera-

tions. With help of differential equations with piecewise constant arguments, Fan

and Wang [3] proposed a discrete analogue of the continuous time predator-prey

system and gave some new sufficient conditions for the existence of a positive peri-

odic solution of the discrete system. Discrete time models can also provide efficient

computational models of continuous models for numerical simulations. It is well

known that, compared to the continuous time systems, the dynamics of the discrete

time systems are more difficult to deal with. It is highly nontrivial to attack the

existence of positive periodic solutions of a discrete time system which is governed

This study was partly supported by NSFC under grants no. 61271355 and no. 61070190,
the ZNDXQYYJJH under grant no. 2010QZZD015 and NFSS under grant no. 10BJL020.
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by a higher-order functional difference equation. Raffoul [7] studied the existence of

positive periodic solutions for functional difference equations. By using Krasnosel-

skii’s fixed-point theorem and the upper and lower solutions method, Zhu and Li [10]

found some sets of positive values λ guaranteeing that there exist positive periodic

solutions to the higher-dimensional functional difference equation of the form

x(n+ 1) = A(n)x(n) + λh(n)f(x(n− τ(n))), n ∈ Z,

where A(n) = diag [a1(n), a2(n), . . . , am(n)], h(n) = diag [h1(n), h2(n), . . . , hm(n)],

aj , hj : Z → R
+, τ : Z → Z are T -periodic, j = 1, 2, . . . ,m, T > 1, λ > 0, x : Z →

R
m, f : R

m
+ → R

m
+ , where R

m
+ = {(x1, . . . , xm)T ∈ R

m, xj > 0, j = 1, 2, . . . ,m},
R

+ = {x ∈ R, x > 0}. By using a well-known fixed-point index theorem, Li and
Lu [5] studied the existence, multiplicity and nonexistence of positive periodic solu-

tions to higher-dimensional nonlinear functional difference equations. Ma and Ma [6]

investigated the existence of sign-changing periodic solutions of second order differ-

ence equations. In 2010, Wang and Chen [8] have studied the existence of positive

periodic solutions for the general higher-order functional difference equation

(1.1) x(n+m+ k) − ax(n+m) − bx(n+ k) + abx(n) = f(n, x(n− τ(n))),

where a 6= 1, b 6= 1 are positive constants, τ : Z → Z and τ(n + ω) = τ(n),

f(n + ω, u) = f(n, u) for any u ∈ R, ω,m, k ∈ N, where N denotes the set of

positive integers. Based on the fixed-point theorem in a cone [8], some new suffi-

cient conditions on the existence of positive periodic solutions to the higher-order

functional difference equation (1.1) are obtained. However, the main results in [8]

require that a and b should be positive constants. In this article, we consider the

higher-order functional difference equation

(1.2) x(n+m+ k) − a(n+m)x(n+m) − b(n)x(n+ k) + a(n)b(n)x(n)

+ f(n, x(n− τ(n))) = 0,

where a, b : Z → R+ with a(n) 6= 1, b(n) 6= 1 and a(n+ ω) = a(n), b(n+ ω) = b(n),

τ : Z → Z and τ(n + ω) = τ(n), f(n+ ω, u) = f(n, u) for any u ∈ R, k, ω,m ∈ N.

The purpose of this article is to consider the existence of a positive periodic solution

of the higher-order functional difference equation (1.2). We will remove the constrains

on a and b in [8]. We will replace constants a and b in [8] with functions a(n) and b(n).

Based on a fixed point theorem in a cone, a new sufficient condition is established

for the existence of positive periodic solutions for higher-order functional difference

equations.
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2. Some preliminaries

Let X be the set of all real ω periodic sequences. Then X is a Banach space with

the maximum norm ‖x‖ = max
n∈[0,ω−1]

|x(n)|.

Lemma 1 ([2], [4]). Let X be a Banach space and K a cone in X . Suppose Ω1

and Ω2 are open subsets of X such that 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2 and suppose that

Φ: K ∩ (Ω2 \ Ω1) → K

is a completely continuous operator such that

(i) ‖Φu‖ 6 ‖u‖ for u ∈ K∩∂Ω1 and there exists ψ ∈ K \{0} such that x 6= Φx+λψ

for x ∈ K ∩ ∂Ω2 and λ > 0; or

(ii) ‖Φu‖ 6 ‖u‖ for u ∈ K∩∂Ω2 and there exists ψ ∈ K \{0} such that x 6= Φx+λψ

for x ∈ K ∩ ∂Ω1 and λ > 0.

Then Φ has a fixed-point in K ∩ (Ω2 \ Ω1).

Let d ∈ N. Consider the equation

(2.1) x(n+ d) = cx(n) + γ(n),

where γ ∈ X . Set (d, ω) as the greatest common divisor of d and ω, p = ω/(d, ω).

Lemma 2 ([8]). Assume that 0 < c 6= 1. Then (2.1) has a unique periodic

solution

x(n) = [c−p − 1]−1

p
∑

i=1

c−iγ(n+ (i− 1)d).

Assume that x ∈ X is a solution of (1.2) and let y(n) = x(n + k) − a(n)x(n),

ā = max
16n6ω

a(n), a = min
16n6ω

a(n). Then (1.2) can be rewritten as

(2.2)

{

x(n+ k) = ax(n) + y(n) + [a(n) − a]x(n),

y(n+m) = b(n)y(n) − f(n, x(n− τ(n))).

Let h = ω/(k, ω), l = ω/(m,ω). Since x ∈ X is a solution of (1.2), hence y ∈ X .

From Lemma 2 we have

x(n) = [a−h − 1]−1
h

∑

i=1

a−i{y(n+ (i− 1)k) + [a(n+ (i− 1)k) − a]x(n+ (i− 1)k)}.
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From the second equation in (2.2) we have

l−1
∏

s=1

b(n+ sm)y(n+m) =

l−1
∏

s=0

b(n+ sm)y(n) −
l−1
∏

s=1

b(n+ sm)f(n, x(n− τ(n))),

l−1
∏

s=2

b(n+ sm)y(n+ 2m) =

l−1
∏

s=1

b(n+ sm)y(n+m)

−
l−1
∏

s=2

b(n+ sm)f(n+m,x(n+m− τ(n+m))),

. . .

y(n+ lm) = b(n+ (l − 1)m)y(n+ (l − 1)m)

− f(n+ (l − 1)m,x(n+ (l − 1)m− τ(n+ (l − 1)m))).

Summing the above equations yields

y(n+ lm) =

l−1
∏

s=0

b(n+ sm)y(n)

−
l−2
∑

j=0

l−1
∏

s=j+1

b(n+ sm)f(n+ jm, x(n+ jm− τ(n+ jm)))

− f(n+ (l − 1)m,x(n+ (l − 1)m− τ(n+ (l − 1)m))).

For convenience, denote 1 =
l−1
∏

s=l

b(n + sm). Noting that y(n + lm) = y(n), we

obtain

(2.3) y(n) =
l−1
∑

j=0

∏l−1
s=j+1 b(n+ sm)

∏l−1
s=0 b(n+ sm) − 1

f(n+ jm, x(n+ jm− τ(n + jm))).

Let b̄ = max
16n6ω

b(n), b = min
16n6ω

b(n). We introduce the following condition:

(H) 0 < a(n) < 1, b > 1, h = l = ω, and f : R× (0,+∞) → [0,+∞) is continuous.

Let

B =

l−1
∏

s=0

b(s) =

ω−1
∏

s=0

b(s), d = min
{ 1

B − 1
, 1

}

,

G(n, j) =

∏l−1
s=j+1 b(n+ sm)

∏l−1
s=0 b(n+ sm) − 1

.

Then

(2.4)
1

B − 1
6 G(n, j) 6

B

B − 1
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and

(2.5) y(n) =

l−1
∑

j=0

G(n, j)f(n+ jm, x(n+ jm− τ(n+ jm))).

If f(n, x(n− τ(n))) > 0 and b > 1, then y(n) > 0.

Define the operator T by

(Tx)(n) =
ah

1 − ah

h
∑

i=1

a−i

l−1
∑

j=0

G(n+ (i− 1)k, j)f
(

n+ (i− 1)k + jm,

x(n+ (i− 1)k + jm− τ(n+ (i− 1)k + jm))
)

+
ah

1 − ah

h
∑

i=1

a−i[a(n+ (i− 1)k) − a]x(n+ (i− 1)k).

Define the cone by

K = {x ∈ X,x(n) > δ‖x‖},

where

δ =
ah(B − 1)d

Bω
.

Lemma 3. Assume that (H) holds and 0 < r1 < r2. Then T : Kr2
\Kr1

→ K is

completely continuous, whereKr = {x ∈ K : ‖x‖ < r} andKr = {x ∈ K : ‖x‖ 6 r}.

P r o o f. Since 0 < a(n) < 1, hence 0 < a < 1. Noting that b > 1 and

f(n, x(n − τ(n))) > 0, we have y(n) > 0. So (Tx)(n) > 0 on [0, ω − 1]. Since

τ(n+ω) = τ(n) and f(n+ω, u) = f(n, u) for any u > 0, (Tx)(n+ω) = (Tx)(n) for

x ∈ X . Since h = l = ω/(m,ω) = ω, we get

l−1
∑

j=0

f(n+ jm, x(n+ jm− τ(n+ jm))) =

ω−1
∑

j=0

f(j, x(j − τ(j))),(2.6)

h
∑

i=1

f(n+ (i− 1)k, x(n+ (i− 1)k − τ(n+ (i− 1)k))) =

ω
∑

i=1

f(i, x(i− τ(i))),(2.7)

and

(2.8)

h
∑

i=1

[a(n+ (i− 1)k) − a]x(n+ (i− 1)k) =

ω
∑

i=1

[a(i) − a]x(i).
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For any x ∈ Kr2
\Kr1

, from (2.6)–(2.8), we have

(Tx)(n) 6
ah

1 − ah
a−h

h
∑

i=1

l−1
∑

j=0

B

B − 1
{f(n+ (i− 1)k + jm,

x(n+ (i− 1)k + jm− τ(n + (i− 1)k + jm)))}

+
ah

1 − ah
a−h

h
∑

i=1

[a(n+ (i− 1)k) − a]x(n + (i− 1)k)

=
ah

1 − ah
a−h

l−1
∑

j=0

B

B − 1

{ h
∑

i=1

f(n+ (i− 1)k + jm,

x(n+ (i− 1)k + jm− τ(n + (i− 1)k + jm)))

}

+
ah

1 − ah
a−h

ω
∑

i=1

(a(i) − a)x(i)

=
1

1 − ah

( l−1
∑

j=0

B

B − 1

) ω
∑

i=1

f(i, x(i− τ(i)))

+
1

1 − ah

ω
∑

i=1

(a(i) − a)x(i)

=
1

1 − ah

ωB

B − 1

ω
∑

i=1

f(i, x(i− τ(i)))

+
1

1 − ah

ω
∑

i=1

(a(i) − a)x(i)

6
1

1 − ah

ωB

B − 1

ω
∑

i=1

{f(i, x(i− τ(i))) + (a(i) − a)x(i)}.

So

(2.9) ‖Tx‖ 6
ω

1 − ah

B

B − 1

ω
∑

i=1

{f(i, x(i− τ(i))) + (a(i) − a)x(i)}.

At the same time,

(Tx)(n) >
ah

1 − ah
a−1

h
∑

i=1

l−1
∑

j=0

G(n+ (i− 1)k, j){f(n+ (i− 1)k + jm,

x(n+ (i− 1)k + jm− τ(n + (i− 1)k + jm)))}

+
ah

1 − ah
a−1

h
∑

i=1

[a(n+ (i− 1)k) − a]x(n+ (i− 1)k)
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>
ah

1 − ah
a−1

l−1
∑

j=0

1

B − 1

{ h
∑

i=1

f(n+ (i− 1)k + jm,

x(n+ (i− 1)k + jm− τ(n + (i− 1)k + jm)))

}

+
ah

1 − ah
a−1

ω
∑

i=1

(a(i) − a)x(i)

>
ah

1 − ah

l−1
∑

j=0

1

B − 1

{ ω
∑

i=1

f(i, x(i− τ(i)))

}

+
ah

1 − ah

ω
∑

i=1

(a(i) − a)x(i)

=
ah

1 − ah

( ω−1
∑

j=0

1

B − 1

){ ω
∑

i=1

f(i, x(i− τ(i)))

}

+
ah

1 − ah

ω
∑

i=1

(a(i) − a)x(i)

=
ah

1 − ah

( ω

B − 1

)

{ ω
∑

i=1

f(i, x(i− τ(i)))

}

+
ah

1 − ah

ω
∑

i=1

(a(i) − a)x(i)

>
ah

1 − ah

1

B − 1

ω
∑

i=1

f(i, x(i− τ(i)))

+
ah

1 − ah

ω
∑

i=1

(a(i) − a)x(i).

Then

(2.10) (Tx)(n) >
ahd

1 − ah

[ ω
∑

i=1

f(i, x(i− τ(i))) + (a(i) − a)x(i)

]

,

where d = min{1/(B − 1), 1}.
Combining (2.9) and (2.10), we have

(2.11) (Tx)(n) > δ‖Tx‖.

Thus T : Kr2
\ Kr1

→ K is well defined. Since X is a finite-dimensional Banach

space, one can easily show that T is completely continuous. This completes the

proof. �
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We can easily obtain the following result.

Lemma 4. The fixed-point of T in K is a positive periodic solution of (1.2).

3. The main result

Let
ϕ(s) = max{f(n, u), n ∈ [0, ω − 1], u ∈ [δs, s]},
ψ(s) = min{f(n, u)/u, n ∈ [0, ω − 1], u ∈ [δs, s]}.

Theorem 3.1. Assume that (H) holds and there exist two positive constants α

and β with α 6= β such that

(3.1) ϕ(α) 6 (1 − ā)
B − 1

ωB
α, ψ(β) > (1 − a)(B − 1).

Then (1.2) has at least one positive ω-periodic solution x with min{α, β} 6 ‖x‖ 6

max{α, β}.

P r o o f. Without loss of generality, we assume that (H) holds and α < β.

Obviously, 0 < ā < 1, 0 < a < 1. We claim:

(i) ‖Tx‖ 6 ‖x‖, x ∈ ∂Kα,

(ii) x 6= Tx+ λ · 1 ∀x ∈ ∂Kβ, 1 ∈ K and λ > 0.

From (3.1) we have that

f(n, x) 6 (1 − ā)
B − 1

ωB
α, 0 6 n 6 ω − 1, δα 6 x 6 α,(3.2)

f(n, x) > (1 − a)(B − 1)x, 0 6 n 6 ω − 1, δβ 6 x 6 β.(3.3)

In order to prove (i), let x ∈ ∂Kα. Then ‖x‖ = α and δα 6 x(n) 6 α for 0 6 n 6

ω − 1. So

(Tx)(n) 6
ah

1 − ah

h
∑

i=1

a−i

l−1
∑

j=0

G(n+ (i− 1)k, j)
{

(1 − ā)
B − 1

ωB
α
}

+
ah

1 − ah

h
∑

i=1

a−i[ā− a]‖x‖

6
ah

1 − ah

h
∑

i=1

a−i

l−1
∑

j=0

B

B − 1

{

(1 − ā)
B − 1

ωB
α
}

+
ah

1 − ah

h
∑

i=1

a−i[ā− a]‖x‖
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=
ah

1 − ah

h
∑

i=1

a−i

( l−1
∑

j=0

B

B − 1

{

(1 − ā)
B − 1

ωB
α
}

)

+
ah

1 − ah

h
∑

i=1

a−i[ā− a]‖x‖

=
ah

1 − ah

h
∑

i=1

a−i

( ω−1
∑

j=0

{

(1 − ā)
1

ω
α
}

)

+
ah

1 − ah

h
∑

i=1

a−i[ā− a]‖x‖

=
ah

1 − ah

h
∑

i=1

a−i{(1 − ā)α} +
ah

1 − ah

h
∑

i=1

a−i[ā− a]α

=
ah

1 − ah

h
∑

i=1

a−i[1 − a]α = α.

It follows that

(3.4) ‖Tx‖ 6 ‖x‖, x ∈ ∂Kα.

Next, let ψ = 1 ∈ K in Lemma 1. We will prove (ii) holds. If not, there exists

u0 ∈ ∂Kβ and λ0 > 0 such that

(3.5) u0 = (Tu0)(n) + λ0.

Since u0 ∈ ∂Kβ, we have ‖u0‖ = β and δβ 6 u0(n) 6 β. Put u0(n) = min{u0(i); 0 6

i 6 ω − 1} for some n ∈ [0, ω − 1]. Noting that u0(j) > u0(n) > 0 for all j ∈ Z,

a(n+ (i− 1)k) − a > 0 for all i ∈ Z and 0 < a < 1, we have

u0(n) = (Tu0)(n) + λ0

=
ah

1 − ah

h
∑

i=1

a−i

l−1
∑

j=0

G(n+ (i− 1)k, j)f(n+ (i− 1)k + jm,

u0(n+ (i− 1)k + jm− τ(n+ (i− 1)k + jm)))

+
ah

1 − ah

h
∑

i=1

a−i[a(n+ (i− 1)k) − a]u0(n+ (i− 1)k) + λ0

>
ah

1 − ah

h
∑

i=1

a−i

l−1
∑

j=0

G(n+ (i− 1)k, j){f(n+ (i− 1)k + jm,

u0(n+ (i− 1)k + jm− τ(n+ (i− 1)k + jm)))} + λ0
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>
ah

1 − ah

h
∑

i=1

a−i

l−1
∑

j=0

1

B − 1
{f(n+ (i− 1)k + jm,

u0(n+ (i− 1)k + jm− τ(n+ (i− 1)k + jm)))} + λ0

>
ah

1 − ah

h
∑

i=1

a−i

l−1
∑

j=0

1

B − 1
(1 − a)(B − 1)u0(n+ (i− 1)k

+ jm− τ(n+ (i− 1)k + jm)) + λ0

=
ah

1 − ah
(1 − a)

h
∑

i=1

a−i

l−1
∑

j=0

u0(n+ (i− 1)k

+ jm− τ(n+ (i− 1)k + jm)) + λ0

>
ah

1 − ah
(1 − a)

h
∑

i=1

a−i

l−1
∑

j=0

u0(n) + λ0

=
ah

1 − ah
(1 − a)

h
∑

i=1

a−i

ω−1
∑

j=0

u0(n) + λ0

=
ah

1 − ah
(1 − a)

h
∑

i=1

a−iωu0(n) + λ0

>
ah

1 − ah
(1 − a)

h
∑

i=1

a−iu0(n) + λ0

=

(

ah

1 − ah
(1 − a)

h
∑

i=1

a−i

)

u0(n) + λ0

= u0(n) + λ0,

which implies that u0(n) > u0(n). This is a contradiction.

Therefore, by Lemma 1, T has a fixed-point x ∈ Kβ \ Kα. Furthermore, α 6

‖x‖ 6 β and x(n) > δα, which means that x is a positive periodic solution of (1.2).

The proof is completed. �

4. Example

Now, an example is given to demonstrate our result.

E x am p l e 1. Consider the difference equation

(4.1) x(n+m+ k) − a(n+m)x(n+m) − b(n)x(n+ k) + a(n)b(n)x(n)

+ f(n, x(n− τ(n))) = 0,
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where m = 7, k = 5, ω = 6, τ : Z → Z and τ(n + ω) = τ(n), a, b : Z → R+ with

a(n) = 1/2 + 1/16 cosnπ/3, b(n) = 2 + [1/(2
√

3)] sinnπ/3, f(n, u) = (1 − 7/16)(1 −
1/2)u9[1 + 1/2(−1)n cos πu/3].

Obviously, a(n + ω) = a(n + 6) = a(n), f(n + ω, u) = f(n + 6, u) = f(n, u) for

any u ∈ R. Further, h = ω/(k, ω) = 6/(5, 6) = 6, l = ω/(m,ω) = 6/(7, 6) = 6.

ā = max
16n6ω

a(n) = 9/16, a = min
16n6ω

a(n) = 7/16, B =
l−1
∏

s=0
b(s) =

ω−1
∏

s=0
b(s) = 632/82,

d = min{1/(B − 1), 1} = 1/(B − 1), δ = ah(B − 1)d/(Bω) = (7/16)6(8/63)21/6.

Let α = 1/2, then

ϕ(α) = ϕ
(1

2

)

6

(

1 − 7

16

)(

1 − 1

2

)(1

2

)9[

1 +
1

2

]

=
(

1 − 7

16

)(

1 − 1

2

)(1

2

)8 3

4

<
( 9

16
× 1

2

)(1

2

)7 1

2

<
(

1 − 9

16

)( (63
8 )2 − 1

(63
8 )2 × 6

)1

2
.

So ϕ(α) 6 (1 − ā)[(B − 1)/(ωB)]α.

Let β = 2/δ. If u ∈ [δβ, β], then u > 2. Furthermore,

ψ(β) >

(

1 − 7

16

)(

1 − 1

2

)(29

2

)[

1 − 1

2

]

=
(

1 − 7

16

)

26

>

(

1 − 7

16

)(63

8

)2

.

So ψ(β) > (1 − a)(B − 1).

By Theorem 3.1, (4.1) has at least one positive 6-periodic solution.

A c k n ow l e d gm e n t. The authors are grateful to the referees for their valuable

comments which have led to improvement of the presentation.
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