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In this paper different types of historical volatility estimators based on open-high-low-
close (OHLC) values are studied. The estimators are broken down to the main building
blocks and the correlation structure of these building blocks with time dependent variance
(volatility squared) is investigated. The building blocks are estimated from the equity in-
dex (SPX in USA and DAX in Germany) and compared with a volatility index (VIX in
USA and VDAX in Germany) which stands as a proxy for volatility, because the values
of the volatility process are in general not available. In an empirical study it is observed
that both the autocorrelation function of variance and the cross-correlation functions of
building blocks with the variance decrease exponentially with the same degree. This de-
pendence can be explained as exponentially decreasing “amount of information” and it
naturally leads to use of exponentially decreasing weights in historical estimators. The
proposed EWMA style estimators have higher predicting power over the commonly used
estimators and in prediction beat the very popular GARCH(1,1).

I n t r o d u c t i o n

The word volatility is used most often in finance as a measure of variability in
the changes of asset prices. Higher volatility means in general higher probability of
bigger losses, so volatility is directly linked to the risk of the asset.

The recent development in financial markets increased the importance of time de-
pendent volatility modeling and new and new more “sophisticated” models are pro-
posed to better represent the “reality”. The volatility process is in general assumed
to be directly unobservable and consequently the estimation of these models is very
difficult.
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In the last decades the continuous volatility models attracted much attention be-
cause of the theoretically nice and elegant stochastic calculus. For an overview about
the volatility modeling and measurement see [1]. Unfortunately the practical part of
these continuous time models is developing much more slowly and it is mostly neces-
sary to discretize these models for estimation, since the observed values are available
for an analysis only as daily time series. Of course more detailed data exists, for ex-
ample in the form of high-frequency tick-by-tick data, but this data is not available to
everybody and its analysis requires more computer power as it is very technologically
demanding.

D a i l y F i n a n c i a l D a t a

The asset price process is denoted by S t, t ≥ 0. A widely used model for S t is the
Generalized geometric Brownian motion given by the following equation

dS t = µtS tdt + σtS tdWt, (1)

where the drift µt is the expected return on the asset, the volatility σt measures the
variability around µt and Wt is the standard Brownian motion.

In the standard Geometric Brownian motion (GBM) it is assumed that µt = µ and
σt = σ (the parameters are constant) and it holds for T > t that

ln(S T ) = ln(S t) + (µ − σ2/2)(T − t) + σ
√

T − tε (2)

where ε is the standard normal random variable. From equation (2) it follows that the
logarithmic returns r(t, T ) = ln(S T/S t) are normally distributed.

The asset price S t is only observed during the time when the market is open and the
daily financial data are often available in the form of OHLC (open-high-low-close)
values. For the trading days i = 0, . . . ,N we denote the morning opening price by
Oi, the evening closing price by Ci, the daily lowest price by Li and the daily highest
price by Hi.

These values are for many assets and indices available to everybody, since they can
be downloaded for example from Yahoo Finance1 by using free software environment
R [8] and a Rmetrics2 package fImport.

The daily log-returns r1, . . . , rN are computed from the closing prices Ci as

ri = ln(Ci/Ci−1). (3)

The time dependent yearly volatility will further be denoted by σi and it is mostly
estimated by the standard deviation of daily log-returns multiplied by the scaling
factor3

√
260. The yearly variance is defined as hi = σ

2
i .

1 http://finance.yahoo.com/
2 https://www.rmetrics.org/
3 It is common to consider the annualized daily volatility, so the standard deviation has to be scaled

by the square root of the number of trading days in a year. We assume that a year has 260 trading days.
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A more sophisticated widely used approach for time-dependent volatility model-
ing in discrete time is the GARCH (Generalized AutoRegressive Conditional Hete-
roskedasticity) model. This model uses only daily closing data. The description of
these models can be found in almost every financial time series literature, for example
in [10]. A lot of generalizations of the GARCH were derived, summary of them is in
[2] (more than 100 models).

H i s t o r i c a l V o l a t i l i t y E s t i m a t o r s

In this section the main historical volatility estimators widely used by practition-
ers are introduced. The formulas for historical estimators are taken from the Quant
Equation Archive http://www.sitmo.com/eqcat/4.

Historical Close-to-Close Volatility. This simplest estimator is equal to the standard
deviation of log-returns scaled to one year given by the formula

σcc =

√√√
260

N − 1

N∑
i=1

(ri − r̄)2 or σcc =

√√√
260
N

N∑
i=1

(ri − r̄)2, (4)

where r̄ = 1
N
∑N

i=1 ri. The drift of asset prices estimated by r̄ is usually very small, so
sometimes the following formulas are used

σcc =

√√√
260

N − 1

N∑
i=1

r2
i or σcc =

√√√
260
N

N∑
i=1

r2
i . (5)

Historical High-Low Volatility (Parkinson). This estimator uses only the highest and
lowest daily values and is given by

σp =

√√√
260

4N ln(2)

N∑
i=1

(
ln

Hi

Li

)2
. (6)

Historical Open-High-Low-Close Volatility (Garman and Klass). This estimator uses
all OHLC values and is given by

σgk =

√√√
260
N

N∑
i=1


1
2

(
ln

Hi

Li

)2
− (2 ln 2 − 1)

(
ln

Ci

Oi

)2 (7)

Historical Open-High-Low-Close Volatility (Garman and Klass, Yang Zhang exten-
sion). This estimator is currently the preferred version of OHLC volatility estimator
and it differs from the previous estimator only by the term (ln(Oi/Ci−1))2 which takes
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into account the opening jump (the change from the closing price yesterday Ci−1 to
the opening price today Oi).

σgkyz =

√√√
260
N

N∑
i=1


(
ln

Oi

Ci−1

)2
+

1
2

(
ln

Hi

Li

)2
− (2 ln 2 − 1)

(
ln

Ci

Oi

)2 (8)

Historical Open-High-Low-Close Volatility (Rogers Satchell). The last estimator uses
all OHLC values and is given by

σrs =

√√√
260
N

N∑
i=1

[
ln

Hi

Ci
ln

Hi

Oi
+ ln

Li

Ci
ln

Li

Oi

]
(9)

Building Blocks Historical Volatility Estimators. The mentioned historical volatil-
ity estimators have the following building blocks:
A = {ln(Ci/Ci−1)2} = {r2

i } represents the daily squared close-to-close changes.
B = {ln(Hi/Li)2} represents the daily squared extreme changes.
C = {ln(Oi/Ci−1)2} represents the squared opening jumps.
D = {ln(Ci/Oi)2} represents the squared trading daily changes.
E = {ln(Hi/Ci) ln(Hi/Oi)} is based on the first term of Rogers Satchell estimator.
F = {ln(Li/Ci) ln(Li/Oi)} is based on the second term of Rogers Satchell estimator.
The building blocks A, B, C, D, E and F will be used as an input in the correlation
empirical study.

P r o x y f o r t h e U n o b s e r v e d V o l a t i l i t y

All variables except for volatility are directly observable in the market. Volatility
can be indirectly observed in the market through the option prices, since the higher
volatility the higher prices of plain vanilla options. We can use the observed option
market price and the Black-Scholes (BS) option pricing formula (for more informa-
tion about option pricing see [5] or [11]) to calculate the volatility that yields a theo-
retical value of the option equal to the observed market price. This volatility is called
the implied volatility and it in general depends (in contrast to the BS model where the
volatility is assumed to be constant) on the strike price K and the expiration of the
option T − t (time to maturity). The collection of all such implied volatilities with
respect to the strike price and time to maturity is known as the volatility surface. For
more understanding of volatility surfaces look in [4] or [9].

Implied volatility is a very good financial indicator of the “fear” in the market since
it often signifies financial turmoil. Some exchanges have transformed this information
into volatility indices. The most known index is the VIX index of the CBOE (Chicago
Board Options Exchange) launched in 2003 (data begins 1990). The CBOE utilizes
a wide variety of strike prices of options on the S&P 500 index (SPX index, the core
index for U.S. equities) in order to obtain the estimator of 30-day expected volatility.
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More details about the calculation are described in the methodology [3]. VDAX-
NEW index (launched in 2005 as a successor for VDAX launched in 1996, data
begins 1992) is an analogous index of the Deutsche Börse in Germany based on the
prices of options on the German DAX index.

The volatility indices have become very popular and their number is increasing.
The volatility index can nowadays even be traded through exchange traded futures
(since 2004) and exchange trade options (since 2006).

The volatility indices were used in the empirical study [6], where the implied
volatility, GARCH volatility and historical volatility were compared. In this paper
we will use the volatility index value as a proxy for an unobserved volatility process
σi. Further we define Y = {σ2

i /260} = {hi/260} as the actual one day variance4.

A u t o - a n d C r o s s - C o r r e l a t i o n S t u d y

Now we will take the data A, B, C, D, E, F and Y and investigate their correlation
relationships. The used data are from 3. 1. 2000 to 2. 4. 2010. To make the results
more relevant, the analysis is made on two different markets. In the US market the
equity index SPX and the volatility index VIX are used. In the Germany market the
equity index DAX and the volatility index VDAX are used.

T 1. Price index SPX, volatility index VIX

Y A B C D E F

Y 1.00 0.53 0.71 0.13 0.60 0.52 0.45

A 0.53 1.00 0.81 0.04 0.67 0.19 0.20

B 0.71 0.81 1.00 0.11 0.70 0.49 0.66

C 0.13 0.04 0.11 1.00 0.08 0.01 0.05

D 0.60 0.67 0.70 0.08 1.00 0.47 0.24

E 0.52 0.19 0.49 0.01 0.47 1.00 0.19

F 0.45 0.20 0.66 0.05 0.24 0.19 1.00

The estimated correlation matrices of the data are in the tables 1 and 2. It is very
interesting, that the correlations are in both tables very similar.

4 Volatility is in the market quoted as a value per annum similarly as interest rates. We need to divide
the squared value by the number of working days per annum to obtain the scaled daily values.



22

T 2. Price index DAX, volatility index VDAX

Y A B C D E F

Y 1.00 0.48 0.68 0.23 0.55 0.51 0.45

A 0.48 1.00 0.74 0.17 0.66 0.22 0.24

B 0.68 0.74 1.00 0.26 0.66 0.61 0.66

C 0.23 0.17 0.26 1.00 0.31 0.24 0.19

D 0.55 0.66 0.66 0.31 1.00 0.40 0.28

E 0.51 0.22 0.61 0.24 0.40 1.00 0.23

F 0.45 0.24 0.66 0.19 0.28 0.23 1.00

Figure 1: Cross-Correlation Functions

The autocorrelation function of Y and the cross-correlation function of A, B, C,
D, E, F with Y are graphed by solid lines in the figure 1. The dashed lines in the
figure represent the fitted exponential functions. It can be seen, that the exponential
functions fit the auto- and cross-correlation functions very well. It means that the
linear dependence on the past values decreases exponentially as the time goes on.

It is very obvious, that these functions look very similar in both markets. It points
to the hypothesis, that these patterns are properties of the real time dependent variance
process and every good volatility model should reflect these properties as well.
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G A R C H m o d e l a n d E W M A m o d e l

GARCH models are nowadays very popular. Process {rn}, n ∈ Z is a (strong)
GARCH(p, q), if E[rn|Fn−1] = 0 (the conditional mean is unpredictable) and
Var[rn|Fn−1] = σ2

t (the conditional variance is time dependent), where

σ2
n = ω +

q∑
i=1

αir2
n−i +

p∑
j=1

β jσ
2
n− j (10)

and Zn = rn/σn are i.i.d. random variables. Fn−1 denotes the σ-algebra generated by
the historical returns, αi and β j are real coefficients. Sufficient condition for σ2

n ≥ 0
is ω, αi, β j ≥ 0. In the GARCH(1, 1) model the conditional variance has the form

σ2
n = ω + αr2

n−1 + βσ
2
n−1. (11)

The EWMA (Exponentially Weighted Moving Average) model of volatility is
known very well thanks to the RiskMetrics5 technical report [7] and has been used in
many practical applications. The EWMA volatility is defined as

σ2
n = (1 − λ)

∞∑
j=1

λ j−1(rn− j − r̄)2 = (1 − λ)(rn−1 − r̄)2 + λσ2
n−1 (12)

or, when r̄ is small, as

σ2
n = (1 − λ)

∞∑
j=1

λ j−1r2
n− j = (1 − λ)r2

n−1 + λσ
2
n−1, (13)

where λ is a decay factor. Typical values of the decay factor are close to one (values
0.94 and 0.97 are recommended in [7]).

In the case when we have N historical observations, the EWMA estimator of
volatility can be computed as

σE,n =

√√√
260(1 − λ)

1 − λN

N∑
i=1

λi−1(rn−i − r̄)2 (14)

or

σE,n =

√√√
260(1 − λ)

1 − λN

N∑
i=1

λi−1r2
n−i, (15)

where n is a time index. This estimator can be expressed in the following way

σE,n =

√√√
260

N∑
i=1

wi(λ)r2
n−i, (16)

where the weights wi(λ) =
(1−λ)λi−1

1−λN = λi−1∑N
i=1 λ

i−1 sum to 1. Since the weights are equal to
1/N for λ = 1, the EWMA estimator is equal to the historical close-to-close volatility

5 http://www.riskmetrics.com/
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estimator for λ = 1. The main advantage of this estimator is, that it is very simple
and that it does not need any additional software, because it can be computed even in
Excel.

E W M A S t y l e E s t i m a t o r s

The observed pattern of exponentially declining amount of information with the
time left can be used to improve all historical volatility estimators by introducing ex-
ponential weights in the same way as in the classical close-to-close EWMA estimator.
It means that an estimator of the form

σ2 =
260
N

N∑
i=1

(building blocks)n−i (17)

is changed to an EWMA-style estimator by weights wi

σ2
EWMA = 260

N∑
i=1

wi(λ) · (building blocks)n−i, (18)

where λ ∈ [0, 1] and

wi(λ) =
λi−1

∑N
i=1 λ

i−1

λ�1
=

(1 − λ)λi−1

1 − λN . (19)

Figure 2: Comparison of EWMA weights with the equal weights in classical
historical estimators

It is clear that
∑N

i=1 wi(λ) = 1 for all λ and that EWMA style estimator is equal to
the classical estimator for λ = 1. The EWMA weights wi(λ) give more importance
on the more recent observations. The time structure of weights can be seen in the
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Figure 2, where the horizontal line represents the equal weights in the classical esti-
mators corresponding to λ = 1 and the other lines represent the EWMA weights for
different values of decay factor λ.

E m p i r i c a l S t u d y

In the empirical study [6] the actual volatity was estimated for t equal to dates
from 3.5.2002 to 24.4.2009. For each t the three year history till t was taken to
estimate the volatility. The main goal of the performance study was to evaluate the
performance of GARCH(1,1) in forecasting volatility. The results of this study are
shown in the Table 3. The GARCH(1,1) was estimated by using the environment R
with the Rmetrics library fGarch.

T 3. Coefficient of determination in the linear model where the ac-
tual values of volatility index are regressed on the estimated values and
constant term

Index
previous

index value
GARCH(1,1)

GARCH(1,1)

forecast

3M hist.

volatility

SPX 97.47% 88.43% 89.21% 84.24%

DAX 98.23% 86.71% 87.44% 83.36%

In this section a similar empirical study is performed, where the classical histori-
cal volatility estimators are compared to the EWMA style estimators with the decay
factor λ = 0.96. Recall that an EWMA style estimator with decay factor 1 is equal to
classical historical estimator.

In the following GARCH denotes the GARCH forecast from the last year empir-
ical study (was the best performing), EWMA(λ) denotes the EWMA volatility esti-
mator, PARK(λ) denotes the EWMA-style Parkinson estimator, GK(λ) denotes the
EWMA-style Garman Klass estimator, GKYZ(λ) denotes the EWMA-style Garman
Klass (Yang Zhang) estimator, RS(λ) denotes the EWMA-style Rogers Satchell esti-
mator, index yesterday denotes the previous value of the volatility index and λ is the
decay factor.

Models were estimated for t equal to dates from 12. 4. 2002 to 2. 4. 2010.
Estimators with λ = 0.96 are based on two year history and estimators with λ = 1
are based on three months history, since using of longer history makes the estimation
worse.

To evaluate the performance of these estimators we again consider a linear model
yi = a + bxi + ei, where a and b are constant and ei is an error term. The estimated
volatility values are the explanatory data x = {x1, . . . , xn} and the values of volatility
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index on the corresponding days are the dependent data y = {y1, . . . , yn}. The coeffi-
cient of determination R2 is in this situation equal to Cor(x, y)2 and it will be used as
an overall performance measure (the higher value of R2 the better estimator).

Further the following performance measures are considered6

biasA = mean(x − y) biasR = mean(x/y − 1)
sdA =

√
Var(x − y) sdR =

√
Var(x/y − 1)

MS EA =
√

mean((x − y)2) MS ER =
√

mean((x/y − 1)2).

Absolute measures are denoted with the subscript A and the relative measures are
denoted with the subscript R. The bias is measured by biasA and biasR and the stan-
dard deviation is measured by sdA and sdR. The measures MS EA and MS ER (mean
squared error) take into account both bias and variance in the same time. The lower
absolute value of these measures the better estimator.

The performance results are shown in the Table 4. The best volatility predictor is
the previous value of volatility index. The problem with this predictor is, that we do
not have volatility index for many assets.

Comparing the prediction properties of GARCH model with classical historical
estimators, we find out, that based on the coefficient of determination is the GARCH
model in all cases better. When we compare the coefficients of determination of the
classical estimators with the EWMA style estimators, we find out, that the EWMA
style estimators are not just in all cases better than the classical estimators, but they
performed even better than the GARCH estimators.

The absolute and relative measures give us additional information about the prop-
erties of the estimators. For example in the case of SPX index we can see that the
GK(0.96) performed better than PARK(0.96) even if the coefficient of determination
is the same.

C o n c l u s i o n

In this paper the auto- and cross- correlation structure of variance with the building
blocks of some open-high-low-close historical volatility estimators was investigated.
It was empirically shown through the correlation structure, that the linear dependence
decreases exponentially and as a consequence new EWMA style historical estimators
based on the open-high-low-close values were proposed.

The EWMA style estimators of volatility were in an empirically study compared
with the GARCH prediction and with the classical estimators. The EWMA style esti-
mators were in all cases better than the classical estimators. A very interesting result
is, that the EWMA estimators were in all cases better than the GARCH prediction,

6 x − y := {x1 − y1, . . . , xn − yn}, x/y − 1 := {x1/y1 − 1, . . . , xn/yn − 1}, x2 := {x2
1, . . . , x

2
n},

mean(x) = x̄ = 1
n
∑n

i=1 xi, Var(x) = 1
n−1
∑n

i=1(xi − x̄)2,

Cor(x, y) =
1

n−1
∑n

i=1(xi−x̄)(yi−ȳ)√
Var(x)·Var(y)

.
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T 4. Performance of the estimators. The absolute measures are in
the same units as the volatility (in percent), the sign % is omitted in
absolute measures (i.e. 1 is for example the change from volatility 20%
to 21%), whereas the relative measures are stated as percent of volatility
(i.e. 1% is for example the change from volatility 20% to 20.2%)

SPX index R2 biasA sdA MS EA biasR sdR MS ER

GARCH 87.8% –3.0 4.3 5.2 –16.5% 13.7% 21.4%

EWMA(1) 83.6% –2.8 5.0 5.7 –15.8% 17.5% 23.6%

EWMA(0.96) 91.0% –2.8 3.8 4.7 –16.6% 14.7% 22.2%

PARK(1) 83.3% –5.6 4.4 7.1 –27.4 % 13.4% 30.5%

PARK(0.96) 91.4% –5.6 3.2 6.5 –28.0% 10.7% 29.9%

GK(1) 83.4% 0.4 5.7 5.7 0.1% 18.8% 18.8%

GK(0.96) 91.4% 0.4 4.5 4.5 -0.8% 15.1% 15.1%

GKYZ(1) 83.5% 0.7 5.8 5.8 1.0% 19.0% 19.1%

GKYZ(0.96) 91.5% 0.6 4.6 4.7 0.2% 15.3% 15.3%

RS(1) 82.5% –7.0 4.7 8.4 –33.2% 12.1% 35.3%

RS(0.96) 90.7% –7.0 3.7 7.9 –33.7% 9.8% 35.1%

index yesterday 97.4% 0.0 1.8 1.8 0.2% 5.9% 5.9%

DAX index R2 biasA sdA MS EA biasR sdR MS ER

GARCH 86.8% –0.7 5.1 5.1 –5.3% 16.0% 16.8%

EWMA(1) 83.4% –0.5 5.3 5.3 –4.1% 18.2% 18.7%

EWMA(0.96) 91.0% –0.5 4.2 4.2 –5.0% 14.7% 15.5%

PARK(1) 84.4% –3.7 4.5 5.8 –18.2% 15.8% 24.1%

PARK(0.96) 91.4% –3.8 3.4 5.0 –18.9% 13.2% 23.0%

GK(1) 84.1% 3.4 7.1 7.8 10.4% 21.5% 23.9%

GK(0.96) 91.2% 3.3 6.2 7.0 9.5% 18.1% 20.4%

GKYZ(1) 84.0% 4.4 7.4 8.6 15.1% 21.7% 26.4%

GKYZ(0.96) 91.3% 4.4 6.5 7.8 14.2% 17.8% 22.7%

RS(1) 84.9% –4.4 4.3 6.2 –21.0% 15.2% 25.9%

RS(0.96) 91.2% –4.5 3.3 5.5 –21.6% 13.0% 25.2%

index yesterday 98.2% 0.0 1.5 1.5 0.1% 4.7% 4.7%

even in the case of the simplest EWMA close-to-close volatility estimator, which is
actually a special case of GARCH model with fixed parameters. This points to some
possible inefficiencies in the estimation of the GARCH model or to some possible
misspecifications in the GARCH model. The positive thing is, that it is probably
not necessary to buy software to estimate the GARCH model in order to predict the
volatility, since the simple EWMA volatility estimator works even better.
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