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A locally final result concerning transitive closures of special replacement relations in free
monoids is proved.

1. I n t r o d u c t i o n

This article is an immediate continuation of [1], [2], [3], and [4]. References like
I.3.3 (II.3.3, III.3.3, IV.3.3, resp.) lead to the corresponding section and result of [1]
([2], [3], [4], resp.) and all definitions and preliminaries are taken from the same
source.

2. T e c h n i c a l r e s u l t s ( a )

Troughout this note, let Z ⊆ A+ be a strongly separating set of words and let
ψ : Z → A∗ be a mapping.

Lemma 2.1 Let r, s, t ∈ A∗ be reduced words such that neither rt nor ts is reduced.
Then:

(i) rt = r1z1s1 and ts = r2z2s2, where z1, z2 ∈ Z and r1, r2, s1, s2 ∈ A∗ are
reduced.

(ii) r = r1r3, s = s3s2, z1 = r3r2, z2 = s1s3 and t = r2t1s1, t1 ∈ A∗, t1 is reduced.
(iii) r2, s1, r3, s3 ∈ A+, |z1| ≥ 2, |z2| ≥ 2 and |t| ≥ 2.
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(iv) rts = r1z1t1z2s2 and tr(rts) = 2.
(v) If t = ψ(z0) for some z0 ∈ Z, then the ordered triple (z1, z0, z2) is disturbing

(see II.7).

Proof. See I.6.2 and II.7. �

Corollary 2.2 Let r, s, t ∈ A∗ be reduced. Then either rt is reduced or ts is reduced,
provided that at least one of the following three cases holds:

(1) |t| ≤ 1;
(2) rts is meagre;
(3) alph(rts) ⊆ A ∪ {ε}.

Lemma 2.3 Assume that, for every z ∈ Z, either |ψ(z)| ≤ 1 or ψ(z) is reduced.
Furthermore, assume that the equivalent conditions of II.7.3 are satisfied (e. g., if
ψ(Z) ⊆ A ∪ {ε} or Z ⊆ A). If z1 ∈ Z and r, s ∈ A∗ are reduced, then either rψ(z1) or
ψ(z1)s is reduced.

Proof. Combine 2.1(v) and II.7.3. �

3. T e c h n i c a l r e s u l t s ( b )

In this section, let x, y ∈ A∗, z1, . . . , zm ∈ Z, m ≥ 1, z′1, . . . , z
′
n ∈ Z, n ≥ 1, zi = pisi,

i = 1, 2, . . . ,m, z′j = r jq j, j = 1, 2, . . . , n, r = r1r2 · · · rn and s = sm · · · s2s1. We will
assume that sx = yr.

Lemma 3.1 The following conditions are equivalent:
(i) |r| ≤ |x|.

(ii) |s| ≤ |y|.
(iii) x = tr and y = st for some t ∈ A∗.

Proof. Obvious. �

In the following six lemmas, assume that |x| < |r| (or, equivalently, |y| < |s|).
Lemma 3.2 r = tx and s = yt for some t ∈ A+

Proof. Obvious. �

Lemma 3.3 Assume that |sm| ≤ |y|. Then:
(i) m ≥ 2.

(ii) There is uniquely determined k such that 1 ≤ k < m and |sm · · · sk+1| ≤ |y| <
< |sm · · · sk|.

(iii) There is uniquely determined l such that 1 ≤ l ≤ n and |yr1 · · · rl−1| <
< |sm · · · sk| ≤ |yr1 · · · rl| (here, yr1 · · · rl−1 = y for l = 1).

(iv) psk−1 · · · s1x = qrl · · · rn, where p = sm · · · sk and q = yr1 · · · rl−1 (p = s and
px = qrl · · · rn for k = 1; q = y for l = 1).

(v) |q| < |p| and p = qu, u ∈ A+.
(vi) usk−1 · · · s1x = rl · · · rn (ux = rl · · · rn for k = 1).

Proof. We have |s| = |sm| + · · · + |s1| + |x| = |y| + |r1| + · · · + |rn|, |sm| ≤ |y| and
|x| < |r1| + · · · + |rn|. Consequently, |sm| + |x| < |y| + |r1| + · · · + |rn| and m ≥ 2. The
existence of the uniquely determined number k follows from the inequalities |sm| ≤ |y|
and |y| < |s|. If |sm · · · sk| ≤ |yr1|, we put l = 1. If |yr1| < |sm · · · sk|, then the existence
of the uniquely determined number l follows easily. The rest follows from the equality
sm · · · s2s1x = yr1r2 · · · rn. �

Lemma 3.4 Assume that |sm| ≤ |y| (see 3.3). Then:
(i) zk = z′l = sk = rl and pk = ql = ε.

(ii) If k ≥ 2 and l < n, then m ≥ 3, n ≥ 2, sk−1 · · · s1x = rl+1 · · · rn and
sm · · · sk+1 = yr1 · · · rl−1 (= y for l = 1).

(iii) If k ≥ 2 and l = n, then m ≥ 3, s = yr, sk−1 = · · · = s1 = x = ε and
sm · · · sk+1 = yr1 · · · rn−1 (= y for n = 1).

(iv) If k = 1 and l < n, then n ≥ 2, x = rl+1 · · · rn, s = yr1 · · · rl and sm · · · s2 =

= yr1 · · · rl−1 (= y for l = 1).
(v) If k = 1 and l = n, then s = yr, x = ε and sm · · · s2 = yr1 · · · rn−1 (= y for

n = 1).

Proof. If |rl| < |u| then |yr1 · · · rl| = |q| + |rl| < |q| + |u| = |p| = |sm · · · sk|, a
contradiction. Thus |u| ≤ |rl|, rl = uu1, sk−1 · · · s1x = u1rl+1 · · · rn, z′l = rlql = uu1ql

and sm · · · sk = p = qu = yr1 · · · rl−1u.
If |sk| < |u| then |y| + |u| ≤ |q| + |u| = |p| = |sm · · · sk+1| + |sk| < |sm · · · sk+1| + |u| and

|y| < |sm · · · sk+1|, a contradiction. Thus |u| ≤ |sk|, sk = u2u, sm · · · sk+1u2 = yr1 · · · rl−1
and zk = pk sk = pku2u.

We have proved that zk = pk sk = pku2u and z′l = uu1ql. Since u � ε, it follows that
zk = u = z′l , and pk = ql = u1 = u2 = ε. Then sk = zk = z′l = rl = u. By 3.3 (vi),
usk−1 · · · s1x = rl · · · rn. Consequently, sk−1 · · · s1x = rl+1 · · · rn for k ≥ 2 and l < n;
sk−1 = · · · = s1 = x = ε for k ≥ 2, l = n; x = rl+1 · · · rn for k = 1, l < n; x = ε for
k = 1, l = n.

If k ≥ 2 and l < n, then psk−1 · · · s1x = sm · · · s1x = yr1 · · · rl implies p = yr1 · · · rl.
But p = sm · · · sk and sk = rl. Thus sm · · · sk+1 = yr1 · · · rl−1 in this case. The rest is
similar. �

Lemma 3.5 Assume that |y| < |sm|. Then:
(i) There is uniquely determined l such that 1 ≤ l ≤ n and |yr1 · · · rl−1| < |sm| ≤
≤ |yr1 · · · rl| (here, yr1 · · · rl−1 = y for l = 1).

(ii) psm−1 · · · s1x = qrl · · · rn, where p = sm and q = yr1 · · · rl−1 (p = s and
px = qrl · · · rn for m = 1; q = y for l = 1).

(iii) |q| < |p| and p = qu, u ∈ A+.
(iv) usm−1 · · · s1x = rl · · · rn (ux = rl · · · rn for m = 1).

Proof. Similar to that of 3.3. �

Lemma 3.6 Assume that |y| < |sm| (see 3.5). Then:
(i) zm = z′l = sm = rl and pm = ql = ε.
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Proof. We have |s| = |sm| + · · · + |s1| + |x| = |y| + |r1| + · · · + |rn|, |sm| ≤ |y| and
|x| < |r1| + · · · + |rn|. Consequently, |sm| + |x| < |y| + |r1| + · · · + |rn| and m ≥ 2. The
existence of the uniquely determined number k follows from the inequalities |sm| ≤ |y|
and |y| < |s|. If |sm · · · sk| ≤ |yr1|, we put l = 1. If |yr1| < |sm · · · sk|, then the existence
of the uniquely determined number l follows easily. The rest follows from the equality
sm · · · s2s1x = yr1r2 · · · rn. �

Lemma 3.4 Assume that |sm| ≤ |y| (see 3.3). Then:
(i) zk = z′l = sk = rl and pk = ql = ε.

(ii) If k ≥ 2 and l < n, then m ≥ 3, n ≥ 2, sk−1 · · · s1x = rl+1 · · · rn and
sm · · · sk+1 = yr1 · · · rl−1 (= y for l = 1).

(iii) If k ≥ 2 and l = n, then m ≥ 3, s = yr, sk−1 = · · · = s1 = x = ε and
sm · · · sk+1 = yr1 · · · rn−1 (= y for n = 1).

(iv) If k = 1 and l < n, then n ≥ 2, x = rl+1 · · · rn, s = yr1 · · · rl and sm · · · s2 =

= yr1 · · · rl−1 (= y for l = 1).
(v) If k = 1 and l = n, then s = yr, x = ε and sm · · · s2 = yr1 · · · rn−1 (= y for

n = 1).

Proof. If |rl| < |u| then |yr1 · · · rl| = |q| + |rl| < |q| + |u| = |p| = |sm · · · sk|, a
contradiction. Thus |u| ≤ |rl|, rl = uu1, sk−1 · · · s1x = u1rl+1 · · · rn, z′l = rlql = uu1ql

and sm · · · sk = p = qu = yr1 · · · rl−1u.
If |sk| < |u| then |y| + |u| ≤ |q| + |u| = |p| = |sm · · · sk+1| + |sk| < |sm · · · sk+1| + |u| and

|y| < |sm · · · sk+1|, a contradiction. Thus |u| ≤ |sk|, sk = u2u, sm · · · sk+1u2 = yr1 · · · rl−1
and zk = pk sk = pku2u.

We have proved that zk = pk sk = pku2u and z′l = uu1ql. Since u � ε, it follows that
zk = u = z′l , and pk = ql = u1 = u2 = ε. Then sk = zk = z′l = rl = u. By 3.3 (vi),
usk−1 · · · s1x = rl · · · rn. Consequently, sk−1 · · · s1x = rl+1 · · · rn for k ≥ 2 and l < n;
sk−1 = · · · = s1 = x = ε for k ≥ 2, l = n; x = rl+1 · · · rn for k = 1, l < n; x = ε for
k = 1, l = n.

If k ≥ 2 and l < n, then psk−1 · · · s1x = sm · · · s1x = yr1 · · · rl implies p = yr1 · · · rl.
But p = sm · · · sk and sk = rl. Thus sm · · · sk+1 = yr1 · · · rl−1 in this case. The rest is
similar. �

Lemma 3.5 Assume that |y| < |sm|. Then:
(i) There is uniquely determined l such that 1 ≤ l ≤ n and |yr1 · · · rl−1| < |sm| ≤
≤ |yr1 · · · rl| (here, yr1 · · · rl−1 = y for l = 1).

(ii) psm−1 · · · s1x = qrl · · · rn, where p = sm and q = yr1 · · · rl−1 (p = s and
px = qrl · · · rn for m = 1; q = y for l = 1).

(iii) |q| < |p| and p = qu, u ∈ A+.
(iv) usm−1 · · · s1x = rl · · · rn (ux = rl · · · rn for m = 1).

Proof. Similar to that of 3.3. �

Lemma 3.6 Assume that |y| < |sm| (see 3.5). Then:
(i) zm = z′l = sm = rl and pm = ql = ε.
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(ii) If m ≥ 2 and l < n, then n ≥ 2, sm−1 · · · s1x = rl+1 · · · rn and y = r1 = · · · =
= rl−1 = ε (y = ε for l = 1).

(iii) If m ≥ 2 and l = n, then sm−1 = · · · = s1 = x = y = r1 = · · · = rn−1 = ε
(sm−1 = · · · = s1 = x = y = ε for n = 1).

(iv) If m = 1 and l < n, then n ≥ 2, x = rl+1 · · · rn and y = r1 = · · · = rl−1 = ε
(y = ε for l = 1).

(v) If m = 1 and l = n, then s = yr and x = y = r1 = · · · = rn−1 = ε (x = y = ε
for n = 1).

Proof. Similar to that of 3.4. �

Lemma 3.7 There are uniquely determined k and l such that:
(i) 1 ≤ k ≤ m and 1 ≤ l ≤ n.

(ii) zk = z′l = sk = rl and pk = ql = ε.
(iii) |sm · · · sk+1| ≤ |y| < |sm · · · sk| (sm · · · sk+1 = ε for k = m).
(iv) |yr1 · · · rl−1| < |sm · · · sk| ≤ |yr1 · · · rl| (yr1 · · · rl−1 = y for l = 1).
(v) If 1 < k < m and 1 < l < n, then m ≥ 3, n ≥ 3, sk−1 · · · s1x = rl+1 · · · rn and

sm · · · sk+1 = yr1 · · · rl−1.
(vi) If 1 < k < m and 1 < l = n, then m ≥ 3, n ≥ 2, sk−1 = · · · = s1 = x = ε and

sm · · · sk+1 = yr1 · · · rn−1.
(vii) If 1 < k < m and 1 = l < n, then m ≥ 3, n ≥ 2, sk−1 · · · s1x = r2 · · · rn and

sm · · · sk+1 = y.
(viii) If 1 < k < m and 1 = n (= l), then m ≥ 3, sk−1 = · · · = s1 = x = ε and

sm · · · sk+1 = y.
(ix) If 1 < k = m and 1 < l < n, then m ≥ 2, n ≥ 3, sm−1 · · · s1x = rl+1 · · · rn and

y = r1 = · · · = rl−1 = ε.
(x) If 1 < k = m and 1 < l = n, then m ≥ 2, n ≥ 2, sm−1 = · · · = s1 = x = y =
= r1 = · · · = rn−1 = ε.

(xi) If 1 < k = m and 1 = l < n, then m ≥ 2, n ≥ 2, sm−1 · · · s1x = r2 · · · rn and
y = ε.

(xii) If 1 < k = m and 1 = n (= l), then m ≥ 2, sm−1 = · · · = s1 = x = y = ε.
(xiii) If 1 = k < m and 1 < l < n, then m ≥ 2, n ≥ 3, x = rl+1 · · · rn and

sm · · · s2 = yr1 · · · rl−1.
(xiv) If 1 = k < m and 1 < l = n, then m ≥ 2, n ≥ 2, x = ε and sm · · · s2 =

= yr1 · · · rn−1.
(xv) If 1 = k < m and 1 = l < n, then m ≥ 2, n ≥ 2, x = r2 · · · rn and sm · · · s2 = y.

(xvi) If 1 = k < m and 1 = n (= l), then m ≥ 2, x = ε and sm · · · s2 = y.
(xvii) If 1 = m (= k) and 1 < l < n, then n ≥ 3, x = rl+1 · · · rn and y = r1 = · · · =

= rl−1 = ε.
(xviii) If 1 = m (= k) and 1 < l = n, then n ≥ 2, x = y = r1 = · · · = rn−1 = ε.

(xix) If 1 = m (= k) and 1 = l < n, then n ≥ 2, x = r2 · · · rn and y = ε.
(xx) If 1 = m (= k) and 1 = n (= l), then x = y = ε.

Proof. Combine 3.4 and 3.6. �

Proposition 3.8 x = tr and y = st for some t ∈ A∗ (see 3.1), provided that at least
one of the following six conditions holds:

(1) m = 1 and |z1| ≤ |y|;
(2) n = 1 and |z′1| ≤ |x|;
(3) All the words s1,. . . ,sm are reduced;
(4) All the words r1,. . . ,rn are reduced;
(5) zi � z′j for all 1 ≤ i ≤ m and 1 ≤ j ≤ n;
(6) si � r j for all 1 ≤ i ≤ m and 1 ≤ j ≤ n;

Proof. The result follows easily from 3.7. �

4. T e c h n i c a l r e s u l t s ( c )

In this section, let r, s, t ∈ A∗ be reduced words such that (rs, t) ∈ τ. We have
rs = r0z0s0, z0 ∈ Z, r0, s0 reduced. By I.6.2, r = r0 p0, s = q0s0 and z0 = p0q0, where
p0, q0 ∈ A+ are reduced (then |z0| ≥ 2).

Since (rs, t) ∈ τ, there is a ρ-sequence w0,w1, . . . ,wm, m ≥ 1, such that w0 = rs
and wm = t. Clearly, tr(w0) = 1, tr(w1) ≥ 1, . . . , tr(wm−1) ≥ 1 and tr(wm) = 0. Now,
we will assume that tr(wi) = 1 for i = 2, . . . ,m − 1 (cf. II.6 and III.4). Consequently,
wi = rizisi, zi ∈ Z, ri, si reduced, i = 0, 1, . . . ,m − 1.

Lemma 4.1
(i) rs = rεs = w0 = r0z0s0.

(ii) riψ(zi)si = wi+1 = ri+1zi+1si+1 for every i, 0 ≤ i ≤ m − 2.
(iii) t = wm = rm−1ψ(zm−1)sm−1.

Proof. Obvious. �

Lemma 4.2 Let 0 ≤ i ≤ m − 2. Then just one of the following three cases takes
place:

(1) riψ(zi) is reduced, ψ(zi)si is not reduced, ri+1 = ri p′i+1, ψ(zi) = p′i+1 pi+1,
si = qi+1si+1, zi+1 = pi+1qi+1, riψ(zi) = ri p′i+1 pi+1 = ri+1 pi+1 and ψ(zi)si =

= p′i+1zi+1si+1, p′i+1 ∈ A∗ and pi+1, qi+1 ∈ A+ (p′i+1, pi+1, qi+1 reduced);
(2) riψ(zi) is not reduced, ψ(zi)si is reduced, ri = ri+1 pi+1, ψ(zi) = qi+1q′i+1,

si+1 = q′i+1si, zi+1 = pi+1qi+1, riψ(zi) = ri+1zi+1q′i+1 and ψ(zi)si = qi+1q′i+1si =

= qi+1si+1, q′i+1 ∈ A∗ and pi+1, qi+1 ∈ A+ (q′i+1, pi+1, qi+1 reduced);
(3) Both riψ(zi) and ψ(zi)si are reduced, ri = ri+1 pi+1, si = qi+1si+1 and zi+1 =

= pi+1ψ(zi)qi+1.

Proof. The word riψ(zi)si = ri+1zi+1si+1 is meagre, and hence it follows from 2.2
that at least one of the words riψ(zi) and ψ(zi)si is reduced. The rest is easy. �

Lemma 4.3 Let 0 ≤ i ≤ m − 2.
(i) If 4.2(1) holds and |ψ(zi)| ≤ 1, then ψ(zi) = pi+1 ∈ A and p′i+1 = ε.

(ii) If 4.2(2) holds and |ψ(zi)| ≤ 1, then ψ(zi) = qi+1 ∈ A and q′i+1 = ε.
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Proposition 3.8 x = tr and y = st for some t ∈ A∗ (see 3.1), provided that at least
one of the following six conditions holds:

(1) m = 1 and |z1| ≤ |y|;
(2) n = 1 and |z′1| ≤ |x|;
(3) All the words s1,. . . ,sm are reduced;
(4) All the words r1,. . . ,rn are reduced;
(5) zi � z′j for all 1 ≤ i ≤ m and 1 ≤ j ≤ n;
(6) si � r j for all 1 ≤ i ≤ m and 1 ≤ j ≤ n;

Proof. The result follows easily from 3.7. �

4. T e c h n i c a l r e s u l t s ( c )

In this section, let r, s, t ∈ A∗ be reduced words such that (rs, t) ∈ τ. We have
rs = r0z0s0, z0 ∈ Z, r0, s0 reduced. By I.6.2, r = r0 p0, s = q0s0 and z0 = p0q0, where
p0, q0 ∈ A+ are reduced (then |z0| ≥ 2).

Since (rs, t) ∈ τ, there is a ρ-sequence w0,w1, . . . ,wm, m ≥ 1, such that w0 = rs
and wm = t. Clearly, tr(w0) = 1, tr(w1) ≥ 1, . . . , tr(wm−1) ≥ 1 and tr(wm) = 0. Now,
we will assume that tr(wi) = 1 for i = 2, . . . ,m − 1 (cf. II.6 and III.4). Consequently,
wi = rizisi, zi ∈ Z, ri, si reduced, i = 0, 1, . . . ,m − 1.

Lemma 4.1
(i) rs = rεs = w0 = r0z0s0.

(ii) riψ(zi)si = wi+1 = ri+1zi+1si+1 for every i, 0 ≤ i ≤ m − 2.
(iii) t = wm = rm−1ψ(zm−1)sm−1.

Proof. Obvious. �

Lemma 4.2 Let 0 ≤ i ≤ m − 2. Then just one of the following three cases takes
place:

(1) riψ(zi) is reduced, ψ(zi)si is not reduced, ri+1 = ri p′i+1, ψ(zi) = p′i+1 pi+1,
si = qi+1si+1, zi+1 = pi+1qi+1, riψ(zi) = ri p′i+1 pi+1 = ri+1 pi+1 and ψ(zi)si =

= p′i+1zi+1si+1, p′i+1 ∈ A∗ and pi+1, qi+1 ∈ A+ (p′i+1, pi+1, qi+1 reduced);
(2) riψ(zi) is not reduced, ψ(zi)si is reduced, ri = ri+1 pi+1, ψ(zi) = qi+1q′i+1,

si+1 = q′i+1si, zi+1 = pi+1qi+1, riψ(zi) = ri+1zi+1q′i+1 and ψ(zi)si = qi+1q′i+1si =

= qi+1si+1, q′i+1 ∈ A∗ and pi+1, qi+1 ∈ A+ (q′i+1, pi+1, qi+1 reduced);
(3) Both riψ(zi) and ψ(zi)si are reduced, ri = ri+1 pi+1, si = qi+1si+1 and zi+1 =

= pi+1ψ(zi)qi+1.

Proof. The word riψ(zi)si = ri+1zi+1si+1 is meagre, and hence it follows from 2.2
that at least one of the words riψ(zi) and ψ(zi)si is reduced. The rest is easy. �

Lemma 4.3 Let 0 ≤ i ≤ m − 2.
(i) If 4.2(1) holds and |ψ(zi)| ≤ 1, then ψ(zi) = pi+1 ∈ A and p′i+1 = ε.

(ii) If 4.2(2) holds and |ψ(zi)| ≤ 1, then ψ(zi) = qi+1 ∈ A and q′i+1 = ε.

math_11_2.indd   55 7.3.2012   22:23:27



56

Proof. Obvious. �

In the remaining part of this section, we will assume that p′i+1 = ε (q′i+1 = ε, resp.)
whenever 0 ≤ i ≤ m − 2 and 4.2(1) (4.2(2), resp.) is true.

If 4.2(1) is satisfied, then ψ(zi) = pi+1, ri = ri+1, si = qi+1si+1, zi+1 = ψ(zi)qi+1
and we put gi+1 = ε and hi+1 = qi+1. Then zi+1 = gi+1ψ(zi)hi+1, ri = ri+1gi+1 and
si = hi+1si+1.

If 4.2(2) is satisfied, then ψ(zi) = qi+1, ri = ri+1 pi+1, si = si+1, zi+1 = pi+1ψ(zi)
and we put gi+1 = pi+1 and hi+1 = ε. Again, zi+1 = gi+1ψ(zi)hi+1, ri = ri+1gi+1 and
si = hi+1si+1.

If 4.2(3) is satisfied, then ri = ri+1 pi+1, si = qi+1si+1 and zi+1 = pi+1ψ(zi)qi+1 and
we put gi+1 = pi+1 and hi+1 = qi+1. As usual, zi+1 = gi+1ψ(zi)hi+1, ri = ri+1gi+1 and
si = hi+1si+1.

Furthermore, we put g0 = p0 and h0 = q0, so that z0 = g0h0 = g0εh0. Finally, we
put gm = rm−1 and hm = sm−1, so that t = gmψ(zm−1)hm.

Notice that all the words g0, . . . , gm and h0, . . . , hm are reduced.
The following three lemmas are easy.

Lemma 4.4
(i) z0 = g0h0 = g0εh0, r = r0g0 and s = h0s0.

(ii) If 1 ≤ i ≤ m − 1, then zi = giψ(zi−1)hi, ri−1 = rigi and si−1 = hisi.
(iii) t = gmψ(zm−1)hm.
(iv) All the words g0, . . . ,gm and h0, . . . ,hm are reduced.
(v) r = gm · · · g1g0 and s = h0h1 · · · hm.

Lemma 4.5 Put r′ = gm−1 · · · g1g0, s′ = h0h1 · · · hm−1, r′′ = gm−1 · · · g1, s′′ =
= h1 · · · hm−1 (r′′ = ε = s′′ if m = 1). Then:

(i) r = gmr′ and s = s′hm.
(ii) rs = gmr′s′hm.

(iii) r′s′ = r′′z0s′′.
(iv) (r′s′, ψ(zm−1)) ∈ τ.
(v) (rs′, gmψ(zm−1)) ∈ τ.

(vi) (r′s, ψ(zm−1hm)) ∈ τ.

Lemma 4.6
(i) If t = r, then r = gmψ(zm−1)hm and (gmψ(zm−1)hmh0h1 · · · hm−1, gmψ(zm−1)) =
= (rs′, gmψ(zm−1)) ∈ τ.

(ii) If t = s, then s = gmψ(zm−1)hm and (gm−1 · · · g1g0gmψ(zm−1)hm, ψ(zm−1)hm) =
= (r′s, ψ(zm−1)hm) ∈ τ.

5. T e c h n i c a l r e s u l t s ( d )

In this section, we will assume that ψ(Z) ⊆ A ∪ {ε}.
Let r, s, t, p, q ∈ A∗ be reduced words such that (rt, p) ∈ τ and (ts, q) ∈ τ. Then, of

course, neither rt nor ts is reduced and r, s, t ∈ A+.

Lemma 5.1 There are m ≥ 1, z0, . . . , zm−1 ∈ Z and reduced words g0, . . . , gm,
h0, . . . , hm ∈ A∗ such that:

(i) z0 = g0h0.
(ii) If 1 ≤ i ≤ m − 1, then zi = giψ(zi−1)hi.

(iii) p = gmψ(zm−1)hm.
(iv) r = gm · · · g1g0.
(v) t = h0h1 · · · hm.

(vi) (rh0h1 · · · hm−1, gmψ(zm−1)) ∈ τ.

Proof. Use 4.4 and 4.5(v). �

Lemma 5.2 There are m′ ≥ 1, z′0, . . . , z
′
m′−1 ∈ Z and reduced words g′0, . . . , g

′
m′ ,

h′0, . . . , h
′
m′ ∈ A∗ such that:

(i) z′0 = g′0h′0.
(ii) If 1 ≤ i ≤ m′ − 1, then z′i = g′iψ(z′i−1)h′i .

(iii) q = g′m′ψ(z′m′−1)h′m′ .
(iv) s = h′0h′1 · · · h′m′ .
(v) t = g′m′ · · · g′1g′0.

(vi) (g′m′−1 · · · g′1g′0s, ψ(z′m′−1)h′m′) ∈ τ.

Proof. Use 4.4 and 4.5(vi). �

Lemma 5.3
(i) h0h1 · · · hm = t = g′m′ · · · g′1g′0.

(ii) There is f ∈ A∗ such that g′m′ = h0h1 · · · hm−1 f and hm = f g′m′−1 · · · g′1g′0.

Proof.
(i) See 5.1(v) and 5.2(v).

(ii) Combine (i), 3.1 and 3.8.
�

Lemma 5.4 Put t1 = h0h1 · · · hm−1, t2 = f and t3 = g′m′−1 · · · g′1g′0. Then:
(i) t = t1t2t3.

(ii) (rt1, gmψ(zm−1)) ∈ τ.
(iii) (t3s, ψ(z′m′−1)h′m′) ∈ τ.
(iv) p = gmψ(zm−1)t2t3.
(v) q = t1t2ψ(z′m′−1)h′m′ .

Proof. Combine 5.1(iii), 5.2(iii) and 5.3. �
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5. T e c h n i c a l r e s u l t s ( d )

In this section, we will assume that ψ(Z) ⊆ A ∪ {ε}.
Let r, s, t, p, q ∈ A∗ be reduced words such that (rt, p) ∈ τ and (ts, q) ∈ τ. Then, of

course, neither rt nor ts is reduced and r, s, t ∈ A+.

Lemma 5.1 There are m ≥ 1, z0, . . . , zm−1 ∈ Z and reduced words g0, . . . , gm,
h0, . . . , hm ∈ A∗ such that:

(i) z0 = g0h0.
(ii) If 1 ≤ i ≤ m − 1, then zi = giψ(zi−1)hi.

(iii) p = gmψ(zm−1)hm.
(iv) r = gm · · · g1g0.
(v) t = h0h1 · · · hm.

(vi) (rh0h1 · · · hm−1, gmψ(zm−1)) ∈ τ.

Proof. Use 4.4 and 4.5(v). �

Lemma 5.2 There are m′ ≥ 1, z′0, . . . , z
′
m′−1 ∈ Z and reduced words g′0, . . . , g

′
m′ ,

h′0, . . . , h
′
m′ ∈ A∗ such that:

(i) z′0 = g′0h′0.
(ii) If 1 ≤ i ≤ m′ − 1, then z′i = g′iψ(z′i−1)h′i .

(iii) q = g′m′ψ(z′m′−1)h′m′ .
(iv) s = h′0h′1 · · · h′m′ .
(v) t = g′m′ · · · g′1g′0.

(vi) (g′m′−1 · · · g′1g′0s, ψ(z′m′−1)h′m′) ∈ τ.

Proof. Use 4.4 and 4.5(vi). �

Lemma 5.3
(i) h0h1 · · · hm = t = g′m′ · · · g′1g′0.

(ii) There is f ∈ A∗ such that g′m′ = h0h1 · · · hm−1 f and hm = f g′m′−1 · · · g′1g′0.

Proof.
(i) See 5.1(v) and 5.2(v).

(ii) Combine (i), 3.1 and 3.8.
�

Lemma 5.4 Put t1 = h0h1 · · · hm−1, t2 = f and t3 = g′m′−1 · · · g′1g′0. Then:
(i) t = t1t2t3.

(ii) (rt1, gmψ(zm−1)) ∈ τ.
(iii) (t3s, ψ(z′m′−1)h′m′) ∈ τ.
(iv) p = gmψ(zm−1)t2t3.
(v) q = t1t2ψ(z′m′−1)h′m′ .

Proof. Combine 5.1(iii), 5.2(iii) and 5.3. �
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6. T e c h n i c a l r e s u l t s ( e )

Assume that ψ(Z) ⊆ A and ψ is strictly length decreasing (equivalently, Z∩A = ∅).
By III.6.5, for every w ∈ A∗ there exists a uniquely determined reduced word r such
that (w, r) ∈ ξ.

Proposition 6.1 Let r, s ∈ A∗ be reduced and let p, q ∈ A∗ be such that pq � ε.
Then either (rpq, r) � ξ or (qps, s) � ξ.

Proof. Since pq � ε, we have rpq � r and qps � s. Now, proceeding by contra-
diction, assume that (rpq, r) ∈ τ, (qps, s) ∈ τ and |rs| is minimal. Of course (III.6.4,
III.6.5), we can assume that both p and q are reduced. The rest of the proof is divided
into five parts:

(i) Let q = ε. Then p � ε, (rp, r) ∈ τ and (ps, s) ∈ τ. According to 5.4,
p = p1 p2 p3, (r, u) ∈ τ, (p3s, v) ∈ τ, r = up2 p3, s = p1 p2v, u, v reduced. We get
(up2 p3 p1, u) ∈ τ, (p3 p1 p2v, v) ∈ τ and, if (p3 p1, p4) ∈ ξ, where p4 is reduced, then
(up2 p4, u) ∈ ξ, (p4 p2v, v) ∈ ξ. If p2 = ε = p4, then p3 p1 � ε (since p � ε) and p4 � ε
(since ε � ψ(Z)), a contradiction. Thus p2 p4 � ε and (up2 p4, u) ∈ τ, (p4 p2v, v) ∈ τ.
But |u| + |v| < |r| + |s|, a contradiction with the minimality of |rs|.

(ii) Let q = ε. This case is analogous to (i).
(iii) Let p � ε � q and r = r′q, where (rp, r′) ∈ ξ and r′ is reduced. Furthermore,

let (qp, t) ∈ ξ, where t is reduced. Then (r′qp, r′) = (rp, r′) ∈ ξ, (r′qp, r′t) ∈ ξ (since
(qp, t) ∈ ξ), and hence (r′t, r′) ∈ ξ. Similarly, (qps, ts) ∈ ξ (since (qp, t) ∈ ξ), and
hence (ts, s) ∈ ξ (since (qps, s) ∈ τ). Since qp � ε, we have t � ε and (r′t, r′) ∈ τ,
(ts, s) ∈ τ. But this is a contradiction since |r′| + |s| < |r| + |s|.

(iv) Let p � ε � q and s = qs′, where (ps, s′) ∈ ξ and s′ is reduced. This case is
analogous to (iii).

(v) Let p � ε � q and r′q � r, qs′ � s, where r′, s′ are reduced and such that
(rp, r′) ∈ ξ and (ps, s′) ∈ ξ. We have (r′q, r) ∈ τ and (qs′, s) ∈ τ. According to 5.4,
q = q1q2q3, (r′q1, u) ∈ τ, (q3s′, v) ∈ τ, r = uq2q3 and s = q1q2v, u, v reduced. Now,
(rp, r′) ∈ ξ implies (uq2q3 pq1, r′q1) = (rpq1, r′q1) ∈ ξ, and hence (uq2q3 pq1, u) ∈ τ.
Quite similarly, (q3 pq1q2v, v) ∈ τ. Finally, if (q3 pq1, t) ∈ ξ, where t is reduced, then
(uq2t, u) ∈ ξ and (tq2v, v) ∈ ξ. Of course, t � ε, (uq2t, u) ∈ τ, (tq2v, v) ∈ τ and
|u| + |v| < |r| + |s| (since q � ε), a contradiction. �

7. M a i n r e s u l t

Assume that ψ(Z) ⊆ A and ψ is strictly length decreasing.

Theorem 7.1 Let z1, z2 ∈ Z be such that z1 � z2 and ψ(z1) = a = ψ(z2) (a ∈ A).
Furthermore, let r, s ∈ A∗ and w ∈ A∗. Then either (w, rz1s) � ξ or (w, rz2s) � ξ (of
course, (rz1s, ras) ∈ ρ and (rz2s, ras) ∈ ρ).

Proof. We can assume without loss of generality that both r and s are reduced.
If (w, rz1s) ∈ ξ and (w, rz2s) ∈ ξ, then P(rz1s, rz2s) � ∅ (see IV.5) and we can
assume that w ∈ Q(rz1s, rz2s) (use IV.5.3). According to IV.6.1, either w = rz1xz2s,
(rz1x, r) ∈ τ, (xz2s, s) ∈ τ, x reduced or w = rz2xz1s, (rz2x, r) ∈ τ, (xz1s, s) ∈ τ, x
reduced. In both cases, (rax, r) ∈ ξ and (xas, s) ∈ ξ, a contradiction with 6.1. �

8. E x a m p l e s

Example 8.1 Let z1 = a2b2, z2 = a2bab2, r1 = ε, r2 = b2, s1 = a, s2 = ε,
r = a, s = bab2 and t = b2a. Then all the words r1, r2, s1, s2, r, s, t are reduced and
rat = a2b2a = r1z1s1 and tas = b2a2bab2 = r2z2s2. Furthermore, (rat, ψ(z1)a) ∈ ρ
and (tas, b2ψ(z2)) ∈ ρ.

If ψ(z1) = ε, then (rat, a) ∈ ρ. If ψ(z1) = b2, then (rat, t) ∈ ρ. If ψ(z2) = a, then
(tas, t) ∈ ρ.

Notice also that sat = bab2ab2a and tar = b2a3 are reduced.

R e f e r e n c e s

[1] Flaška, V., Kepka, T., Kortelainen, J.: On separating sets of words I., Acta Univ. Carolinae Math.
Phys., 49/1(2008), 33–51.
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Phys., 50/1(2009), 15–28.

[3] Flaška, V., Kepka, T., Kortelainen, J.: On separating sets of words III., Acta. Univ. Carolinae
Math. Phys. 51/1 (2010), 57–64.

[4] Flaška, V., Kepka, T., Kortelainen, J.: On separating sets of words IV., Acta. Univ. Carolinae
Math. Phys. 51/1 (2010), 65–72.
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Proof. We can assume without loss of generality that both r and s are reduced.
If (w, rz1s) ∈ ξ and (w, rz2s) ∈ ξ, then P(rz1s, rz2s) � ∅ (see IV.5) and we can
assume that w ∈ Q(rz1s, rz2s) (use IV.5.3). According to IV.6.1, either w = rz1xz2s,
(rz1x, r) ∈ τ, (xz2s, s) ∈ τ, x reduced or w = rz2xz1s, (rz2x, r) ∈ τ, (xz1s, s) ∈ τ, x
reduced. In both cases, (rax, r) ∈ ξ and (xas, s) ∈ ξ, a contradiction with 6.1. �

8. E x a m p l e s

Example 8.1 Let z1 = a2b2, z2 = a2bab2, r1 = ε, r2 = b2, s1 = a, s2 = ε,
r = a, s = bab2 and t = b2a. Then all the words r1, r2, s1, s2, r, s, t are reduced and
rat = a2b2a = r1z1s1 and tas = b2a2bab2 = r2z2s2. Furthermore, (rat, ψ(z1)a) ∈ ρ
and (tas, b2ψ(z2)) ∈ ρ.

If ψ(z1) = ε, then (rat, a) ∈ ρ. If ψ(z1) = b2, then (rat, t) ∈ ρ. If ψ(z2) = a, then
(tas, t) ∈ ρ.

Notice also that sat = bab2ab2a and tar = b2a3 are reduced.

R e f e r e n c e s

[1] Flaška, V., Kepka, T., Kortelainen, J.: On separating sets of words I., Acta Univ. Carolinae Math.
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