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Abstract. It is well known by results of Golod and Shafarevich that the Hilbert 2-class
field tower of any real quadratic number field, in which the discriminant is not a sum of
two squares and divisible by eight primes, is infinite. The aim of this article is to extend
this result to any real abelian 2-extension over the field of rational numbers. So using genus
theory, units of biquadratic number fields and norm residue symbol, we prove that for every
real abelian 2-extension over Q in which eight primes ramify and one of theses primes ≡ −1
(mod 4), the Hilbert 2-class field tower is infinite.
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1. Introduction

Let k be a number field. We will denote the 2-ideal class group of k in the wide

sense by C2,k and the 2-ideal class group of k in the strict sense by C+
2,k. Denote by

k1 the Hilbert 2-class field of k. For n positive integer, let kn be defined inductively

as k0 = k and kn+1 = (kn)1. Then

k0 ⊂ k1 ⊂ k2 ⊂ . . . ⊂ kn ⊂ . . .

is called the 2-class field tower of k. If n is the minimal integer such that kn = kn+1,

then n is called the length of the tower. If no such n exists, then the tower is said

to be of infinite length.

Assume k is a real quadratic number field with discriminant d. It is well known

that in the case where rank(C2,k) > 6, the Hilbert 2-class field tower of k is infi-

nite [2]. We note that by genus theory, rank(C2,k) > 6 is equivalent to d is a sum

of two squares and divisible by seven primes or d is not a sum of two squares and
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divisible by eight primes. In the case where rank(C2,k) 6 3, there exist exam-

ples of fields k in which the Hilbert 2-class field tower is finite. In the case where

rank(C2,k) ∈ {4, 5}, at present no example of k with finite 2-class field tower is

known.

In the case where k is any real abelian 2-extension over the field Q of rational

numbers (i.e., abelian extension over Q with Galois group of order a power of 2) in

which the discriminant is divisible by seven primes 6≡ −1 (mod 4), then we can see

(Proposition 12.4) that the genus field of k contains some quadratic number field F

in which the seven primes are ramified. Then the Hilbert 2-class field tower of F is

infinite, consequently the Hilbert 2-class field tower of k is infinite, too. Therefore, in

this article we will show by an elementary proof that the Hilbert 2-class field tower

of any real abelian 2-extension over Q in which the discriminant is divisible by eight

primes and one of these primes is ≡ −1 (mod 4), is infinite. We mention that in [7],

using some properties of the Schur multiplicator, L.V.Kuzmin proved that if k/Q is

an abelian extension and at least eight primes ramify, then the Hilbert 2-class field

tower of k is infinite.

Several works discussed the problem of 2-class field tower of real quadratic number

fields k in which rank(C2,k) ∈ {4, 5}:
In [8], C.Maire has shown that if C2,k contains a subgroup of type (4, 4, 4, 4), then

the Hilbert 2-class field tower of k is infinite. F. Gerth in [1] has shown that in the

case where rank(C2,k) = 5, d is not a sum of two squares (which is equivalent to the

existence of a prime ≡ −1 (mod 4) dividing d) and C2,k contains a subgroup of type

(4, 4, 4) then the Hilbert 2-class field tower of k is infinite. We mention that in [9],

the second author proves that it suffices that the group C+
2,k contains a sub-group

of type (4, 4, 4) such that the Hilbert 2-class field tower of k is infinite. Usually

in the case where rank(C2,k) = 5, we show that if there are at least five primes

6≡ −1 (mod 4) ramifying in k, then the Hilbert 2-class field tower of k is infinite (see

Proposition 3.1).

The aim of this article is to prove the following theorem:

Theorem 1. For every real abelian 2-extension over Q in which eight primes

ramify and one of theses primes ≡ −1 (mod 4), the Hilbert 2-class field tower is

infinite.

Remark. With the assumption of Theorem 1, the genus field k(∗) of such abelian

2-extension over Q contains some real multiquadratic number field K in which eight

primes ramify (see Proposition 2.4). Therefore, proving Theorem 1 is reduced to

proving the following theorem:
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Theorem 2. For every real multiquadratic number field in which eight primes

ramify and one of theses primes ≡ −1 (mod 4), the Hilbert 2-class field tower is

infinite.

Proving Theorem 2 for such real multiquadratic number field k is reduced to

determining a subfield M of the genus field k∗ of k in which the rank of the 2-

class group is larger, in order that M satisfies the Golod and Shafarevich inequality

(Theorem 2.1). The field M is chosen to be quadratic, biquadratic or triquadratic

number field. To prove that such a field M verifies the Golod and Shafarevich

inequality, we will use Jehne’s inequality (see Section 2.2), so we will determine

a subfield M ′ of M such that M/M ′ is a quadratic extension with larger number

of ramified primes ram(M/M ′) and with a refined upper bound of the unit index

[EM ′ : EM ′ ∩ NM/M ′(M∗)] = 2e(M/M ′), where EM ′ is the group of units of M ′, in

order to find:

ram(M/M ′) − 1 − e(M/M ′) > 2 + 2
√

dim(EM/E2
M ) + 1.

Consequently, when M satisfies the Golod and Shafarevich inequality, then M

has infinite Hilbert 2-class field tower. Finally, since k∗ contains M , and k∗/k is an

abelian unramified extension, we conclude the theorem.

The proof of Theorem 2 is presented by distinguishing four cases, depending on

the number of ramified primes which are not sum of two squares in the real multi-

quadratic number field k.

2. Preliminaries and some fundamental results

2.1. On the Golod and Shafarevich inequality. In 1964, Golod and Shafare-

vich established for the first time the existence of infinite Hilbert p-class field tower

when p is a prime number. Their result can be phrased as follows [2]:

Theorem 2.1. Let k be a number field, Ek the group of units of k and Cp,k the

p-class group of k. Then if

rank(Cp,k) > 2 + 2
√

dim(Ek/Ep
k) + 1,

then the Hilbert p-class field tower of k is infinite.

We shall refer to the above inequality as the Golod and Shafarevich inequality.

We give some remarks in the case where p = 2:
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Remark 2.2. (1) It is clear that if k is a real quadratic number field, we have

dim(Ek/E2
k) = 2. Suppose rank(C2,k) > 6, then the inequality of Golod and Sha-

farevich is satisfied which implies that the Hilbert 2-class field tower of k is infinite.

(2) If k is a real biquadratic (resp. triquadratic) number field, we have dim(Ek/E2
k)

= 4 (resp. dim(Ek/E2
k) = 8), thus, the inequality of Golod and Shafarevich is satis-

fied, whenever rank(C2,k) > 7 (resp. rank(C2,k) > 8).

There exists a result which gives a lower bound for the rank of the p-class group for

some number fields K. Especially, the case where K is a cyclic extension of degree

p over a number field k:

2.2. On the rank of the p-class group of some number fields. Let K/k

be an extension of a number field of degree a prime number p. It is well known by

Jehne’s results [5] that

rank(Cp,K) > ram(K/k) − 1 − e(K/k),

where ram(K/k) is the number of primes ramified in the extension K/k and e(K/k)

is the natural number defined by pe(K/k) = [Ek : Ek ∩ NK/k(K∗)].

In the case where p = 2 and the class number of k is odd, then by using the

ambiguous class number formula, the inequality rank(C2,k) > ram(K/k)−1−e(K/k)

becomes an equality.

2.2.1. Determination of the natural number e(K/k) in some cases. It is

a difficult problem to determine the value of the natural number e(K/k). This is

related to having information on the fundamental units of the number field k which is

not every time satisfied. If the fundamental system of units of k is known, k contains

all primitive roots of unity and K = k( n
√

α), then we can use the results of the norm

residue symbols:

A unit ε of k is a norm of an element in the extension K/k if and only if for every

prime P of k which ramifies in K/k, the value of the norm residue symbol ((ε, α)/P)

is equal to 1 (for more information see [3]).

⊲ The case where k is a real quadratic number field:

It is clear that in the case where k is a real quadratic number field, Ek is generated

by −1 and the fundamental unit ε of k. Let K be a quadratic extension of k, then

e(K/k) ∈ {0, 1, 2}. The value of e(K/k) is related to whether ±εi (i = 0 or 1) is

a norm or not in the extension K/k.

⊲ The case where k is a real biquadratic number field:

It is known that in the case where k is a real biquadratic number field, we have

dim(Ek/E2
k) = 4 and the fundamental system of units of k contains three units
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denoted ε1, ε2 and ε3. LetK be a quadratic extension of k, then e(K/k) ∈ {1, 2, 3, 4}.
The value of e(K/k) is related to whether the units ±εi

1ε
j
2ε

k
3 (i, j, k ∈ {0, 1}) are

norms or not in K/k.

In the following lemma, we give some necesssary and sufficient conditions such

that −1 is a norm in some quadratic extension of a real biquadratic number field.

We are going to use this result in the sequel.

Lemma 2.3. Let d1, d2 and d be distinct square free positive integers. Denote

by k = Q(
√

d1,
√

d2) and K = k(
√

d). Then −1 is a norm in the extension K/k

if and only if for every odd prime p dividing d such that (d1/p) = (d2/p) = 1, we

have p 6≡ −1 (mod 4) and if (d1/2) = (d2/2) = 1, we have d ≡ 1 (mod 4) or d ≡ 2

(mod 8).

P r o o f. We know that −1 is a norm of an element in the extension K/k if and

only if for every prime P of k ramified in K, we have ((−1, d)/P) = 1. Let P be an
ideal prime of k ramified in K. Then P lies above some prime number p dividing 4d.

Denote by L the decomposition field of p in k.

Assume L is a quadratic number field. It follows by norm residue symbol properties

that
(−1, d

P
)

=
(Nk/L(−1), d

P
)

=
(1, d

P
)

= 1.

Assume L = Q, then for every quadratic number field F contained in k, we see that

(−1, d

P
)

=
(Nk/F (−1), d

P
)

=
(1, d

P
)

= 1.

Assume now that L = k, which is equivalent to (d1/p) = (d2/p) = 1. Then, in the

case where p is odd, we have

(−1, d

P
)

=
(−1, p

p

)

=
(−1

p

)

.

It follows that

(2.1)
(−1, d

P
)

= 1 ⇐⇒ p ≡ 1 (mod 4).

In the case where p = 2, we have ((−1, d)/P) = ((−1, d)/2) and

(2.2)
(−1, d

2

)

= 1 ⇐⇒ d ≡ 1 (mod 4) or d = 2d′ and d′ ≡ 1 (mod 4).

Consequently, using (2.1) and (2.2), we have the lemma. �
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2.3. On genus field of abelian 2-extensions. Let k be an abelian 2-extension

over Q. Define k(∗) the genus field of k, as the maximal abelian extension over Q

which is non-ramified, at finite and infinite primes of k. We define k(∗) the genus

field in the narrow sense of k, as the maximal abelian extension over Q which is

non-ramified, at finite primes of k. In the case where k is totally real, then k(∗) is

the maximal real subfield of k(∗).

Let Dk be the discriminant of k. For every prime p | Dk, denote by e(p) the

ramification index of p in k. In the case where p 6= 2, letM(p) be the unique subfield

of Q(ζp) such that [M(p) : Q] = e(p). Then by [4], Theorem 4, page 48, we have:

k(∗) =
∏

p|Dk, p6=2

M(p)k =
∏

p|Dk, p6=2

M(p)M(2),

where M(2) is as a subfield of some Q(ζ2n) (n ∈ N) such that [M(2) : Q] = e(2).

It is clear that in the case where p ≡ 1 (mod 4), Q(
√

p) is contained in k(∗) and

in the case where p ≡ −1 (mod 4), Q(
√−p) is contained in k(∗). In the case where

p = 2, k(∗) contains at least one of the three quadratic number fields: Q(
√

2), Q(i),

Q(
√

2i).

We can thus see immediately the following proposition:

Proposition 2.4. Let k be an abelian 2-extension over Q, Dk the discriminant

of k. Assume k is totally real, then k(∗) contains some multiquadratic number field

in which every prime dividing Dk is ramified.

Assume now that k is a real multiquadratic number field. Denote by S1 =

{p prime ramified in k | p ≡ 1 (mod 4)} and by S2 = {p prime ramified in k | p ≡ −1

(mod 4)}.
By the discussion above, we have

[k(∗) : Q] =
1

2

∏

p|Dk

e(p) or
∏

p|Dk

e(p).

Precisely [k(∗) : Q] = 1
2

∏

p|Dk

e(p) if and only if S2 6= ∅.

We mention that an odd prime ramified in k is of ramification index equal to 2.

Moreover, if 2 is ramified in k, then the ramification index of 2 is equal to 2 or 4.

We can immediately verify that the genus field of k is of one of the following forms:

⊲ Suppose that 2 is of ramification index equal to 4 in k, then

k(∗) =
∏

ℓ|Dk

Q(
√

ℓ).
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⊲ Suppose that 2 is of ramification index equal to 2 in k, then we distinguish between

two cases:

(i) If for every positive integer m,
√

2m 6∈ k, then

k(∗) =
∏

ℓ∈S1∪S2

Q(
√

ℓ).

(ii) If there exists a positive integer m such that
√

2m ∈ k, then

k(∗) = Q(
√

2m)
∏

ℓ∈S1

Q(
√

ℓ)
∏

ℓ,ℓ′∈S2

Q(
√

ℓℓ′).

⊲ Suppose that 2 is unramified in k, then

k(∗) =
∏

ℓ∈S1

Q(
√

ℓ)
∏

ℓ,ℓ′∈S2

Q(
√

ℓℓ′).

We conclude that in all the cases, if card(S2) is even, then k(∗) containsQ
(
√

∏

ℓ∈S1∪S2

ℓ
)

and if card(S2) is odd, then k(∗) containsQ
(
√

q
∏

ℓ∈S1∪S2

ℓ
)

where q is any element in S2.

We note that for every prime number p which is unramified in k, the residual degree

of p in k is equal to 1 or 2. This follows from the fact that k/Q is an elementary

extension and the decomposition group of p in k is cyclic of order the residual degree

of p in k. Thus, we have the following lemma:

Lemma 2.5. Let k be a biquadratic number field, d a square free positive integer

and K = k(
√

d). Let ℓ1, ℓ2, . . . , ℓn be distinct primes dividing d and not ramified

in k. Denote by r the number of primes ℓi totally decomposed in k. Suppose that if

2 is ramified in k, then d is odd. We have:

(i) If d 6≡ −1 (mod 4), then ram(k(
√

d)/k) = 22r + 2(n − r).

(ii) If d ≡ −1 (mod 4), then ram(k(
√

d)/k) = 22r + 2(n − r) + a, where a ∈ {0, 1,

2, 4} is the number of 2-adic places of k ramified in K and we have:

a = 4 ⇐⇒ e(2) = f(2) = 1,

a = 0 ⇐⇒ e(2) = 4 or e(2) = 2 and ∀m ∈ N
∗,

√
2m 6∈ k,

a = 1 ⇐⇒ e(2) = 2, f(2) = 2 and ∃m ∈ N
∗,

√
2m ∈ k,

where e(2) and f(2) are respectively the ramification index and the residual

degree of 2 in k.
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P r o o f. From the discussion above, a prime which is not ramified in k is totally

decomposed in k or is decomposed into 1/2[k : Q] primes in k. Moreover, in the case

where d 6≡ −1 (mod 4), the number ram(k(
√

d)/k) is equal to 22r + 2(n − r). In

the case where d ≡ −1 (mod 4), we know that the ramification index of 2 in each

multiquadratic number field is 1, 2 or 4. Precisely, the ramification index of 2 in

a multiquadratic number field is equal to 4, if it contains a biquadratic number field

of the form Q(
√

d1,
√

d2), where d1 is even and d2 ≡ −1 (mod 4). Consequently, we

can conclude immediately (ii) of the lemma. �

On the units of some biquadratic number field: Let q1, q2 and q3 be distinct prime

numbers such that q1 ≡ q2 ≡ q3 ≡ −1 (mod 4) and k = Q(
√

q1q2,
√

q1q3). In this

case we refer to the results of Kuroda [6] on the fundamental system of units of bi-

quadratic number fields. For every positive integerm, denote by εm the fundamental

unit of the quadratic number field Q(
√

m), then

{

εq1q2
,
√

εq1q2
εq1q3

,
√

εq1q2
εq2q3

}

is a fundamental system of units of k.

We will use this system to prove the main result of this article.

On the Kronecker symbols:

Lemma 2.6. Let m1, m2, m3, m4 be distinct positive integers and ℓ a prime

number. Then one of the following two situations holds:

(1) There exist distinct i, j, k ∈ {1, 2, 3, 4} such that (mimj/ℓ) = (mimk/ℓ) = 1.

(2) There exist distinct i, j ∈ {1, 2, 3, 4} such that (mi/ℓ) = (mj/ℓ) = 1.

P r o o f. Assume there exist distinct i, j, k ∈ {1, 2, 3, 4} such that (mi/ℓ) =

(mj/ℓ) = (mk/ℓ), then by quadratic reciprocity law, the first situation of the lemma

holds.

If not, we find that there exist distinct i, j, k, l ∈ {1, 2, 3, 4} such that (mi/ℓ) =

(mj/ℓ) = 1 and (mk/ℓ) = (ml/ℓ) = −1. It follows immediately that the second

situation of the lemma is satisfied. �

Lemma 2.7. Let ℓ1, ℓ2, . . . , ℓ5 be distinct prime numbers. Then for every prime ℓ

distinct from ℓi, i ∈ {1, 2, . . . , 5}, there exist i, j, k ∈ {1, 2, . . . , 5} such that (ℓiℓj/ℓ) =

(ℓiℓk/ℓ) = 1.

P r o o f. It is easy to see that there exist i, j, k ∈ {1, 2, . . . , 5} such that (ℓi/ℓ) =

(ℓj/ℓ) = (ℓk/ℓ). Thus, by the quadratic reciprocity law, we obtain the result. �
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3. Proof of Theorem 2

We let the notations be the same as in Section 2:

Notations:

k : a real multiquadratic number field in which eight primes ramify

k(∗) : the genus field of k

pi : prime numbers ≡ 1 (mod 4)

qi : prime numbers ≡ −1 (mod 4)

S1 : = {p prime ramified in k | p ≡ 1 (mod 4)}
S2 : = {q prime ramified in k | q ≡ −1 (mod 4)}
M/L : an extension of a number field

EM (EL) : the unit group of M (of L, respectively)

2e(M/L) : = [EL : EL ∩ NM/L(M (∗))]

Remarks.

⊲ It is clear that card(S1 ∪ S2) is equal to seven or eight, this is related to the

ramification of 2 in k.

⊲ Suppose that card(S2) 6 1, then k(∗) contains the quadratic field K =

Q

(
√

∏

ℓ∈S1∪S2

ℓ
)

(see Section 2.3). Since the rank of the 2-class group of K is grater

then or equels to 6, then the Hilbert 2-class field tower of K is infinite (Golod

and Shafarevich), therefore as well the Hilbert 2-class field tower of k(∗) is infinite.

Consequently, using the fact that k(∗)/k is unramified, we have the Hilbert 2-class

field tower of k is infinite.

We began by obtaining some results on the tower of a real quadratic number field

in which the rank of the 2-class group is grater then or equels to 5.

Proposition 3.1. Let F be a real quadratic number field in which seven primes

ramify. Suppose that there are at least five primes are not equivalent to −1 (mod 4)

ramifying in F , then the Hilbert 2-class field tower of F is infinite.

P r o o f. Denote p1, p2, . . . , p5 the primes are not equivalent to −1 (mod 4)

ramified in F = Q(
√

d) where d is a square free positive integer.

Assume (pi/pj) = −1, for all i, j ∈ {1, 2, . . . , 5} and i 6= j. Put K = Q(
√

p1p2,√
p2p3) and K ′ = K(

√
d). We remark that (p1p2/pk) = (p2p3/pk), for all k ∈

{4, 5}. Moreover, by Lemma 2.5, we see that ram(K ′/K) > 12. In the case where

ram(K ′/K) > 12, we have by Section 2.2, rank(C2,K′) > ram(K ′/K)−e(K ′/K)−1 >

8. We therefore can conclude by Remarks 2.2, that the Hilbert 2-class field tower of

K ′ is infinite.
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In the case where ram(K ′/K) = 12, we have every odd prime equivalent to −1

(mod 4) dividing d, is not totally decomposed in K and also 2 is not totally decom-

posed in K. We can apply Lemma 2.3 to see that −1 is a norm in the extension

M/L. Therefore, e(K ′/K) 6 3 and by Section 2.2 rank(C2,K′) > ram(K ′/K) −
e(K ′/K)−1 > 8. Which guarantees the infiniteness of the Hilbert 2-class field tower

of K ′.

Now suppose that there exist i, j ∈ {1, 2, . . . , 5} such that (pi/pj) = 1, we note

(p1/p2) = 1. If there exists i ∈ {3, 4, 5} such that (p1/pi) = 1 or (p2/pi) = 1, we

put respectively K = Q(
√

p2,
√

pi) or K = Q(
√

p1,
√

pi) and K ′ = K(
√

d), we see

then that ram(K ′/K) > 12. Proceeding in a similar way to the preceding case, we

find that the Hilbert 2-class field tower of K ′ is infinite. In the next, suppose that

for all i ∈ {3, 4, 5}, (p1/pi) = (p2/pi) = −1. We put K = Q(
√

p3p4,
√

p3p5) and

K ′ = K(
√

d). Then we see that (p3p4/pi) = (p3p5/pi) = 1 for all i = 1, 2, and

ram(K ′/K) > 12. We obtain as well that the Hilbert 2-class field tower of K ′ is

infinite.

Consequently, in all the cases, we constructed unramified extensions of F in which

the Hilbert 2-class field tower is infinite. The proposition is thus proved. �

P r o o f of Theorem 2. The idea used to prove that k has infinite Hilbert 2-class

field tower is to determine a subfield of k(∗) in which the Hilbert 2-class field tower

is infinite. This guarantees, the infiniteness of the Hilbert 2-class field tower of k(∗)

and using the fact that k(∗)/k is unramified, we obtain the result.

We shall give a proof by distinguishing four cases, depending on the number of

elements of S2. For the case where card(S2) 6 1, see the remarks in Section 3.

Case 1: Suppose card(S2) = 2

It is clear that card(S1) > 5. By Section 2.3, k(∗) contains the real quadratic field

K = Q

(
√

∏

ℓ∈S1∪S2

ℓ
)

. Then from Proposition 3.1, the Hilbert 2-class field tower of K

is infinite.

Case 2: Suppose card(S2) = 3

In this case, we have card(S1) > 4, we distinguish between the cases where 2 is

ramified or not in k.

Assume 2 is unramified in k, then we have card(S1) = 5. It follows that k(∗)

contains the quadratic field K = Q

(
√

q1q2

∏

ℓ∈S1

ℓ
)

where q1 and q2 are two distinct

primes in S2 (Section 2.3). By applying Proposition 3.1, the Hilbert 2-class field

tower of K is infinite.

Now, assume 2 is ramified, then by Section 2.3, three possible situations can

happen:
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(i)
√

2 ∈ k(∗), then k(∗) contains K = Q

(
√

2q1q2

∏

ℓ∈S12

ℓ
)

where q1 and q2 are two

distinct primes of S2.

(ii) There exists q ∈ S2 such that
√

2q ∈ k(∗), then k(∗) containsK = Q

(
√

2
∏

ℓ∈S1∪S2

ℓ
)

.

(iii)
√

2 6∈ k(∗) and for all q ∈ S2, we have
√

2q 6∈ k(∗), then the quadratic field

K = Q

(
√

∏

ℓ∈S1∪S2

ℓ
)

is contained in k(∗).

In the cases (i) and (ii), from Proposition 3.1, K has infinite Hilbert 2-class field

tower.

In the case (iii), there are eight primes ramified in K, thus K has infinite Hilbert

2-class field tower.

Case 3: Suppose card(S2) = 4

We have that the quadratic number field K = Q

(
√

∏

ℓ∈S1∪S2

ℓ
)

is contained in k(∗).

In the case where 2 is unramified, we have card(S1∪S2) = 8, thus the Hilbert 2-class

field tower of K is infinite.

Suppose that 2 is ramified in k, then we distinguish between two cases:

⊲ For every positive integer m,
√

2m 6∈ k, then by Lemma 2.6, for some prime

p ∈ S1, we have:
(q1

p

)

=
(q2

p

)

= 1 for some q1, q2 ∈ S2,

or
(q1q2

p

)

=
(q1q3

p

)

= 1 for some q1, q2, q3 ∈ S2.

Accordingly to the preceding equations, we put K = Q(
√

q1,
√

q2) or K = Q(
√

q1q2,
√

q1q3) and K ′ = K
(
√

∏

ℓ∈S1∪S2

ℓ
)

which is contained in k(∗) (Section 2.3). We see

by Lemma 2.5 that ram(K ′/K) > 12. In the case where ram(K ′/K) > 12, we

have rank(C2,K′) > ram(K ′/K) − e(K ′/K) − 1 > 8 (since e(K ′/K) 6 4). Thus K ′

satisfies the Golod and Shafarevich inequality (Remarks 2.2), therefore the Hilbert

2-class field tower of K ′ is infinite. Thus, the Hilbert 2-class field tower of k(∗) is

infinite too.

Now, suppose ram(K ′/K) = 12, then p is the unique prime ramified in K ′ which

is totally decomposed in K. Moreover by Lemma 2.3, −1 is a norm in the extension

K ′/K, thus e(K ′/K) 6 3. Consequently, rank(C2,K′) > ram(K ′/K)−e(K ′/K)−1 >

8 and the Hilbert 2-class field tower of K ′ is infinite.

⊲ There exist a positive integer m such that
√

2m ∈ k. In the case where
√

2 ∈ k,

then the quadratic number field Q

(
√

2
∏

ℓ∈S1∪S2

ℓ
)

is contained in k(∗) and has an

infinite Hilbert 2-class field tower.
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In the case where
√

2 6∈ k, then for each prime q ∈ S2,
√

2q ∈ k. By Lemma 2.6,

for some prime p ∈ S1, we have:

(2q1

p

)

=
(2q2

p

)

= 1 for some q1, q2 ∈ S2,

or
(q1q2

p

)

=
(q1q3

p

)

= 1 for some q1, q2, q3 ∈ S2.

Then accordingly to the preceding equations, we put K = Q(
√

2q1,
√

2q2) or K =

Q(
√

q1q2,
√

q1q3) and K ′ = K
(
√

∏

ℓ∈S1∪S2

ℓ
)

which is contained in k(∗) (Section 2.3).

Proceeding in a similar way as in the preceding cases, we obtain that the Hilbert

2-class field tower of K ′ is infinite.

Case 4: Suppose card(S2) > 5

By Lemma 2.7, for some prime number ℓ ∈ S1 ∪ S2, there exist distinct prime

numbers q1, q2, q3 ∈ S2 such that

(q1q2

ℓ

)

=
(q1q3

ℓ

)

= 1.

Denote K = Q(
√

q1q2,
√

q1q3) and

K ′ = K(
√

d) such that d =







∏

ℓ∈S1∪S2

ℓ if card(S2) is even,

q1

∏

ℓ∈S1∪S2

ℓ if card(S2) is odd.

It is clear by Section 2.3, that K ′ is contained k(∗).

We have

rank(C2,K′) > ram(K ′/K) − e(K ′/K)− 1,

where 0 6 e(K ′/K) 6 4.

With the equalities (q1q2/ℓ) = (q1q3/ℓ) = 1, it is easy to see by Lemma 2.5 that

ram(K ′/K) > 12.

In the case where ram(K ′/K) > 12, proceeding in a similar way as in the preceding

cases, we obtain that the Hilbert 2-class field tower of K ′ is infinite.

Suppose now that ram(K ′/K) = 12, then it suffices to prove that e(K ′/K) < 4.

By Lemma 2.3, −1 is a norm in the extension K ′/K if and only if ℓ ∈ S1. Therefore,

if ℓ ∈ S1, then e(K ′/K) 6 3, and proceeding in a similar way as Case 3, we see that

the Hilbert 2-class field tower of K ′ is infinite.

In the next, we suppose that ℓ ∈ S2, then we can proceed differently to the

preceding cases.

1146



By Section 2.2, {εq1q2
, (εq1q2

εq1q3
)1/2, (εq1q2

εq2q3
)1/2} is a fundamental system of

units ofK. Then finding the inequality e(K ′/K) < 4 is reduced to determining a unit

u 6= 1 of the form u = ±εi
q1q2

(εq1q2
εq1q3

)j/2(εq1q2
εq2q3

)k/2, where i, j, k ∈ {0, 1} such
that u is a norm in the extension K ′/K.

Let P be a prime in K ramified in the extension K ′/K. It is clear that P lies
above some prime l where l divides d. Denote by L the decomposition field of l in the

extension K/Q. Suppose l 6= ℓ, then by norm residue symbol propreties, we have:

(3.1)
(−1, d

P
)

=
(NK/L(−1), d

NK/L(P)

)

= 1.

In addition, we have
(εq1q2

, d

P
)

=
(Nk/L(εq1q2

), d

NK/L(P)

)

.

Otherwise, it is easy to see that

NK/L(εq1q2
) =

{

1 if εq1q2
6∈ L,

ε2
q1q2

if εq1q2
∈ L.

Thus, we have

(3.2)
(εq1q2

, d

P
)

= 1.

Suppose l = ℓ, since ℓ is totally decomposed in the extension K and l ∈ S2, then

(3.3)
(−1, d

P
)

=
(−1, ℓ

ℓ

)

=
(−1

ℓ

)

= −1.

We shall prove that the value of ((εq1q2
, d)/P) is independent of the choice of primes

P lying above ℓ.

Let P1 and P2 be two distinct primes in K lying above ℓ. By the transitivity

of Gal(K/Q), there exists an isomorphisme σ of Gal(K/Q) such that σ(P1) = P2.

Denote M = Inv(σ), then we have

(3.4)
(εq1q2

, d

P1

)(εq1q2
, d

P2

)

=
(NK/M (εq1q2

), d

NK′/K(P1)

)

= 1.

The last equality proves that the value of ((εq1q2
, d)/P) is independent of the choice

of primes P lying above ℓ.

Consequently, using the equalities (3.1), (3.2), (3.3) and (3.4), we deduce that

εq1q2
or −εq1q2

is a norm in the extension K ′/K, moreover e(K ′/K) < 4 and the

Hilbert 2-class field tower of K ′ is infinite, finishing the proof of our theorem. �
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