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Abstract. In this paper, using Mawhin’s continuation theorem of the coincidence degree
theory, we obtain some sufficient conditions for the existence of positive almost periodic
solutions for a class of delay discrete models with Allee-effect.
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1. Introduction

In the past few years, there has been increasing interest in studying dynamical

characteristics such as stability, persistence and periodicity of ecological systems. In

paper [4], the author proposed the single species model with Allee-effect

(1.1) Ṅ(t) = N(t)[a(t)− b(t)Np(t− σ(t)) − c(t)N q(t− τ(t))],

where a ∈ C(R,R) and b, c, σ, τ ∈ C(R, [0,+∞)) are ω-periodic functions with
∫ ω

0 a(t) dt > 0 and
∫ ω

0 (b(t) + c(t)) dt > 0, p 6 q are positive constants. Using

the method of coincidence degree, the author obtained some conditions ensuring the

existence of at least one positive periodic solution for (1.1). His results show that

delays have no influence on the existence of a positive periodic solution of (1.1).

Later on, (1.1) has been extensively studied. For instance, in paper [6], the authors

investigated the permanence and attractivity of (1.1) by some analytic technique
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using a suitable Lyapunov functional. For more results related to (1.1), one can refer

to [24], [21], [25] and the references cited therein.

Naturally, upon considering long-term dynamical behaviors, it is possible for the

various components of biological and physical environment (reproduction rates, re-

source regeneration, etc.) of a population model to be periodic with rationally inde-

pendent periods. Therefore, the study of almost periodic behavior is considered to be

more accordant with reality. Recently, there are two main approaches to investigat-

ing the existence and stability of the almost periodic solutions of differential systems:

one is using the fixed point theorem, Lyapunov functional method and differential

inequality techniques (see [5], [14], [7]); the other is using functional hull theory and

Lyapunov functional method (see [18], [16], [17]). We always apply the latter way to

studying the almost periodic solutions for ecological systems, especially for discrete

systems, in which we need first to study the persistence of the systems considered.

In [23], [2], [22], applying the method of coincidence degree theory which is differ-

ent from the previous results, the authors studied the almost periodic solutions for

some classes of Lotka-Volterra systems. However, all of them only considered the

continuous models.

In reality, the discrete time models governed by difference equations are more

appropriate than the continuous ones when the populations have non-overlapping

generations. Also, since discrete time models can also provide efficient computa-

tional models of continuous models for numerical simulations, it is reasonable to

study discrete time population models governed by difference equations (see [1], [11],

[19], [20], [15], [13], [9], [27], [10]). Moreover, many authors have used Mawhin’s con-

tinuation theorem to study the existence of periodic solutions to population models

([20], [15], [13], [9], [27], [10]). For example, in [20], the authors considered the

discrete nonlinear delay population model with Allee effect

(1.2) x(n+ 1) = x(n) exp{a(n) + b(n)xp(n− ω)− c(n)xq(n− ω)},

where a(n), b(n) and c(n) are positive sequences of period ω and p and q are positive

integers. By using Mawhin’s continuation theorem, they established a sufficient

condition for the existence of a positive periodic solution to (1.2). However, few

papers have been published on the existence of positive almost periodic solutions to

discrete time population models which are done by using the Mawhin’s continuation

theorem.

Motivated by the above, in this paper we will study the discrete system of (1.1),

(1.3) y(n+ 1) = y(n) exp{a(n)− b(n)yp(n− σ(n)) − c(n)yq(n− τ(n))},

where n ∈ Z, p and q are constants with 0 < p 6 q, a(n), b(n), σ(n), τ(n) are

all almost periodic sequences defined on Z with b(n) > 0, c(n) > 0 for all n ∈ Z.
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Applying the coincidence degree theory, we will study the existence of positive almost

periodic solutions of (1.3). To the best of our knowledge, this is the first paper to

study the existence of almost periodic solutions to (1.3) by using the method of

coincidence degree theory.

The organization of the paper is as follows. In Section 2, we introduce some

preliminary results which are needed later. In Section 3, we establish our main

results for the existence of positive almost periodic solutions of (1.3).

2. Preliminaries

In this section we state some preliminary results.

Definition 2.1 ([3]). A sequence x : Z → R is called an almost periodic se-

quence, if the ε-translation number set of x

E(ε, x) = {τ ∈ Z : |x(n+ τ)− x(n)| < ε, ∀n ∈ Z}

is relatively dense, that is, for any ε > 0 there exists an integer l(ε) > 0 such

that each discrete interval of length l(ε) contains an integer τ ∈ E(ε, x) such that

|x(n+ δ)− x(n)| < ε for any n ∈ Z. τ is called the ε-translating number of ε-almost

period.

Definition 2.2 ([3]). Let f : Z ×D → R, where D is an open set in R, f(n, x)

is said to be almost periodic in n uniformly for x ∈ D, or uniformly almost periodic

for short, if for any ε > 0 and any compact S ∈ D there exists a positive integer

l(ε, S) such that any interval of length l(ε, S) contains an integer τ for which

|f(n+ τ, x)− f(n, x)| < ε

for any n ∈ Z and x ∈ S. τ is called the ε-translating number of f(n, x).

Lemma 2.1 ([26]). The following statements are true.

(i) If x(n) is an almost periodic sequence, then x(n) is bounded.

(i) If f(n, x) is almost periodic uniformly in n, then f(n, x) is bounded in n.

For convenience, we denote by AP(Z) the set of all real valued, almost periodic

functions on Z. Suppose f(n, ϕ) is almost periodic in n, uniformly with respect

to ϕ ∈ C([−r, 0]Z ,R). Further T (f, ε, S) denotes the set of ε-almost periods with

respect to ϕ ∈ C([−r, 0]Z ,R) and l(ε, S) is the inclusion interval.

193



For f ∈ AP(Z), denote

m[f ] = lim
N→+∞

1

N

N
∑

n=0

f(n).

Lemma 2.2 ([26]). Let f(n, ϕ) and g(n, ϕ) be almost periodic in n uniformly

for ϕ ∈ D. For any sequence {τk}, which has a limit (including infinite one), if

f(n + τk, ϕ) uniformly converges on Z × S as k → ∞ implies that g(n + τk, ϕ)

uniformly converges on Z × S as k → ∞, where S is any compact set of D, then

mod (g) ⊂ mod (f).

Lemma 2.3 ([26]). Let f : Z × D → R be almost periodic in n uniformly for

ϕ ∈ D and continuous in ϕ ∈ D. If p(n) is an almost periodic sequence such that

pn ∈ S for all n ∈ Z, where S is a compact set in D and pn(s) = p(n + s) for

s ∈ [−r, 0]Z, then f(n, pn) is almost periodic in n.

Similarly to the case of a periodic sequence, we have the following lemma which

plays an important role in our results.

Lemma 2.4. Let x ∈ AP(Z) and k0 ∈ Z. Then for any ε > 0 with inclusion

length l(ε) and any k1, k2 ∈ [k0, k0 + l(ε)]Z we have

x(k) 6 x(k1) +

k0+l(ε)
∑

s=k0

|x(s+ 1)− x(s)| + ε ∀k ∈ Z

and

x(k) > x(k2)−

k0+l(ε)
∑

s=k0

|x(s+ 1)− x(s)| − ε ∀k ∈ Z.

P r o o f. For any k ∈ Z and ε > 0, since x(n) is almost periodic, there exists an

integer τ ∈ E(ε, x) such that k ∈ [k0−τ, k0−τ+ l(ε)]Z, that is k+τ ∈ [k0, k0+ l(ε)]Z.

Thus, we have

x(k)− x(k1) =
k−1
∑

s=k1

(x(s + 1)− x(s))

=

k−1+τ
∑

s=k1

(x(s + 1)− x(s)) +

k−1
∑

s=k−1+τ+1

(x(s + 1)− x(s))

6

k0+l(ε)
∑

s=k0

|x(s+ 1)− x(s)|+ ε.
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Hence, we have

x(k) 6 x(k1) +

k0+l(ε)
∑

s=k0

|x(s+ 1)− x(s)|+ ε ∀k ∈ Z.

Similarly, we can obtain

x(k)− x(k2) =

k−1
∑

s=k2

(x(s + 1)− x(s))

=

k−1+τ
∑

s=k2

(x(s + 1)− x(s)) +

k−1
∑

s=k−1+τ+1

(x(s + 1)− x(s))

> −

k0+l(ε)
∑

s=k0

|x(s+ 1)− x(s)| − ε,

that is,

x(k) > x(k2)−

k0+l(ε)
∑

s=k0

|x(s+ 1)− x(s)| − ε ∀k ∈ Z.

The proof of Lemma 2.4 is complete. �

Definition 2.3. A set Ω of functions x : Z → R is uniformly Cauchy (or equi-

Cauchy) if for every ε > 0 there exists an integer N such that |x(i) − x(j)| < ε

whenever i, j > N or i, j < −N for any x = x(n) ∈ Ω.

Similarly to the proof of the Discrete Arzela-Ascoli Theorem in [8], one can easily

show

Lemma 2.5. A bounded, uniformly Cauchy subset Ω of functions x : Z → R is

relatively compact.

In order to explore the existence of almost periodic solutions of (1.3), and for

the reader’s convenience, we shall first summarize below a few concepts and results

without proof, borrowing the notation from [12].

Let X,Y be normed vector spaces, L : DomL ⊂ X → Y a linear mapping, and

N : X → Y a continuous mapping. The mapping L will be called a Fredholm

mapping of index zero if dimKerL = codim ImL < +∞ and ImL is closed in Y . If

L is a Fredholm mapping of index zero and there exist continuous projectors P : X →

X andQ : Y → Y such that ImP = KerL, KerQ = ImL = Im(I−Q), it follows that

the mapping L|DomL∩KerP : (I−P )X → ImL is invertible. We denote the inverse of

that mapping by KP . If Ω is an open bounded subset of X , the mapping N will be
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called L-compact on Ω if QN(Ω) is bounded and KP (I −Q)N : Ω → X is compact.

Since ImQ is isomorphic to KerL, there exists an isomorphism J : ImQ → KerL.

Lemma 2.6 ([12]). Let Ω ⊂ X be an open bounded set and let N : X → Y be a

continuous operator which is L-compact on Ω. Assume

(a) for each λ ∈ (0, 1), x ∈ ∂Ω ∩DomL,Lx 6= λNx;

(b) for each x ∈ ∂Ω ∩KerL,QNx 6= 0;

(c) deg(JNQ,Ω ∩KerL, 0) 6= 0.

Then Lx = Nx has at least one solution in Ω ∩DomL.

3. Main results

In this section we will state and prove the main results of this paper.

By making the substitution

y(n) = exp{x(n)},

(1.3) can be reformulated as

(3.1) x(n+ 1)− x(n) = a(n)− b(n) exp{px(n− σ(n))} − c(n) exp{qx(n− τ(n))}.

Set

X = Y = {x(n) ∈ AP(Z) : mod (x) ⊂ mod (F )},

where

F = F (n, ϕ) = a(n)− b(n) exp{pϕ(−σ(n))} − c(n) exp{qϕ(−τ(n))},

ϕ ∈ C([−r, 0]Z,R),

r = max{sup
n∈N

|σ(n)|, sup
n∈N

|τ(n)|}.

For x ∈ X or Y , define ‖x‖ = sup
n∈Z

|x(n)|.

Lemma 3.1. X and Y are Banach spaces equipped with the norm ‖ · ‖.

P r o o f. If {x{k}(n)} ⊂ X and x{k}(n) converges to x̄(n), then it is easy to

show that y(n) ∈ AP(Z) and mod (x̄) ⊂ mod (F ). Thus, X and Y are Banach spaces

equipped with the norm ‖ · ‖. The proof of Lemma 3.1 is complete. �
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Lemma 3.2. Let

L : X → Y, Lx(n) = ∆x(n),

where ∆x(n) = x(n+ 1)− x(n). Then L is a Fredholm mapping of index zero.

P r o o f. It is easy to see that L is a linear operator,

KerL = {x(n) = h ∈ R}

and

ImL = {y ∈ Y : m[y] = 0}.

Furthermore, one can easily show that ImL is closed in Y and

dim KerL = 1 = codim ImL,

therefore, L is a Fredholm mapping of index zero. The proof of Lemma 3.2 is

complete. �

Lemma 3.3. Let

N : X → Y, Nx = Gx,

where

Gx(n) = a(n)− b(n) exp{px(n− σ(n))} − c(n) exp{qx(n− τ(n))}

and

P : X → X, Px = m[x], Q : Y → Y, Qy = m[y].

Then N is L-compact on Ω, where Ω is an open bounded subset of X .

P r o o f. Obviously, P and Q are continuous projectors such that

ImP = KerL, ImL = KerQ.

Hence

Im(I −Q) = ImL.

Then in view of

ImP = KerL, ImL = KerQ = Im(I −Q),

we obtain that the inverse KP : ImL → KerP ∩DomL of LP exists and is given by

KP (y) =

n
∑

s=0

y(s)−m

[ n
∑

s=0

y(s)

]

.
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Thus, we have

QNx = m(Gx)

and

KP (I −Q)Nx = f(x(n)) −Qf(x(n)),

where

f(x(n)) =
n
∑

s=0

(Nx(s) −QNx(s)).

Clearly, QN and (I − Q)N are continuous. Now we will show that KP is also

continuous.

By assumptions, for any 0 < ε < 1 and any compact set S ⊂ C([−r, 0]Z,R), let l(ε)

be the length of the inclusion interval of T (F, ε, S). Suppose that {y{k}(s)} ⊂ ImL

and y{k}(s) uniformly converges to y(s). Because of
n
∑

s=0
y{k} ∈ Y , there exists

δ(0 < δ < ε) such that K(F, δ, S) ⊂ T
( n
∑

s=0
y{k}, ε, S

)

. Let l(δ, S) be the length of

the inclusion interval of T (F, δ, S) and

l = max{l(δ, S), l(ε, S)}.

It is easy to see that l is the length of the inclusion interval of T (F, ε, S) and T (F, δ, S).

Hence, for any n 6∈ [0, l]Z, there exists ξn ∈ T (F, δ, S) ⊂ T
( n
∑

s=0
y{k}, ε, S

)

such that

n+ ξn ∈ [0, l]Z. Hence, by the definition of the almost periodic sequence we have

∥

∥

∥

∥

n
∑

s=0

y{k}(s)

∥

∥

∥

∥

= sup
n∈Z

∣

∣

∣

∣

n
∑

s=0

y{k}(s)

∣

∣

∣

∣

6 sup
n∈[0,l]Z

∣

∣

∣

∣

n
∑

s=0

y{k}(s)

∣

∣

∣

∣

(3.2)

+ sup
n6∈[0,l]Z

∣

∣

∣

∣

n
∑

s=0

y{k}(s)−

n+ξn
∑

s=0

y{k}(s) +

n+ξn
∑

s=0

y{k}(s)

∣

∣

∣

∣

6 2 sup
n∈[0,l]Z

∣

∣

∣

∣

n
∑

s=0

y{k}(s)

∣

∣

∣

∣

+ sup
n6∈[0,l]Z

∣

∣

∣

∣

n
∑

s=0

y{k}(s)−

n+ξn
∑

s=0

y{k}(s)

∣

∣

∣

∣

6 2

l
∑

s=0

|y{k}(s)|+ ε.

By (3.2), we conclude that
n
∑

s=0
y(s) is continuous, where y ∈ ImL. Consequently,

KP and KP (I −Q)Ny are continuous.

From (3.2), we also have that
n
∑

s=0
y(s) andKP (I−Q)N are also uniformly bounded

on Ω. Further, it is not difficult to verify that QN(Ω) is bounded and KP (I−Q)N is
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equicontinuous onΩ. By the proof of Lemma 3.3 in [28], we can immediately conclude

that KP (I −Q)N(Ω) is compact on any compact subset of Z. From this, (3.2) and

the expression of KP (I −Q)Nx it follows that if {xk(n)} ⊂ KP (I −Q)N(Ω), then

the sequence {xk(n)} contains a subsequence {xk1(n)} that is uniformly Cauchy.

Thus, by Lemma 2.5, N is L-compact on Ω. The proof of Lemma 3.3 is complete.

�

Theorem 3.1. Assume that

(H) m[a] > 0,m[b+ c] 6= 0,

then (1.3) has at least one positive almost periodic solution.

P r o o f. In order to use the continuation theorem of coincidence degree theory

to establish the existence of a solution of (3.1), we consider the same Banach spaces

X and Y as those in Lemma 3.1 and the same mappings L, N , P , Q as those in

Lemma 3.2 and Lemma 3.3, respectively. Then we can obtain that L is a Fredholm

mapping of index zero and N is a continuous operator which is L-compact on Ω.

Now, we are in the position to search for an appropriate open, bounded subset Ω

for the application of the continuation theorem. Corresponding to the operator

equation

Lx = λNx, λ ∈ (0, 1),

we obtain

(3.3) x(n+1)−x(n) = λ(a(n)− b(n) exp{px(n−σ(n))}− c(n) exp{qx(n− τ(n))}).

Assume that x(n) ∈ X is a solution of (3.3) for a certain λ ∈ (0, 1). Denote

xM = sup
n∈Z

x(n), xm = inf
n∈Z

x(n).

Summing on both sides of (3.3) from 0 to N − 1 with respect to n, we get

N−1
∑

n=0

(x(n+1)−x(n)) = λ

N−1
∑

n=0

(a(n)−b(n) exp{px(n−σ(n))}−c(n) exp{qx(n−τ(n))}),

thus

m[a] = m[b(n) exp{px(n− σ(n))} + c(n) exp{qx(n− τ(n))}]

and consequently

m[a] > exp{pxm}m[b+ c],
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that is,

(3.4) xm 6
1

p
ln

m[a]

m[b+ c]
.

Similarly, we can get

(3.5) xM
>

1

q
ln

m[a]

m[b+ c]
.

For n0 ∈ Z and ∀ε > 0 we can choose a point ñ− n0 ∈ [l, 2l]Z ∩ T (F, δ, S), where

δ (0 < δ < ε) satisfies T (F, δ, S) ⊂ T (x, ε, S). Summing on both sides of (3.3) from

n0 to ñ− 1 with respect to n, we get

λ

ñ−1
∑

s=n0

(b(s) exp{px(s− σ(s))} + c(s) exp{qx(s− τ(s))})(3.6)

= λ

ñ−1
∑

s=n0

a(s) +

ñ−1
∑

s=n0

(x(s + 1)− x(s)) 6 λ

ñ−1
∑

s=n0

|a(s)|+ ε.

Hence, from (3.3) and (3.6) we have

ñ−1
∑

s=n0

(x(s + 1)− x(s)) 6 λ

ñ−1
∑

s=n0

a(s) + λ

ñ−1
∑

s=n0

(

b(s) exp{px(s− σ(s))}(3.7)

+ c(s) exp{qx(s− τ(s))}
)

6 2λ

ñ−1
∑

s=n0

|a(s)|+ ε < 2λ

ñ−1
∑

s=n0

|a(s)|+ 1.

Therefore, in view of (3.4) and (3.7), by Lemma 2.4, for any ε > 0 with inclusion

length l(ε) there exist n1, n2 such that we have

x(n) 6 x(n1) +

n0+l(ε)
∑

s=n0

|x(s+ 1)− x(s)| + ε(3.8)

6 xm + ε+ 2λ

ñ−1
∑

s=n0

|a(s)|+ 1 + ε

6
1

p
ln

m[a]

m[b+ c]
+ 2λ

ñ−1
∑

s=n0

|a(s)|+ 3 ∀n ∈ Z
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and

x(n) > x(n2)−

n0+l(ε)
∑

s=n0

|x(s+ 1)− x(s)| − ε(3.9)

> xM − 2ε− 2λ

ñ−1
∑

s=n0

|a(s)| − 1

>
1

q
ln

m[a]

m[b+ c]
− 2λ

ñ−1
∑

s=n0

|a(s)| − 3 ∀n ∈ Z.

It follows from (3.8) and (3.9) that

‖x‖ 6 M1,

where

M1 = max

{

1

p
ln

m[a]

m[b+ c]
+ 2λ

ñ−1
∑

s=n0

|a(s)|+ 3,
1

q
ln

m[a]

m[b+ c]
− 2λ

ñ−1
∑

s=n0

|a(s)| − 3

}

.

Clearly, M1 is independent of λ. Take M = M1 + K, where K > 0 is taken

sufficiently large such that the unique solution x∗ of

m[a]−m[b] exp{px} −m[c] exp{qx} = 0

satisfies ‖x∗‖ < M . Then, take

Ω = {x ∈ X : ‖x‖ < M}.

It is clear that Ω satisfies the requirement (a) in Lemma 2.6. When x ∈ ∂Ω∩KerL,

x is a constant in R with |x| = M , then

QNx = m(a(n)− b(n) exp{px} − c(n) exp{qx}) 6= 0,

which implies that the requirement (b) in Lemma 2.6 is satisfied. Furthermore, take

the isomorphism J : ImQ → KerL, Jy ≡ y and let H(γ, x) = −γx+ (1− γ)JQNx,

0 6 γ 6 1. Then for any x ∈ ∂Ω ∩KerL, 0 6 γ 6 1, we have H(γ, x) 6= 0 and

deg{JQN,Ω ∩KerL, 0} = deg{−x,Ω ∩KerL, 0} 6= 0.

So, the requirement (c) in Lemma 2.6 is satisfied. Hence, (3.1) has at least one

solution in Ω, that is, (1.3) has at least one positive almost periodic solution. The

proof of Theorem 3.1 is complete. �
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R em a r k 3.1. Since any equation with positive and constant a, b, and c satisfies

the assumptions of Theorem 3.1, the sufficient conditions we give are by no means

restrictive.

A c k n ow l e d g em e n t. The authors thank the referee for his or her comments

that led to the improvement of the original manuscript.
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