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Commutative Parasemifields Finitely Generated as Semirings

VítězSLAV kALA and tOmáš kePkA

Praha

Received November 12, 2009

Commutative parasemifields that are finitely generated as semirings are studied in more
detail.

This short article continues immediately [2] and [3] and the reader is fully referred
to the cited papers as concerns all necessary and/or helpful prerequisities.

1. I n t r o d u c t i o n

By a parasemifield we mean a non-trivial algebraic structure with two commutative
and associative binary operations, addition and multiplication, where the multiplica-
tion forms an (abelian) group and distributes over the addition. Familiar examples of
such a structure are the parasemifields of positive rational or real numbers. Both these
parasemifields are congruence-simple and they are not finitely generated as semirings.
In fact, according to [1, 14.3], every congruence-simple finitely generated commuta-
tive semiring is either finite or additively idempotent. A corresponding result for
ideal-simple finitely generated commutative semirings seems to be an open problem.
According to [2, 5.1], it is sufficient to solve the problem only for parasemifields.
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Since every parasemifield is infinite, it would mean that a parasemifield is additively
idempotent, provided that it is a finitely generated semiring.

2. P a r a s e m i f i e l d s a n d s u b s e m i g r o u p s o f Nm
0

In the paper, let S be a commutative parasemifield that is not additively idempotent
(i.e., 1S � 1S + 1S = 2S ).

First, observe that the prime subparasemifield T of S (i.e., the subparasemifield
generated by the unit 1S ) is a copy of the parasemifield Q+ of positive rationals. It is
quite easy to show thatQ+ is a congruence-simple semiring (i.e., idQ+ andQ+×Q+ are
the only semiring congruences ofQ+) and thatQ+ is not a finitely generated semiring.
Consequently, if ρ is a congruence of S , then either ρ � T =idT or T is contained in a
block of ρ and the factor-semiring S/ρ is additively idempotent.

For every u ∈ S , the set Iu = (S + u) ∪ {u} is the principal ideal of the additive
semigroup S (+) generated by the element u. We denote by Q the set of the elements
u ∈ S such that Iu ∩ T � ∅. Furthemore, we put R = (S + T ) ∪ T and P = Q ∩ R;
notice that R is the ideal of S (+) generated by T .

2.1 Proposition. ([3])
(i) Both Q and R are subsemirings of S .

(ii) R = Q−1 = {u−1|u ∈ Q}.
(iii) S = QR = {uv|u ∈ Q, v ∈ R}.
(iv) T ⊆ P = Q + T = Q ∩ R.
(v) P is an additively archimedean and cancellative parasemifield.

(vi) Neither Q nor P is a finitely generated semiring,
(vii) If u1, . . . , un ∈ S , n ≥ 1 are such that u1 + · · · + un ∈ Q, then u1, . . . , un ∈ Q.

(viii) If u ∈ S and n ≥ 1 are such that un ∈ Q (R, P, resp.), then u ∈ Q (R, P, resp.).
(ix) If u, v,w ∈ Q are such that u + v = u + w, then v + t = w + t for every t ∈ T.

Proof. See [3, 4.3], [3, 4.8], [3, 3.11], [3, 4.10], [3, 4.18], [3, 4.4], [3, 4.6], and [3,
4.15]. �

In the remaining part of the paper, assume that S is finitely generated as a semiring.
Let {z1, . . . , zm},m ≥ 1, be a finite set of generators of S .

2.2 Lemma.
(i) Q � S � R.

(ii) Q � P � R.

Proof. Combine 2.1(vi) and [3, 4.9]. �

Put A = {(k1, . . . , km) ∈ Nm
0 |z

k1
1 · · · z

km
m ∈ Q}, A′ = {(k1, . . . , km) ∈ Nm

0 |z
k1
1 · · · z

km
m ∈ R},

and B = {(k1, . . . , km) ∈ Nm
0 |z

k1
1 · · · z

km
m ∈ P} (N0 denotes the semiring of non-negative

integers).
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2.3 Proposition.
(i) 0 ∈ A, 0 � A � Nm

0 and A is a pure subsemigroup ofNm
0 (+) (i.e., nA = A∩nNm

0
for every n ≥ 1).

(ii) A is not a finitely generated semigroup.

Proof. (i) Clearly, z0
1 · · · z0

m = 1S ∈ T ⊆ Q, and so 0 ∈ A. Since Q(·) is a subsemi-
group of the multiplicative group S (·), we see that A is a subsemigroup of the additive
semigroup Nm

0 (+)(= N0(+)m). From 2.1(viii) follows that A is a pure subsemigroup.
(ii) See [3, 4.19(iii)].

�

2.4 Lemma. Let k ≥ 1 and ai = (ki,1, . . . , ki,m) ∈ Nm
0 , 1 ≤ i ≤ k.

(i) If
∑

i zki,1

1 · · · z
ki,m
m ∈ Q, then ai ∈ A for every i, 1 ≤ i ≤ k.

(ii) If qi ∈ Q+0 , 1 ≤ i ≤ k (the semifield of non-negative rationals) are such that
a =
∑

i qiai ∈ Nm
0 (+) and if ai ∈ A for every i, then a ∈ A.

Proof. (i) The assertion follows easily from 2.1(vii).
(ii) We have qi = ri/si for suitable ri ∈ N0 and si ∈ N. If s = s1 · · · sk then

sqi ∈ N0, bi = sqiai ∈ A and sa =
∑

bi ∈ A ∩ sNm
0 = sA. Thus a ∈ A.

�

2.5 Proposition. 0 ∈ A′, A′ � Nm
0 and A′ is a pure subsemigroup of Nm

0 (+).

Proof. Similar to that of 2.3(i). �

2.6 Proposition.
(i) 0 ∈ B and B is a pure subsemigroup of Nm

0 (+).
(ii) B = A ∩ A′.

(iii) B � A.

Proof. (i) Similar to 2.3(i).
(ii) We have P = Q ∩ R.

(iii) If B = A then A ⊆ A′, and hence R = S , a contradiction with 2.2(i).
�

2.7 Lemma. Let b ∈ A. Then b ∈ B if and only if a − b ∈ A for every a ∈ A such
that a − b ∈ Nm

0 .

Proof. Let b = (k1, . . . , km) and u = zk1
1 · · · z

km
m ∈ Q. If b ∈ B then u ∈ P, u−1 ∈

∈ Q and zl1−k1
1 · · · zlm−km

m = u−1v ∈ Q, where a = (l1, . . . , lm) ∈ A and a − b ∈ Nm
0 .

Consequently, a − b ∈ A.
Now we are going to show the converse implication. We have u−1 =

∑k
i=1 zki,1

1 · · ·
· · · zki,m

m for some k ≥ 1 and ai = (ki,1, . . . , ki,m) ∈ Nm
0 , 1 ≤ i ≤ k. Then 1S = uu−1 =

=
∑

i zk1+ki,1

1 · · · zkm+ki,m
m ∈ Q, and it follows from 2.4(i) that b + ai ∈ A for every i. On
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the other hand, ai = (b + ai) − ai ∈ Nm
0 and we get that ai ∈ A. Thus zki,1

1 · · · z
ki,m
m ∈ Q

for every i and, finally, u−1 ∈ Q. Thus u ∈ P and b ∈ B. �

2.8 Lemma. Let a ∈ A′ and b ∈ B be such that a − b ∈ Nm
0 . Then a − b ∈ A′.

Proof. See the first part of the proof of 2.7. �

2.9 Lemma. Let a ∈ A and a1, . . . , ak ∈ Nm
0 , k ≥ 1, be such that a + ai ∈ A

for every i, 1 ≤ i ≤ k. Assume that there exist positive integers n1, . . . , nk such that
(ni − 1)a + niai ∈ A for every i. Then:

(i) (n − 1)a + nai ∈ A for all i and positive integers n ≥ max(ni).
(ii) (n − 1)a +

∑
riai ∈ A for all n ≥ max(ni) and r1, . . . , rk ∈ N0,

∑
ri = n.

Proof. (i) We have n = ni + li for some li ∈ N0 and (n − 1)a + nai = (ni − 1)a +
+ niai + li(a + ai) ∈ A.

(ii) We have (n−1)a+
∑

riai =
∑

(ri/n)((n−1)a+nai) ∈ Nm
0 . It remains to combine

(i) and 2.4(ii).
�

2.10 Lemma. Let a = (k1, . . . , km) ∈ A and u = zk1
1 · · · z

km
m ∈ Q. Let ai =

= (ki,1, . . . , ki,m) ∈ Nm
0 , 1 ≤ i ≤ k, be such that u−1 =

∑
vi, where vi = zki,1

1 · · · z
ki,m
m ∈ S .

Then:
(i) a + ai ∈ A for every i.

(ii) a ∈ B and u ∈ P, provided that there exist positive integers ni such that
(ni − 1)a + niai ∈ A for every i.

Proof. (i) Easy (see the second part of the proof of 2.7).
(ii) Put n =

∑
ni. Then u−n = (

∑
vi)n =

∑
r tr
∏k

i=1 vri
i , r = (r1, . . . , rk) ∈

∈ Nk
0,
∑

ri = n, tr ∈ N, un−1 = z(n−1)k1
1 · · · z(n−1)km

m and u−1 = un−1u−n. On the other hand,
un−1∏k

i=1 vri
i = zs1

1 · · · z
sm
m , where s j = (n − 1)k j +

∑k
i=1 riki, j for every j = 1, . . . ,m.

Since (n − 1)a +
∑

i riai ∈ A by 2.9(ii), we have un−1∏k
i=1 vri

i ∈ Q and consequently,
u−1 =

∑
r tr(un−1∏k

i=1 vri
i ) ∈ Q. Thus u ∈ P and a ∈ B.

�

2.11 Remark. Consider the situation from 2.10. If a ∈ A\B (i.e., u � P), then
there exists i0, 1 ≤ i0 ≤ k, such that (n− 1)a+ nai0 � A for every positive integer n. In
particular, ai0 � 0. Now, if ai0 = qa for some q ∈ Q+, then q = r/s, r, s ∈ N, and we
get (s−1)a+ sai0 = (s−1)a+ ra = (s+ r−1)a ∈ A, a contradiction. Thus ai0 � Q

+
0 a.

2.12 Lemma. Let a, a1, . . . , ak ∈ A, k ≥ 1, b ∈ Nm
0 , r, s ∈ Q+ and q1, . . . , qk ∈ Q+0

be such that rb − sa =
∑k

i=1 qiai. Then (n − 1)a + nb ∈ A for a positive integer n (and
hence a + b ∈ A).
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Proof. There are positive integers n, l, t such that r = n/t and s = l/t. Now,
nb − la =

∑
i qiai ∈ Nm

0 and nb − la ∈ A by 2.4(ii). But (n − 1)a + nb = (nb − la) +
+ (n + l − 1)a ∈ A. �

2.13 Lemma. The following conditions are equivalent for all a ∈ A and b ∈ Nm
0 :

(i) (n − 1)a + nb ∈ A for some n ∈ N.
(ii) There are r, s ∈ Q+, k ∈ N, a1, . . . , ak ∈ A and q1, . . . , qk ∈ Q+0 such that

r(a + b) − sa =
∑k

i=1 qiai.
Moreover, if these equivalent conditions are satisfied, then a + b ∈ A.

Proof. If (i) is true, then (n − 1)a + nb = a1 ∈ A and n(a + b) − a = a1, so we can
put r = n, s = 1 = k, q1 = 1. Moreover, n(a + b) = a1 + a ∈ A and a + b ∈ A since A
is a pure subsemigroup of Nm

0 (+).
Now, assume that (ii) is satisfied. We have r = k1/t and s = k2/t for suitable

k1, k2, t ∈ N. Then c = (k1−k2)a+k2b = t(r(a+b)− sa) =
∑

i tqiai ∈ Zm∩(Q+0 )m = Nm
0

and c ∈ A by 2.4(ii). Consequently, (k1 − 1)a + k1b = c + (k2 − 1)a ∈ A. �

2.14 Lemma. Let a ∈ A be such that for every b ∈ Nm
0 with a + b ∈ A there exist

a1, . . . , ak ∈ A, k ≥ 1, r, s ∈ Q+ and q1, . . . , qk ∈ Q+0 with r(a+ b)− sa =
∑

i qiai. Then
a ∈ B.

Proof. Combine 2.13 and 2.10. �

2.15 Corollary. (cf. 2.11) Let a ∈ A\B (see 2.6(iii)). Then there exists b ∈ Nm
0

such that a + b ∈ A and r(a + b) − sa �
∑

qiai for all a1, . . . , ak ∈ A, k ≥ 1, r, s ∈ Q+
and q1, . . . , qk ∈ Q+0 . In particular, a + b � Qa and b � Qa.

2.16 Remark. Let σ be a congruence of S maximal with respect to (1S , 2S ) � σ,
Then S/σ is a parasemifield that is not additively idempotent.

As in [3], define a relation µS on S by (a, b) ∈ µS if and only if b = a + z for
some z ∈ S ∪ {0} and define a relation ηS on S by (a, b) ∈ ηS if and only if there exist
m, n ∈ N such that (a,mb) ∈ µS and (b, na) ∈ µS . Then ηS is the smallest congruence
of S such that the corresponding factor is additively idempotent (see [3, 1.5]).

Hence, ηS ⊆ σ1, whenever σ1 is a congruence of S such that σ � σ1. In particular,
the factor-semiring S/σ is subdirectly irreducible.

3. M a p p i n g t o R

The preceding section is immediately continued. Since S is a non-trivial finitely
generated semiring, S possesses at least one (proper) maximal congruence ρ. Com-
bining [1, 14.3], [1, 10.1], [1, 5.3], we conclude that there exists a mapping ϕ : S → R
(the field of real numbers) such that ker(ϕ) = ρ, ϕ(u + v) = min(ϕ(u), ϕ(v)) and
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ϕ(uv) = ϕ(u) + ϕ(v) for all u, v ∈ S . Then ϕ(1S ) = 0 and ϕ(S )(+) is a non-
zero finitely generated subgroup of R(+). In fact, if the semiring S is generated
by {z1, . . . , zm},m ≥ 1, then the semigroup ϕ(S )(+) is generated by the real numbers
ϕ(z1), . . . , ϕ(zm).

Put V = ϕ−1(ϕ(S ) ∩ R+0 ),U = ϕ−1(ϕ(S ) ∩ R−0 ) and W = ϕ−1(0).

3.1 Proposition.
(i) V and U are subsemirings of S .

(ii) W is a subparasemifield of S .
(iii) U = V−1.
(iv) S + U = U and W + V = W.
(v) V ∪ U = S and V ∩ U = W.

(vi) V � S � U.
(vii) V � W � U.

(viii) Q ⊆ V,R ⊆ U and P ⊆ W.

Proof. The first seven assertions follow easily from the properties of the mapping
ϕ. It remains to show the last one.

First, T ⊆ W = V∩U, since T is the prime subparasemifield of S . If v ∈ Q\T , then
v+w ∈ T for some w ∈ S and we have 0 = ϕ(v+w) = min(ϕ(v), ϕ(w)). Consequently,
ϕ(v) ≥ 0 and v ∈ V . This means that Q = (Q\T )∪ T ⊆ V . If u ∈ R, then u−1 ∈ V , and
so u ∈ U by (iii). �

3.2 Lemma. Let u1, . . . , un ∈ S , n ≥ 1, and u = u1 + · · · + un.
(i) If u ∈ V, then u1, . . . , un ∈ V.

(ii) If u ∈ U, then ui ∈ U for at least one i.
(iii) If u ∈ W, then u1, . . . , un ∈ V and ui ∈ W for at least one i.

Proof. It is easy. �

3.3 Lemma. If u ∈ S and n ≥ 1 are such that un ∈ V (U,W, resp.), then u ∈ V
(U,W, resp.).

Proof. It is easy. �

3.4 Lemma. Both V ′ = V\W and U′ = U\W are subsemirings of S .

Proof. It is easy. �

3.5 Lemma. ϕ(S ) = ϕ(Q) − ϕ(Q).

Proof. We have ϕ(S ) = ϕ(QR) = ϕ(QQ−1) = ϕ(Q) + ϕ(Q−1) = ϕ(Q) − ϕ(Q). �

Put A = {(k1, . . . , km) ∈ Nm
0 |z

k1
1 · · · z

km
m ∈ V}, Ã = {(k1, . . . , km) ∈ Nm

0 |z
k1
1 · · · z

km
m ∈ U},

and B = {(k1, . . . , km) ∈ Nm
0 |z

k1
1 · · · z

km
m ∈ W}.
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3.6 Proposition.
(i) 0 ∈ A, 0 � A � Nm

0 and A is a pure subsemigroup of Nm
0 (+).

(ii) A ⊆ A � Nm
0 .

(iii) If A is a finitely generated semigroup, then V is a finitely generated semiring.

Proof. (i) An easy consequence of the definition of A.
(ii) A ⊆ A, since Q ⊆ V , and A � Nm

0 since V � S .
(iii) Use 3.2(i). �

3.7 Lemma. Let k ≥ 1, a1, . . . , ak ∈ A and q1, . . . , qk ∈ Q+0 be such that a =
=
∑

i qiai ∈ Nm
0 . Then a ∈ A.

Proof. Similar to that of 2.4(ii). �

3.8 Proposition.
(i) 0 ∈ Ã, 0 � Ã � Nm

0 and Ã is a pure subsemigroup of Nm
0 (+).

(ii) A ∪ Ã = Nm
0 .

Proof. It is easy (use 3.1(v)). �

3.9 Lemma. Let k ≥ 1 and ai = (ki,1, . . . , ki,m) ∈ Nm
0 , 1 ≤ i ≤ k, be such that∑

i zki,1

1 · · · z
ki,m
m ∈ V (U, resp.). Then ai ∈ A for every i (a j ∈ Ã for at least one j, resp.).

Proof. It is easy. �

3.10 Proposition.
(i) 0 ∈ B and B is a non-zero pure subsemigroup of Nm

0 (+).
(ii) B = A ∩ Ã.

(iii) A � B � Ã.

Proof. (i) Clearly, 0 ∈ B and B is a pure subsemigroup of Nm
0 (+). Since the semi-

ring S is generated by the set {z1, . . . , zm} there are k ≥ 1 and 0 � ai ∈ Nm
0 , i =

= 1, . . . , k, ai = (ki,1, . . . , ki,m), such that 1S =
∑

i zki,1

1 · · · z
ki,m
m . By 3.2(iii), ai ∈ B for at

least one i. Thus B � 0.
(ii) We have W = V ∩ U by 3.1(v).
(iii) If B = A, then A ⊆ Ã, and hence V ⊆ U and U = S , a contradiction. If B = Ã,

then Ã ⊆ A, and hence A = Nm
0 , again a contradiction. �

3.11 Lemma.
(i) Let b ∈ A. Then b ∈ B if and only if a − b ∈ A for every a ∈ A such that

a − b ∈ Nm
0 .

(ii) Let b ∈ B. Then a − b ∈ Ã for every a ∈ Ã such that a − b ∈ Nm
0 .

Proof. Similar to that of 2.7. �
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3.12 Remark. By 3.1(iv), we have W + V = W. We are going to show that
w + V � W for every w ∈ W.

Assume, on the contrary, that w1 + V = W for some w1 ∈ W. Then w−1
1 ∈ W, and

hence 1S + V = 1S + w−1
1 V = w−1

1 (w1 + V) = w−1
1 W = W. Furthemore, w + V =

= w + wV = w(1S + V) = wW = W for every w ∈ W. In particular, w + 2S + V = W,
and then w + 1S + V + 2S = W + 1S . But V + 2S = V + 1S + 1S ⊆ W + 1S and we
see that w + 1S + W + 1S = W + 1S . Now, it is clear that W + 1S is a subgroup of
S (+). If z is the neutral element of the subgroup, then 2z = z, and hence 2S = 1S , a
contradiction.
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