Acta Universitatis Carolinae. Mathematica et Physica

Václav Flaška; Tomáš Kepka; Juha Korteleinen
On separating sets of words. V.

Acta Universitatis Caroline. Mathematic et Physica, Vol. 52 (2011), No. 2, 51--59

Persistent URL: http://dml.cz/dmlcz/143649

Terms of use:

© Univerzita Karlova v Braze, 2011

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

On Separating Sets of Words V

VÁCLAV FLAŠKA, TOMÁŠ KEPKA, JUHA KORTELEINEN

Praha

Received December 29, 2010

A locally final result concerning transitive closures of special replacement relations in free monoids is proved.

1. Introduction

This article is an immediate continuation of [1], [2], [3], and [4]. References like I.3.3 (II.3.3, III.3.3, IV.3.3, resp.) lead to the corresponding section and result of [1] ([2], [3], [4], resp.) and all definitions and preliminaries are taken from the same source.

2. Technical results (a)

Troughout this note, let $Z \subseteq A^{+}$be a strongly separating set of words and let $\psi: Z \rightarrow A^{*}$ be a mapping.

Lemma 2.1 Let $r, s, t \in A^{*}$ be reduced words such that neither r nor $t s$ is reduced. Then:
(i) $r t=r_{1} z_{1} s_{1}$ and $t s=r_{2} z_{2} s_{2}$, where $z_{1}, z_{2} \in Z$ and $r_{1}, r_{2}, s_{1}, s_{2} \in A^{*}$ are reduced.
(ii) $r=r_{1} r_{3}, s=s_{3} s_{2}, z_{1}=r_{3} r_{2}, z_{2}=s_{1} s_{3}$ and $t=r_{2} t_{1} s_{1}, t_{1} \in A^{*}, t_{1}$ is reduced.
(iii) $r_{2}, s_{1}, r_{3}, s_{3} \in A^{+},\left|z_{1}\right| \geq 2,\left|z_{2}\right| \geq 2$ and $|t| \geq 2$.

[^0](iv) $r t s=r_{1} z_{1} t_{1} z_{2} s_{2}$ and $\operatorname{tr}(r t s)=2$.
(v) If $t=\psi\left(z_{0}\right)$ for some $z_{0} \in Z$, then the ordered triple $\left(z_{1}, z_{0}, z_{2}\right)$ is disturbing (see II.7).

Proof. See I.6.2 and II.7.
Corollary 2.2 Let $r, s, t \in A^{*}$ be reduced. Then either rt is reduced or ts is reduced, provided that at least one of the following three cases holds:
(1) $|t| \leq 1$;
(2) rts is meagre;
(3) $\operatorname{alph}(r t s) \subseteq A \cup\{\varepsilon\}$.

Lemma 2.3 Assume that, for every $z \in Z$, either $|\psi(z)| \leq 1$ or $\psi(z)$ is reduced. Furthermore, assume that the equivalent conditions of II.7.3 are satisfied (e. g., if $\psi(Z) \subseteq A \cup\{\varepsilon\}$ or $Z \subseteq A)$. If $z_{1} \in Z$ and $r, s \in A^{*}$ are reduced, then either $r \psi\left(z_{1}\right)$ or $\psi\left(z_{1}\right) s$ is reduced.

Proof. Combine 2.1(v) and II.7.3.

3. Technical results (b)

In this section, let $x, y \in A^{*}, z_{1}, \ldots, z_{m} \in Z, m \geq 1, z_{1}^{\prime}, \ldots, z_{n}^{\prime} \in Z, n \geq 1, z_{i}=p_{i} s_{i}$, $i=1,2, \ldots, m, z_{j}^{\prime}=r_{j} q_{j}, j=1,2, \ldots, n, r=r_{1} r_{2} \cdots r_{n}$ and $s=s_{m} \cdots s_{2} s_{1}$. We will assume that $s x=y r$.

Lemma 3.1 The following conditions are equivalent:
(i) $|r| \leq|x|$.
(ii) $|s| \leq|y|$.
(iii) $x=t r$ and $y=$ st for some $t \in A^{*}$.

Proof. Obvious.
In the following six lemmas, assume that $|x|<|r|$ (or, equivalently, $|y|<|s|$).
Lemma 3.2 $r=t x$ and $s=y t$ for some $t \in A^{+}$
Proof. Obvious.
Lemma 3.3 Assume that $\left|s_{m}\right| \leq|y|$. Then:
(i) $m \geq 2$.
(ii) There is uniquely determined k such that $1 \leq k<m$ and $\left|s_{m} \cdots s_{k+1}\right| \leq|y|<$ $<\left|s_{m} \cdots s_{k}\right|$.
(iii) There is uniquely determined l such that $1 \leq l \leq n$ and $\left|y r_{1} \cdots r_{l-1}\right|<$ $<\left|s_{m} \cdots s_{k}\right| \leq\left|y r_{1} \cdots r_{l}\right|$ (here, $y r_{1} \cdots r_{l-1}=y$ for $l=1$).
(iv) $p s_{k-1} \cdots s_{1} x=q r_{l} \cdots r_{n}$, where $p=s_{m} \cdots s_{k}$ and $q=y r_{1} \cdots r_{l-1}(p=s$ and $p x=q r_{l} \cdots r_{n}$ for $k=1 ; q=y$ for $\left.l=1\right)$.
(v) $|q|<|p|$ and $p=q u, u \in A^{+}$.
(vi) $u s_{k-1} \cdots s_{1} x=r_{l} \cdots r_{n}\left(u x=r_{l} \cdots r_{n}\right.$ for $\left.k=1\right)$.

Proof. We have $|s|=\left|s_{m}\right|+\cdots+\left|s_{1}\right|+|x|=|y|+\left|r_{1}\right|+\cdots+\left|r_{n}\right|,\left|s_{m}\right| \leq|y|$ and $|x|<\left|r_{1}\right|+\cdots+\left|r_{n}\right|$. Consequently, $\left|s_{m}\right|+|x|<|y|+\left|r_{1}\right|+\cdots+\left|r_{n}\right|$ and $m \geq 2$. The existence of the uniquely determined number k follows from the inequalities $\left|s_{m}\right| \leq|y|$ and $|y|<|s|$. If $\left|s_{m} \cdots s_{k}\right| \leq\left|y r_{1}\right|$, we put $l=1$. If $\left|y r_{1}\right|<\left|s_{m} \cdots s_{k}\right|$, then the existence of the uniquely determined number l follows easily. The rest follows from the equality $s_{m} \cdots s_{2} s_{1} x=y r_{1} r_{2} \cdots r_{n}$.

Lemma 3.4 Assume that $\left|s_{m}\right| \leq|y|$ (see 3.3). Then:
(i) $z_{k}=z_{l}^{\prime}=s_{k}=r_{l}$ and $p_{k}=q_{l}=\varepsilon$.
(ii) If $k \geq 2$ and $l<n$, then $m \geq 3, n \geq 2, s_{k-1} \cdots s_{1} x=r_{l+1} \cdots r_{n}$ and $s_{m} \cdots s_{k+1}=y r_{1} \cdots r_{l-1}(=y$ for $l=1)$.
(iii) If $k \geq 2$ and $l=n$, then $m \geq 3, s=y r, s_{k-1}=\cdots=s_{1}=x=\varepsilon$ and $s_{m} \cdots s_{k+1}=y r_{1} \cdots r_{n-1}(=y$ for $n=1)$.
(iv) If $k=1$ and $l<n$, then $n \geq 2, x=r_{l+1} \cdots r_{n}, s=y r_{1} \cdots r_{l}$ and $s_{m} \cdots s_{2}=$ $=y r_{1} \cdots r_{l-1}(=y$ for $l=1)$.
(v) If $k=1$ and $l=n$, then $s=y r, x=\varepsilon$ and $s_{m} \cdots s_{2}=y r_{1} \cdots r_{n-1}(=y$ for $n=1$).

Proof. If $\left|r_{l}\right|<|u|$ then $\left|y r_{1} \cdots r_{l}\right|=|q|+\left|r_{l}\right|<|q|+|u|=|p|=\left|s_{m} \cdots s_{k}\right|$, a contradiction. Thus $|u| \leq\left|r_{l}\right|, r_{l}=u u_{1}, s_{k-1} \cdots s_{1} x=u_{1} r_{l+1} \cdots r_{n}, z_{l}^{\prime}=r_{l} q_{l}=u u_{1} q_{l}$ and $s_{m} \cdots s_{k}=p=q u=y r_{1} \cdots r_{l-1} u$.

If $\left|s_{k}\right|<|u|$ then $|y|+|u| \leq|q|+|u|=|p|=\left|s_{m} \cdots s_{k+1}\right|+\left|s_{k}\right|<\left|s_{m} \cdots s_{k+1}\right|+|u|$ and $|y|<\left|s_{m} \cdots s_{k+1}\right|$, a contradiction. Thus $|u| \leq\left|s_{k}\right|, s_{k}=u_{2} u, s_{m} \cdots s_{k+1} u_{2}=y r_{1} \cdots r_{l-1}$ and $z_{k}=p_{k} s_{k}=p_{k} u_{2} u$.

We have proved that $z_{k}=p_{k} s_{k}=p_{k} u_{2} u$ and $z_{l}^{\prime}=u u_{1} q_{l}$. Since $u \neq \varepsilon$, it follows that $z_{k}=u=z_{l}^{\prime}$, and $p_{k}=q_{l}=u_{1}=u_{2}=\varepsilon$. Then $s_{k}=z_{k}=z_{l}^{\prime}=r_{l}=u$. By 3.3 (vi), $u s_{k-1} \cdots s_{1} x=r_{l} \cdots r_{n}$. Consequently, $s_{k-1} \cdots s_{1} x=r_{l+1} \cdots r_{n}$ for $k \geq 2$ and $l<n$; $s_{k-1}=\cdots=s_{1}=x=\varepsilon$ for $k \geq 2, l=n ; x=r_{l+1} \cdots r_{n}$ for $k=1, l<n ; x=\varepsilon$ for $k=1, l=n$.

If $k \geq 2$ and $l<n$, then $p s_{k-1} \cdots s_{1} x=s_{m} \cdots s_{1} x=y r_{1} \cdots r_{l}$ implies $p=y r_{1} \cdots r_{l}$. But $p=s_{m} \cdots s_{k}$ and $s_{k}=r_{l}$. Thus $s_{m} \cdots s_{k+1}=y r_{1} \cdots r_{l-1}$ in this case. The rest is similar.

Lemma 3.5 Assume that $|y|<\left|s_{m}\right|$. Then:
(i) There is uniquely determined l such that $1 \leq l \leq n$ and $\left|y r_{1} \cdots r_{l-1}\right|<\left|s_{m}\right| \leq$ $\leq\left|y r_{1} \cdots r_{l}\right|$ (here, $y r_{1} \cdots r_{l-1}=y$ for $l=1$).
(ii) $p s_{m-1} \cdots s_{1} x=q r_{l} \cdots r_{n}$, where $p=s_{m}$ and $q=y r_{1} \cdots r_{l-1}(p=s$ and $p x=q r_{l} \cdots r_{n}$ for $m=1 ; q=y$ for $\left.l=1\right)$.
(iii) $|q|<|p|$ and $p=q u, u \in A^{+}$.
(iv) $u s_{m-1} \cdots s_{1} x=r_{l} \cdots r_{n}\left(u x=r_{l} \cdots r_{n}\right.$ for $\left.m=1\right)$.

Proof. Similar to that of 3.3.
Lemma 3.6 Assume that $|y|<\left|s_{m}\right|$ (see 3.5). Then:
(i) $z_{m}=z_{l}^{\prime}=s_{m}=r_{l}$ and $p_{m}=q_{l}=\varepsilon$.
(ii) If $m \geq 2$ and $l<n$, then $n \geq 2, s_{m-1} \cdots s_{1} x=r_{l+1} \cdots r_{n}$ and $y=r_{1}=\cdots=$ $=r_{l-1}=\varepsilon(y=\varepsilon$ for $l=1)$.
(iii) If $m \geq 2$ and $l=n$, then $s_{m-1}=\cdots=s_{1}=x=y=r_{1}=\cdots=r_{n-1}=\varepsilon$ ($s_{m-1}=\cdots=s_{1}=x=y=\varepsilon$ for $n=1$).
(iv) If $m=1$ and $l<n$, then $n \geq 2, x=r_{l+1} \cdots r_{n}$ and $y=r_{1}=\cdots=r_{l-1}=\varepsilon$ $(y=\varepsilon$ for $l=1)$.
(v) If $m=1$ and $l=n$, then $s=y r$ and $x=y=r_{1}=\cdots=r_{n-1}=\varepsilon(x=y=\varepsilon$ for $n=1$).

Proof. Similar to that of 3.4.
Lemma 3.7 There are uniquely determined k and l such that:
(i) $1 \leq k \leq m$ and $1 \leq l \leq n$.
(ii) $z_{k}=z_{l}^{\prime}=s_{k}=r_{l}$ and $p_{k}=q_{l}=\varepsilon$.
(iii) $\left|s_{m} \cdots s_{k+1}\right| \leq|y|<\left|s_{m} \cdots s_{k}\right|\left(s_{m} \cdots s_{k+1}=\varepsilon\right.$ for $\left.k=m\right)$.
(iv) $\left|y r_{1} \cdots r_{l-1}\right|<\left|s_{m} \cdots s_{k}\right| \leq\left|y r_{1} \cdots r_{l}\right|\left(y r_{1} \cdots r_{l-1}=y\right.$ for $\left.l=1\right)$.
(v) If $1<k<m$ and $1<l<n$, then $m \geq 3, n \geq 3, s_{k-1} \cdots s_{1} x=r_{l+1} \cdots r_{n}$ and $s_{m} \cdots s_{k+1}=y r_{1} \cdots r_{l-1}$.
(vi) If $1<k<m$ and $1<l=n$, then $m \geq 3, n \geq 2, s_{k-1}=\cdots=s_{1}=x=\varepsilon$ and $s_{m} \cdots s_{k+1}=y r_{1} \cdots r_{n-1}$.
(vii) If $1<k<m$ and $1=l<n$, then $m \geq 3, n \geq 2, s_{k-1} \cdots s_{1} x=r_{2} \cdots r_{n}$ and $s_{m} \cdots s_{k+1}=y$.
(viii) If $1<k<m$ and $1=n(=l)$, then $m \geq 3, s_{k-1}=\cdots=s_{1}=x=\varepsilon$ and $s_{m} \cdots s_{k+1}=y$.
(ix) If $1<k=m$ and $1<l<n$, then $m \geq 2, n \geq 3, s_{m-1} \cdots s_{1} x=r_{l+1} \cdots r_{n}$ and $y=r_{1}=\cdots=r_{l-1}=\varepsilon$.
(x) If $1<k=m$ and $1<l=n$, then $m \geq 2, n \geq 2, s_{m-1}=\cdots=s_{1}=x=y=$ $=r_{1}=\cdots=r_{n-1}=\varepsilon$.
(xi) If $1<k=m$ and $1=l<n$, then $m \geq 2$, $n \geq 2$, $s_{m-1} \cdots s_{1} x=r_{2} \cdots r_{n}$ and $y=\varepsilon$.
(xii) If $1<k=m$ and $1=n(=l)$, then $m \geq 2, s_{m-1}=\cdots=s_{1}=x=y=\varepsilon$.
(xiii) If $1=k<m$ and $1<l<n$, then $m \geq 2, n \geq 3, x=r_{l+1} \cdots r_{n}$ and $s_{m} \cdots s_{2}=y r_{1} \cdots r_{l-1}$.
(xiv) If $1=k<m$ and $1<l=n$, then $m \geq 2, n \geq 2, x=\varepsilon$ and $s_{m} \cdots s_{2}=$ $=y r_{1} \cdots r_{n-1}$.
(xv) If $1=k<m$ and $1=l<n$, then $m \geq 2, n \geq 2, x=r_{2} \cdots r_{n}$ and $s_{m} \cdots s_{2}=y$.
(xvi) If $1=k<m$ and $1=n(=l)$, then $m \geq 2, x=\varepsilon$ and $s_{m} \cdots s_{2}=y$.
(xvii) If $1=m(=k)$ and $1<l<n$, then $n \geq 3, x=r_{l+1} \cdots r_{n}$ and $y=r_{1}=\cdots=$ $=r_{l-1}=\varepsilon$.
(xviii) If $1=m(=k)$ and $1<l=n$, then $n \geq 2, x=y=r_{1}=\cdots=r_{n-1}=\varepsilon$.
(xix) If $1=m(=k)$ and $1=l<n$, then $n \geq 2, x=r_{2} \cdots r_{n}$ and $y=\varepsilon$.
(xx) If $1=m(=k)$ and $1=n(=l)$, then $x=y=\varepsilon$.
Proof. Combine 3.4 and 3.6.

Proposition $3.8 x=\operatorname{tr}$ and $y=$ st for some $t \in A^{*}$ (see 3.1), provided that at least one of the following six conditions holds:
(1) $m=1$ and $\left|z_{1}\right| \leq|y|$;
(2) $n=1$ and $\left|z_{1}^{\prime}\right| \leq|x|$;
(3) All the words s_{1}, \ldots, s_{m} are reduced;
(4) All the words r_{1}, \ldots, r_{n} are reduced;
(5) $z_{i} \neq z_{j}^{\prime}$ for all $1 \leq i \leq m$ and $1 \leq j \leq n$;
(6) $s_{i} \neq r_{j}$ for all $1 \leq i \leq m$ and $1 \leq j \leq n$;

Proof. The result follows easily from 3.7.

4. Technical results (c)

In this section, let $r, s, t \in A^{*}$ be reduced words such that $(r s, t) \in \tau$. We have $r s=r_{0} z_{0} s_{0}, z_{0} \in Z, r_{0}, s_{0}$ reduced. By I.6.2, $r=r_{0} p_{0}, s=q_{0} s_{0}$ and $z_{0}=p_{0} q_{0}$, where $p_{0}, q_{0} \in A^{+}$are reduced (then $\left|z_{0}\right| \geq 2$).

Since $(r s, t) \in \tau$, there is a ρ-sequence $w_{0}, w_{1}, \ldots, w_{m}, m \geq 1$, such that $w_{0}=r s$ and $w_{m}=t$. Clearly, $\operatorname{tr}\left(w_{0}\right)=1, \operatorname{tr}\left(w_{1}\right) \geq 1, \ldots, \operatorname{tr}\left(w_{m-1}\right) \geq 1$ and $\operatorname{tr}\left(w_{m}\right)=0$. Now, we will assume that $\operatorname{tr}\left(w_{i}\right)=1$ for $i=2, \ldots, m-1$ (cf. II. 6 and III.4). Consequently, $w_{i}=r_{i} z_{i} s_{i}, z_{i} \in Z, r_{i}, s_{i}$ reduced, $i=0,1, \ldots, m-1$.

Lemma 4.1

(i) $r s=r \varepsilon s=w_{0}=r_{0} z_{0} s_{0}$.
(ii) $r_{i} \psi\left(z_{i}\right) s_{i}=w_{i+1}=r_{i+1} z_{i+1} s_{i+1}$ for every $i, 0 \leq i \leq m-2$.
(iii) $t=w_{m}=r_{m-1} \psi\left(z_{m-1}\right) s_{m-1}$.

Proof. Obvious.
Lemma 4.2 Let $0 \leq i \leq m-2$. Then just one of the following three cases takes place:
(1) $r_{i} \psi\left(z_{i}\right)$ is reduced, $\psi\left(z_{i}\right) s_{i}$ is not reduced, $r_{i+1}=r_{i} p_{i+1}^{\prime}, \psi\left(z_{i}\right)=p_{i+1}^{\prime} p_{i+1}$, $s_{i}=q_{i+1} s_{i+1}, z_{i+1}=p_{i+1} q_{i+1}, r_{i} \psi\left(z_{i}\right)=r_{i} p_{i+1}^{\prime} p_{i+1}=r_{i+1} p_{i+1}$ and $\psi\left(z_{i}\right) s_{i}=$ $=p_{i+1}^{\prime} z_{i+1} s_{i+1}, p_{i+1}^{\prime} \in A^{*}$ and $p_{i+1}, q_{i+1} \in A^{+}\left(p_{i+1}^{\prime}, p_{i+1}, q_{i+1}\right.$ reduced $)$;
(2) $r_{i} \psi\left(z_{i}\right)$ is not reduced, $\psi\left(z_{i}\right) s_{i}$ is reduced, $r_{i}=r_{i+1} p_{i+1}, \psi\left(z_{i}\right)=q_{i+1} q_{i+1}^{\prime}$, $s_{i+1}=q_{i+1}^{\prime} s_{i}, z_{i+1}=p_{i+1} q_{i+1}, r_{i} \psi\left(z_{i}\right)=r_{i+1} z_{i+1} q_{i+1}^{\prime}$ and $\psi\left(z_{i}\right) s_{i}=q_{i+1} q_{i+1}^{\prime} s_{i}=$ $=q_{i+1} s_{i+1}, q_{i+1}^{\prime} \in A^{*}$ and $p_{i+1}, q_{i+1} \in A^{+}\left(q_{i+1}^{\prime}, p_{i+1}, q_{i+1}\right.$ reduced $)$;
(3) Both $r_{i} \psi\left(z_{i}\right)$ and $\psi\left(z_{i}\right) s_{i}$ are reduced, $r_{i}=r_{i+1} p_{i+1}, s_{i}=q_{i+1} s_{i+1}$ and $z_{i+1}=$ $=p_{i+1} \psi\left(z_{i}\right) q_{i+1}$.

Proof. The word $r_{i} \psi\left(z_{i}\right) s_{i}=r_{i+1} z_{i+1} s_{i+1}$ is meagre, and hence it follows from 2.2 that at least one of the words $r_{i} \psi\left(z_{i}\right)$ and $\psi\left(z_{i}\right) s_{i}$ is reduced. The rest is easy.

Lemma 4.3 Let $0 \leq i \leq m-2$.
(i) If 4.2(1) holds and $\left|\psi\left(z_{i}\right)\right| \leq 1$, then $\psi\left(z_{i}\right)=p_{i+1} \in A$ and $p_{i+1}^{\prime}=\varepsilon$.
(ii) If 4.2(2) holds and $\left|\psi\left(z_{i}\right)\right| \leq 1$, then $\psi\left(z_{i}\right)=q_{i+1} \in A$ and $q_{i+1}^{\prime}=\varepsilon$.

Proof. Obvious.
In the remaining part of this section, we will assume that $p_{i+1}^{\prime}=\varepsilon\left(q_{i+1}^{\prime}=\varepsilon\right.$, resp. $)$ whenever $0 \leq i \leq m-2$ and 4.2(1) (4.2(2), resp.) is true.

If $4.2(1)$ is satisfied, then $\psi\left(z_{i}\right)=p_{i+1}, r_{i}=r_{i+1}, s_{i}=q_{i+1} s_{i+1}, z_{i+1}=\psi\left(z_{i}\right) q_{i+1}$ and we put $g_{i+1}=\varepsilon$ and $h_{i+1}=q_{i+1}$. Then $z_{i+1}=g_{i+1} \psi\left(z_{i}\right) h_{i+1}, r_{i}=r_{i+1} g_{i+1}$ and $s_{i}=h_{i+1} s_{i+1}$.

If 4.2(2) is satisfied, then $\psi\left(z_{i}\right)=q_{i+1}, r_{i}=r_{i+1} p_{i+1}, s_{i}=s_{i+1}, z_{i+1}=p_{i+1} \psi\left(z_{i}\right)$ and we put $g_{i+1}=p_{i+1}$ and $h_{i+1}=\varepsilon$. Again, $z_{i+1}=g_{i+1} \psi\left(z_{i}\right) h_{i+1}, r_{i}=r_{i+1} g_{i+1}$ and $s_{i}=h_{i+1} s_{i+1}$.

If 4.2(3) is satisfied, then $r_{i}=r_{i+1} p_{i+1}, s_{i}=q_{i+1} s_{i+1}$ and $z_{i+1}=p_{i+1} \psi\left(z_{i}\right) q_{i+1}$ and we put $g_{i+1}=p_{i+1}$ and $h_{i+1}=q_{i+1}$. As usual, $z_{i+1}=g_{i+1} \psi\left(z_{i}\right) h_{i+1}, r_{i}=r_{i+1} g_{i+1}$ and $s_{i}=h_{i+1} s_{i+1}$.

Furthermore, we put $g_{0}=p_{0}$ and $h_{0}=q_{0}$, so that $z_{0}=g_{0} h_{0}=g_{0} \varepsilon h_{0}$. Finally, we put $g_{m}=r_{m-1}$ and $h_{m}=s_{m-1}$, so that $t=g_{m} \psi\left(z_{m-1}\right) h_{m}$.

Notice that all the words g_{0}, \ldots, g_{m} and h_{0}, \ldots, h_{m} are reduced.
The following three lemmas are easy.

Lemma 4.4

(i) $z_{0}=g_{0} h_{0}=g_{0} \varepsilon h_{0}, r=r_{0} g_{0}$ and $s=h_{0} s_{0}$.
(ii) If $1 \leq i \leq m-1$, then $z_{i}=g_{i} \psi\left(z_{i-1}\right) h_{i}, r_{i-1}=r_{i} g_{i}$ and $s_{i-1}=h_{i} s_{i}$.
(iii) $t=g_{m} \psi\left(z_{m-1}\right) h_{m}$.
(iv) All the words g_{0}, \ldots, g_{m} and h_{0}, \ldots, h_{m} are reduced.
(v) $r=g_{m} \cdots g_{1} g_{0}$ and $s=h_{0} h_{1} \cdots h_{m}$.

Lemma 4.5 Put $r^{\prime}=g_{m-1} \cdots g_{1} g_{0}, s^{\prime}=h_{0} h_{1} \cdots h_{m-1}, r^{\prime \prime}=g_{m-1} \cdots g_{1}, s^{\prime \prime}=$ $=h_{1} \cdots h_{m-1}\left(r^{\prime \prime}=\varepsilon=s^{\prime \prime}\right.$ if $\left.m=1\right)$. Then:
(i) $r=g_{m} r^{\prime}$ and $s=s^{\prime} h_{m}$.
(ii) $r s=g_{m} r^{\prime} s^{\prime} h_{m}$.
(iii) $r^{\prime} s^{\prime}=r^{\prime \prime} z_{0} s^{\prime \prime}$.
(iv) $\left(r^{\prime} s^{\prime}, \psi\left(z_{m-1}\right)\right) \in \tau$.
(v) $\left(r s^{\prime}, g_{m} \psi\left(z_{m-1}\right)\right) \in \tau$.
(vi) $\left(r^{\prime} s, \psi\left(z_{m-1} h_{m}\right)\right) \in \tau$.

Lemma 4.6

(i) If $t=r$, then $r=g_{m} \psi\left(z_{m-1}\right) h_{m}$ and $\left(g_{m} \psi\left(z_{m-1}\right) h_{m} h_{0} h_{1} \cdots h_{m-1}, g_{m} \psi\left(z_{m-1}\right)\right)=$ $=\left(r s^{\prime}, g_{m} \psi\left(z_{m-1}\right)\right) \in \tau$.
(ii) If $t=s$, then $s=g_{m} \psi\left(z_{m-1}\right) h_{m}$ and $\left(g_{m-1} \cdots g_{1} g_{0} g_{m} \psi\left(z_{m-1}\right) h_{m}, \psi\left(z_{m-1}\right) h_{m}\right)=$ $=\left(r^{\prime} s, \psi\left(z_{m-1}\right) h_{m}\right) \in \tau$.

5. Technical results (d)

In this section, we will assume that $\psi(Z) \subseteq A \cup\{\varepsilon\}$.
Let $r, s, t, p, q \in A^{*}$ be reduced words such that $(r t, p) \in \tau$ and $(t s, q) \in \tau$. Then, of course, neither $r t$ nor $t s$ is reduced and $r, s, t \in A^{+}$.

Lemma 5.1 There are $m \geq 1, z_{0}, \ldots, z_{m-1} \in Z$ and reduced words g_{0}, \ldots, g_{m}, $h_{0}, \ldots, h_{m} \in A^{*}$ such that:
(i) $z_{0}=g_{0} h_{0}$.
(ii) If $1 \leq i \leq m-1$, then $z_{i}=g_{i} \psi\left(z_{i-1}\right) h_{i}$.
(iii) $p=g_{m} \psi\left(z_{m-1}\right) h_{m}$.
(iv) $r=g_{m} \cdots g_{1} g_{0}$.
(v) $t=h_{0} h_{1} \cdots h_{m}$.
(vi) $\left(r h_{0} h_{1} \cdots h_{m-1}, g_{m} \psi\left(z_{m-1}\right)\right) \in \tau$.

Proof. Use 4.4 and 4.5(v).
Lemma 5.2 There are $m^{\prime} \geq 1, z_{0}^{\prime}, \ldots, z_{m^{\prime}-1}^{\prime} \in Z$ and reduced words $g_{0}^{\prime}, \ldots, g_{m^{\prime}}^{\prime}$, $h_{0}^{\prime}, \ldots, h_{m^{\prime}}^{\prime} \in A^{*}$ such that:
(i) $z_{0}^{\prime}=g_{0}^{\prime} h_{0}^{\prime}$.
(ii) If $1 \leq i \leq m^{\prime}-1$, then $z_{i}^{\prime}=g_{i}^{\prime} \psi\left(z_{i-1}^{\prime}\right) h_{i}^{\prime}$.
(iii) $q=g_{m^{\prime}}^{\prime} \psi\left(z_{m^{\prime}-1}^{\prime}\right) h_{m^{\prime}}^{\prime}$.
(iv) $s=h_{0}^{\prime} h_{1}^{\prime} \cdots h_{m^{\prime}}^{\prime}$.
(v) $t=g_{m^{\prime}}^{\prime} \cdots g_{1}^{\prime} g_{0}^{\prime}$.
(vi) $\left(g_{m^{\prime}-1}^{\prime} \cdots g_{1}^{\prime} g_{0}^{\prime} s, \psi\left(z_{m^{\prime}-1}^{\prime}\right) h_{m^{\prime}}^{\prime}\right) \in \tau$.

Proof. Use 4.4 and $4.5(\mathrm{vi})$.

Lemma 5.3

(i) $h_{0} h_{1} \cdots h_{m}=t=g_{m^{\prime}}^{\prime} \cdots g_{1}^{\prime} g_{0}^{\prime}$.
(ii) There is $f \in A^{*}$ such that $g_{m^{\prime}}^{\prime}=h_{0} h_{1} \cdots h_{m-1} f$ and $h_{m}=f g_{m^{\prime}-1}^{\prime} \cdots g_{1}^{\prime} g_{0}^{\prime}$.

Proof.

(i) See 5.1(v) and 5.2(v).
(ii) Combine (i), 3.1 and 3.8.

Lemma 5.4 Put $t_{1}=h_{0} h_{1} \cdots h_{m-1}, t_{2}=f$ and $t_{3}=g_{m^{\prime}-1}^{\prime} \cdots g_{1}^{\prime} g_{0}^{\prime}$. Then:
(i) $t=t_{1} t_{2} t_{3}$.
(ii) $\left(r t_{1}, g_{m} \psi\left(z_{m-1}\right)\right) \in \tau$.
(iii) $\left(t_{3} s, \psi\left(z_{m^{\prime}-1}^{\prime}\right) h_{m^{\prime}}^{\prime}\right) \in \tau$.
(iv) $p=g_{m} \psi\left(z_{m-1}\right) t_{2} t_{3}$.
(v) $q=t_{1} t_{2} \psi\left(z_{m^{\prime}-1}^{\prime}\right) h_{m^{\prime}}^{\prime}$.

Proof. Combine 5.1(iii), 5.2(iii) and 5.3.

6. Technical results (e)

Assume that $\psi(Z) \subseteq A$ and ψ is strictly length decreasing (equivalently, $Z \cap A=\emptyset$). By III.6.5, for every $w \in A^{*}$ there exists a uniquely determined reduced word r such that $(w, r) \in \xi$.

Proposition 6.1 Let $r, s \in A^{*}$ be reduced and let $p, q \in A^{*}$ be such that $p q \neq \varepsilon$. Then either $(r p q, r) \notin \xi$ or $(q p s, s) \notin \xi$.

Proof. Since $p q \neq \varepsilon$, we have $r p q \neq r$ and $q p s \neq s$. Now, proceeding by contradiction, assume that $(r p q, r) \in \tau,(q p s, s) \in \tau$ and $|r s|$ is minimal. Of course (III.6.4, III.6.5), we can assume that both p and q are reduced. The rest of the proof is divided into five parts:
(i) Let $q=\varepsilon$. Then $p \neq \varepsilon,(r p, r) \in \tau$ and $(p s, s) \in \tau$. According to 5.4, $p=p_{1} p_{2} p_{3},(r, u) \in \tau,\left(p_{3} s, v\right) \in \tau, r=u p_{2} p_{3}, s=p_{1} p_{2} v, u, v$ reduced. We get $\left(u p_{2} p_{3} p_{1}, u\right) \in \tau,\left(p_{3} p_{1} p_{2} v, v\right) \in \tau$ and, if $\left(p_{3} p_{1}, p_{4}\right) \in \xi$, where p_{4} is reduced, then $\left(u p_{2} p_{4}, u\right) \in \xi,\left(p_{4} p_{2} v, v\right) \in \xi$. If $p_{2}=\varepsilon=p_{4}$, then $p_{3} p_{1} \neq \varepsilon$ (since $\left.p \neq \varepsilon\right)$ and $p_{4} \neq \varepsilon$ (since $\varepsilon \notin \psi(Z)$), a contradiction. Thus $p_{2} p_{4} \neq \varepsilon$ and $\left(u p_{2} p_{4}, u\right) \in \tau,\left(p_{4} p_{2} v, v\right) \in \tau$. But $|u|+|v|<|r|+|s|$, a contradiction with the minimality of $|r s|$.
(ii) Let $q=\varepsilon$. This case is analogous to (i).
(iii) Let $p \neq \varepsilon \neq q$ and $r=r^{\prime} q$, where $\left(r p, r^{\prime}\right) \in \xi$ and r^{\prime} is reduced. Furthermore, let $(q p, t) \in \xi$, where t is reduced. Then $\left(r^{\prime} q p, r^{\prime}\right)=\left(r p, r^{\prime}\right) \in \xi,\left(r^{\prime} q p, r^{\prime} t\right) \in \xi$ (since $(q p, t) \in \xi)$, and hence $\left(r^{\prime} t, r^{\prime}\right) \in \xi$. Similarly, $(q p s, t s) \in \xi$ (since $(q p, t) \in \xi$), and hence $(t s, s) \in \xi$ (since $(q p s, s) \in \tau)$. Since $q p \neq \varepsilon$, we have $t \neq \varepsilon$ and $\left(r^{\prime} t, r^{\prime}\right) \in \tau$, $(t s, s) \in \tau$. But this is a contradiction since $\left|r^{\prime}\right|+|s|<|r|+|s|$.
(iv) Let $p \neq \varepsilon \neq q$ and $s=q s^{\prime}$, where $\left(p s, s^{\prime}\right) \in \xi$ and s^{\prime} is reduced. This case is analogous to (iii).
(v) Let $p \neq \varepsilon \neq q$ and $r^{\prime} q \neq r, q s^{\prime} \neq s$, where r^{\prime}, s^{\prime} are reduced and such that $\left(r p, r^{\prime}\right) \in \xi$ and $\left(p s, s^{\prime}\right) \in \xi$. We have $\left(r^{\prime} q, r\right) \in \tau$ and $\left(q s^{\prime}, s\right) \in \tau$. According to 5.4, $q=q_{1} q_{2} q_{3},\left(r^{\prime} q_{1}, u\right) \in \tau,\left(q_{3} s^{\prime}, v\right) \in \tau, r=u q_{2} q_{3}$ and $s=q_{1} q_{2} v, u, v$ reduced. Now, $\left(r p, r^{\prime}\right) \in \xi$ implies $\left(u q_{2} q_{3} p q_{1}, r^{\prime} q_{1}\right)=\left(r p q_{1}, r^{\prime} q_{1}\right) \in \xi$, and hence $\left(u q_{2} q_{3} p q_{1}, u\right) \in \tau$. Quite similarly, $\left(q_{3} p q_{1} q_{2} v, v\right) \in \tau$. Finally, if $\left(q_{3} p q_{1}, t\right) \in \xi$, where t is reduced, then $\left(u q_{2} t, u\right) \in \xi$ and $\left(t q_{2} v, v\right) \in \xi$. Of course, $t \neq \varepsilon,\left(u q_{2} t, u\right) \in \tau,\left(t q_{2} v, v\right) \in \tau$ and $|u|+|v|<|r|+|s|($ since $q \neq \varepsilon)$, a contradiction.

7. Main result

Assume that $\psi(Z) \subseteq A$ and ψ is strictly length decreasing.
Theorem 7.1 Let $z_{1}, z_{2} \in Z$ be such that $z_{1} \neq z_{2}$ and $\psi\left(z_{1}\right)=a=\psi\left(z_{2}\right)(a \in A)$. Furthermore, let $r, s \in A^{*}$ and $w \in A^{*}$. Then either $\left(w, r z_{1} s\right) \notin \xi$ or $\left(w, r z_{2} s\right) \notin \xi$ (of course, $\left(r z_{1} s, r a s\right) \in \rho$ and $\left.\left(r z_{2} s, r a s\right) \in \rho\right)$.

Proof. We can assume without loss of generality that both r and s are reduced. If $\left(w, r z_{1} s\right) \in \xi$ and $\left(w, r z_{2} s\right) \in \xi$, then $P\left(r z_{1} s, r z_{2} s\right) \neq \emptyset$ (see IV.5) and we can assume that $w \in Q\left(r z_{1} s, r z_{2} s\right)$ (use IV.5.3). According to IV.6.1, either $w=r z_{1} x z_{2} s$, $\left(r z_{1} x, r\right) \in \tau,\left(x z_{2} s, s\right) \in \tau, x$ reduced or $w=r z_{2} x z_{1} s,\left(r z_{2} x, r\right) \in \tau,\left(x z_{1} s, s\right) \in \tau, x$ reduced. In both cases, $(r a x, r) \in \xi$ and $(x a s, s) \in \xi$, a contradiction with 6.1.

8. Examples

Example 8.1 Let $z_{1}=a^{2} b^{2}, z_{2}=a^{2} b a b^{2}, r_{1}=\varepsilon, r_{2}=b^{2}, s_{1}=a, s_{2}=\varepsilon$, $r=a, s=b a b^{2}$ and $t=b^{2} a$. Then all the words $r_{1}, r_{2}, s_{1}, s_{2}, r, s, t$ are reduced and $r a t=a^{2} b^{2} a=r_{1} z_{1} s_{1}$ and tas $=b^{2} a^{2} b a b^{2}=r_{2} z_{2} s_{2}$. Furthermore, $\left(r a t, \psi\left(z_{1}\right) a\right) \in \rho$ and $\left(\operatorname{tas}, b^{2} \psi\left(z_{2}\right)\right) \in \rho$.

If $\psi\left(z_{1}\right)=\varepsilon$, then $(r a t, a) \in \rho$. If $\psi\left(z_{1}\right)=b^{2}$, then $(r a t, t) \in \rho$. If $\psi\left(z_{2}\right)=a$, then $($ tas,$t) \in \rho$.

Notice also that $s a t=b a b^{2} a b^{2} a$ and tar $=b^{2} a^{3}$ are reduced.

References

[1] Flaška, V., Kepka, T., Kortelainen, J.: On separating sets of words I., Acta Univ. Carolinae Math. Phys., 49/1(2008), 33-51.
[2] Flaška, V., Kepka, T., Kortelainen, J.: On separating sets of words II., Acta Univ. Carolinae Math. Phys., 50/1(2009), 15-28.
[3] Flaška, V., Kepka, T., Kortelainen, J.: On separating sets of words III., Acta. Univ. Carolinae Math. Phys. 51/1 (2010), 57-64.
[4] Flaška, V., Kepka, T., Kortelainen, J.: On separating sets of words IV., Acta. Univ. Carolinae Math. Phys. 51/1 (2010), 65-72.

[^0]: Department of Algebra, MFF UK, Sokolovská 83,18675 Praha 8 (V. Flaška, T. Kepka)
 Department of Information Processing Science, University of Oulu, P. O. BOX 3000 FIN-90014, Oulu (J. Korteleinen)

 The work is a part of the research project MSM0021620839 financed by MŠMT and the second author was supported by the Grant Agency of Czech Republic, No. 201/09/0296.

 E-mail address: flaska@matfyz.cz, kepka@karlin.mff.cuni.cz, juha.kortelainen@oulu.fi

