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Left- and right-ideal simple semirings are characterized.

This note is an immediate continuation of [1]. Any prospective reader is fully
referred to the first part as concerns various prerequisities, terminology, references,
etc. (e.g., Lemma 1.14 from [1] is referred to as I.1.14).

1. E l e m e n t a r y o b s e r v a t i o n s ( a )

Let S be a non-trivial semiring such that the multiplicative semigroup S (·) is a
group. Then, of course, the semiring S is both left- and right-ideal-free.

1.1 Proposition. S is infinite and the group S (·) is torsionfree.

Proof. First, let a ∈ S and m ≥ 1 be such that am = 1 (= 1S ). Put b = a + a2 +

+ · · · + am. Then ab = b (see I.1.14), and hence a = 1. It follows that S (·) is
torsionfree and S is infinite. �

1.2 Proposition. Either S is additively idempotent or S has no additively idempotent
element.
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Proof. It is easy. �

1.3 (The dual semiring.) Put a∗b = (a−1+b−1)−1 for all a, b ∈ S . Clearly, a∗b = b∗a,
a + b = (a−1 ∗ b−1)−1 and a ∗ a = a

2 . Furthermore, a ∗ (b ∗ c) = (a−1 + (b ∗ c)−1)−1 =

= (a−1 + b−1 + c−1)−1 = ((a ∗ b)−1 + c−1)−1 = (a ∗ b) ∗ c. Consequently, S (∗) is a
commutative semigroup. We have (a(b∗c))−1 = (a(b−1+c−1)−1)−1 = (b−1+c−1)a−1 =

= b−1a−1 + c−1a−1 = (ab)−1 + (ac)−1 = ((ab)−1 + (ac)−1)−1)−1 = (ab ∗ ac)−1 so that
a(b ∗ c) = ab ∗ ac. Symmetrically, (b ∗ c)a = ba ∗ ca. We see that the algebraic
structure S (∗, ·) is again a semiring – the dual of or the conjugate to S (+, ·). The
mapping a �→ a−1 is an antiisomorphism of the semirings ((a + b)−1 = a−1 ∗ b−1 and
(ab)−1 = b−1a−1). Notice that the semiring S (∗, ·) is additively idempotent if and only
if the semiring S (+, ·) is such.

The dual (or conjugate) semiring S (∗, ·) is a parastrophe of the original semiring
S (+, ·). Of course, we also have the usual parastrophe, namely the opposite semiring
S (+, ◦), where a ◦ b = ba. Notice that the mapping a �→ a−1 is an isomorphism of
S (+, ◦) onto S (∗, ·) and conversely.

1.4 Assume that S (= S (+, ·)) is additively idempotent. Then S (∗, ·) is so and (a−1 +

+ b−1)(a+ (a ∗ b)) = 1+ b−1a+ 1 = 1+ b−1a = (a−1 + b−1)a. Thus a+ (a ∗ b) = a and,
symmetrically, a ∗ (a + b) = a for all a, b ∈ S . It means that the algebraic structure
S (+, ∗) is a lattice and S (·,+, ∗) is a lattice ordered group.

Conversely, let G = G(·,∨,∧) be a lattice ordered group, i.e., G(·) is a group,
G(∨,∧) is a lattice and a(b ∨ c) = ab ∨ ac, (b ∨ c)a = ba ∨ ca, a(b ∧ c) = ab ∧ ac,
(b ∧ c)a = ba ∧ ca for all a, b, c ∈ G.

We have (a∨(a−1∨b−1)−1)(a−1∨b−1) = a(a−1∨b−1)−1, and so a∨(a−1∨b−1)−1 = a.
Similarly, b∨ (a−1 ∨ b−1)−1 = b, (a∧ (a−1 ∨ b−1)−1) · (a−1 ∨ b−1) = a(a−1 ∨ b−1)∧ 1 =
= (1∨ab−1)∧1 = 1, a∧(a−1∨b−1)−1 = (a−1∨b−1)−1, b∧(a−1∨b−1)−1 = (a−1∨b−1)−1,
and hence (a∧b)∧ (a−1∨b−1)−1 = (a−1∨b−1)−1. On the other hand, a∧a∧b = a∧b,
(a∧b)−1a∧1 = 1, (a∧b)−1∧b−1 = b−1. Now, (a∧b)−1∨a−1 = (a∧b)−1∨ ((a∧b)−1∧
∧ a−1) = (a∧b)−1 and (a∧b)−1∨b−1 = (a∧b)−1. Thus a−1∨b−1∨(a∧b)−1 = (a∧b)−1,
(a−1 ∨ b−1)(a ∧ b) ∨ 1 = 1, (a ∧ b) ∨ (a−1 ∨ b−1)−1 = (a−1 ∨ b−1)−1 and, finally,
a ∧ b = (a ∧ b) ∧ ((a ∧ b) ∨ (a−1 ∨ b−1)−1) = (a ∧ b) ∧ (a−1 ∨ b−1)−1. Consequently,
a ∧ b = (a−1 ∨ b−1)−1 and, dually, a ∨ b = (a−1 ∧ b−1)−1. Now, it is clear that the
algebraic structures G(∨, ·) and G(∧, ·) are conjugate semirings.

Finally, let G = G(·,≤) be an ordered group, i.e., ≤ is a reflexive, antisymmetric
and transitive relation defined on G and a ≤ b implies ca ≤ cb and ac ≤ bc. Assume
that the ordered set G(≤) is a lattice and put a ∨ b = sup(a, b), a ∧ b = inf(a, b), so
that G(∨,∧) is an algebraic lattice. Now, ca ≤ c(a ∨ b), cb ≤ c(a ∨ b), and hence
ca∨cb ≤ c(a∨b) and c−1(ca∨cb) ≤ a∨b = c−1ca∨c−1cb. From this, d(e∨ f ) ≤ de∨d f
for all d, e, f ∈ G and we have proved that w(u ∨ v) = wu ∨ wv for all u, v,w ∈ G.
Quite similarly, w(u ∧ v) = wu ∧ wv. This means that G(·,∨,∧) is a lattice ordered
group in the algebraic sense.

1.5 Proposition. Z(S (·)) is a subsemiring of S .
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Proof. It is easy. �

1.6 Lemma. S is additively idempotent if and only if 1S + 1S = 1S .

Proof. It is easy. �

1.7 Proposition. Let 1S + 1S � 1S (see 1.2, 1.6) and let Q be the subgroup of S (·)
generated by all the elements n1S , n ≥ 1. Then Q is a subsemiring of S and Q � Q+

(the parasemifield of positive rational numbers). Moreover, Q ⊆ Z(S (·)) (see 1.5).

Proof. We have n1S · a = (1S + · · ·+ 1S )a = a+ · · ·+ a = na = a · n1S for all a ∈ S
and all positive integers n. Thus n1S ∈ Z(S (·)) and Q ⊆ Z(S (·)) follows from 1.5.

Let n1, n2,m1,m2 be positive integers. Then (n11S )(m11S ) + (n21S )(m21S )−1 =

= (n11S )(m21S )(m11S )−1(m21S )−1 + (n21S )(m11S )(m11S )−1(m21S )−1 = ((n1m21S ) +
+ (m2m11S ))(m1m21S )−1 and, further, (n11S )(m11S )−1 · (n21S )(m21S )−1 = (n1n21S )
(m1m21S )−1. If n1m−1

1 = n2m−1
2 then n1m2 = n2m1, n1m21S = n2m11S and (n11S )

(m11S )−1 = (n21S )(m21S )−1. Using these observations, we get a semiring homomor-
phism ϕ : Q+ → Q such that ϕ(nm−1) = (n1S )(m1S )−1. Clearly, ϕ(1) = 1S and
ϕ(Q+) = Q. Since the parasemifield Q+ is congruence-simple, the homomorphism ϕ
is an isomorphism. �

2. E l e m e n t a r y o b s e r v a t i o n ( b )

In this section, let S be a left-ideal-simple semiring.

2.1 Proposition. Just one of the following four cases takes place:
(1) S a = S for every a ∈ S ;
(2) S contains a multiplicatively absorbing element w and S a = S for every

a ∈ S \ {w};
(3) S is a zero multiplication ring of finite prime order;
(4) S is isomorphic to one of Z1, Z3, Z4, Z9 (see I.2.1).

Proof. Assume that (1) is not true. Then A = { a ∈ S | S a � S } � ∅. If a ∈ A then
S a is a proper left ideal, and therefore S a = {wa}, where wa is right multiplicatively
absorbing. The set B of right multiplicatively absorbing elements is an ideal. If B = S
then uv = v for all uv, ∈ S and every subsemigroup of S (+) is a left ideal. Then S (+)
has no non-trivial proper subsemigroups and we see that either |S | = 2 or S (+) is
a p-element group for some prime number p. Since uv = v, v = uv = (u + u)v =
= uv + uv = v + v, S (+) is idempotent and S � Z9 (see I.2.1). On the other hand, if
B � S then B = {w}, w being multiplicatively absorbing. We have S a = {w} for every
a ∈ A and it is easy to see that A is an ideal of S . If |A| = 1 then A = {w} and (2) is
true. Finally, if |A| ≥ 2 then A = S , |S S | = 1 and I.5.3 applies. �
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2.2 Proposition. Just one of the following seven cases takes place:
(1) S a = S for every a ∈ S ;
(2) 0S ∈ S is voth additively neutral and multiplicatively absorbing, T = S \ {0}

is a subsemiring of S and Ta = T for every a ∈ T;
(3) oS ∈ S is bi-absorbing, T = S \ {o} is a subsemiring of S and Ta = T for

every a ∈ T;
(4) oS ∈ S is bi-absorbing, Ta = T and o ∈ T + a for every a ∈ T = S \ {o},
(5) S is a skew-field;
(6) S is a zero multiplicaiton ring of finite prime order;
(7) S is isomorphic to one of Z1, Z3, Z4, Z9.

Proof. Assume that neither (1) nor (6) nor (7) is true. According to 2.1, S contains
a multiplicatively absorbing element w and S a = S for every a ∈ T = S \ {w}.

First, let w = 0S be additively neutral. For every a ∈ T , S a = S and the set
Ba = { b ∈ S | ba = 0 } is a left ideal. Since Ba � S , we have Ba = {0} and it follows
that TT ⊆ T and Ta = T for every a ∈ T . If S is not a ring then (2) follows from
I.3.6. On the other hand, if S is a ring then, for every a ∈ T , there is la ∈ T with
la = a and, for every b ∈ T , we have blaa = ba, (bla − b)a = 0 and bla = b. It follows
that la = 1S is the unity of the ring S (b((la1 − la2 ) = 0 and la1 = 1S = la2 ). For every
c ∈ T there is d ∈ T with dc = 1. Then (cd − 1)c = cdc − c = c − c = 0 and cd = 1.
Thus S is a skew-field.

Next, let w � 0S . By I.3.6, w = oS is bi-absorbing. For every a ∈ T , we have
S a = S and the set Ca =} c ∈ S | ca = o } is a left ideal. Since Ca � S , we have
Ca = {o} and it follows that TT ⊆ T and Ta = T . If T + T � T then the set
D = { d ∈ T | o ∈ d + T } is non-empty. But D ∪ {o} is an ideal of S . �

2.3 Lemma. Assume that S a = S for every a ∈ S such that a is not multiplicatively
absorbing (see 2.1). Define a relation � on S by (a, b) ∈ � iff xa = xb for every x ∈ S .
Then:
(i) � is a congruence of the semiring S .
(ii) If a, b, c ∈ S are such that ab = ac then either (b, c) ∈ � or a is multiplicatively
absorbing.
(iii) If a, b, c ∈ S are such that (ab, ab) ∈ � then either (b, c) ∈ � or a is multiplica-
tively absorbing.

Proof. It is easy. �

2.4 Proposition. Let S be finite. Then just one of the following eight cases takes
place:

(1) S is additively idempotent, oS ∈ S is bi-absorbing, Ta = T, S a = S and
o ∈ T + a for every a ∈ T = S \ {o};

(2) S is additively idempotent, oS ∈ S is bi-absorbing, T = S \ {o} is a subsemir-
ing of S and ab = a for all a, b ∈ T;
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(3) S is additively idempotent and ab = a for all a, b ∈ S ;
(4) S is additively idempotent 0S ∈ S is additively neutral and multiplicatively

absorbing, T = S \ {0} is a subsemiring of S and ab = a for all a, b ∈ T;
(5) S is additively constant, oS ∈ S is bi-absorbing and Ta = T, S a = S for

every a ∈ T = S \ {o};
(6) S is a (finite) field;
(7) S is a zero multiplication ring of (finite) prime order;
(8) S is isomorphic to one of Z1, Z3, Z4, Z9 (see I.2.1).

Proof. We can assume that either 2.1(1) or 2.1(2) is true. The rest of the proof is
divided into four parts (use 2.2).
(i) Let 2.1(1) be true and let � � S × S , where � is defined in 2.3. Then R = S/� is
a non-trivial semiring and the multiplicative semigroup R(·) is left cancellative. Since
S a = S for every a ∈ S , both the semigroups S (·) and R(·) are right divisible. Since
S is finite, the semigroups are right quasigroups. Consequently, R(·) is a quasigroup,
and hence a group. This contradicts 1.1.
(ii) Let 2.1(1) be true and let � = S × S . Then ab = ac for all a, b, c ∈ S and (3)
follows from I.5.2.
(iii) Let 2.1(2) be true and let w = 0S be additively neutral and multiplicatively ab-
sorbing. If S is a ring then S is a (finite) field by 2.2. If S is not a ring then T = S \{0}
is a subsemiring of S and Ta = T for every a ∈ T . Now, by (i) and (ii), we have
ab = a for all a, b ∈ T . Thus (4) is true.
(iv) Let 2.1(2) be true and let w = oS be bi-absorbing. If T+T ⊆ T , where T = S \{o},
then T is a subsemiring of S and Ta = T for every a ∈ T (use 2.2). Again, ab = a
for all a, b ∈ T and (2) is true. Finally, assume that T + T � T . By 2.2, Ta = T for
every a ∈ T and o ∈ T + a. If S is additively idempotent then (1) is true. If S is not
additively idempotent then S is additively constant by I.3.10. Thus (5) is true. �

2.5 Proposition. Let S be left-ideal-free. Then S a = S for every a ∈ S . Moreover, if
S is finite then ab = a for all a, b ∈ S .

Proof. Use 2.2 and 2.4. �

3. E l e m e n t a r y o b s e r v a t i o n s ( c )

In this section, let S be a non-trivial finite semiring containing a bi-absorbing ele-
ment oS such that Ta = T and o ∈ T + a for every a ∈ T = S \ {o} (see 2.4).

3.1 Lemma. (i) S is left-ideal-simple.
(ii) The multiplicative semigroup T (·) is a right quasigroup.
(iii) A = { a ∈ T | aa = a } � ∅.
(iv) Every element from A is right multiplicatively neutral in S .
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(v) ab = a for all a, b ∈ A.
(vi) For every a ∈ T there is a uniquely determined element l(a) ∈ A with l(a)a = a.

Proof. The semigroup T (·) is right divisible and it is a right quasigroup, since it is
finite. Consequently, for every a ∈ T there is a uniquely determined element l(a) ∈ T
with l(a)a = a. We have bl(a)a = ba for every b ∈ T , so that bl(a) = b and l(a) is
right multiplicatively neutral in S . Of course, A = { a ∈ T | l(a) = a } and the rest is
clear. �

3.2 Lemma. Let f ∈ A. Then:
(i) ( f T )(·) is a group.
(ii) ( f T ) ∪ {o} is a subsemiring of S .
(iii) f a + f b = o for all a, b ∈ T such that f a � f b.

Proof. By 3.1(iv), f a f b = f ab, f f a = f a and f a f = f a for all a, b ∈ S . Conse-
quently, f T is a subsemigroup of T (·) and f is the neutral element of f T . We have
f T f a = f Ta = f T for every a ∈ T , and so ( f T )(·) is a right quasigroup. Now, it is
clear that, in fact, it is a group. Furthermore, f a + f b = f (a + b) ∈ ( f T ) ∪ {o} for
all a, b ∈ T and R = ( f T ) ∪ {o} is a subsemiring of S . The assertions (i) and (ii) are
proved. If S is additively constant then (iii) is clear.

Assume that S is not additively constant. By 2.4, S is additively idempotent. Put
Q = { a ∈ R | a � a + (R \ {a}) }. Then o � Q and bQ ⊆ Q for every b ∈ R \ {o}.

Let Q � ∅. Then Q = R \ {o} = f T and if a, b ∈ R are such that a + b � o then
a+ b ∈ Q. But a+ b = (a+ b)+ a and a+ b = (a+ b)+ b It means that a = a+ b = b
and (iii) is true.

Finally, let Q = ∅. Choose a1 ∈ R \ {o}. Since a1 � Q, there is a2 ∈ R \ {a1} with
a1 = a1 + a2. Clearly, a2 � o and there is a3 ∈ R \ {a2} with a2 = a2 + a3. Since
a1 � a2, we have a3 � a1. Proceeding in this way, we find an infinite sequence of
pair-wise different elements a1, a2, a3, . . . , a contradiction. �

3.3 Lemma. Let f ∈ A. Then:
(i) (l(a), f a) � (l(b), f b) for all a, b ∈ T, a � b.
(ii) l(a)l(b) = l(a) = l(ab) and f a f b = f ab for all a, b ∈ T.

Proof. (i) If l(a) = l(b) and f a = f b then a = l(a)a = l(a) f a = l(a) f b = l(a)b =
= l(b)b = b (use 3.1).
(ii) f a f b = f ab by 3.1(iv). �

3.4 Lemma. Assume that S is additively idempotent. The following conditions are
equivalent for a, b ∈ T:

(i) a + b � o (i.e., a + b ∈ T).
(ii) a + b � o and l(a + b) = l(a) + l(b).

(iii) f a = f b for some f ∈ A.

math_12_2.indd   22 1.3.2013   9:45:30



23

(iv) f a = f b for every f ∈ A.
(v) ca = cb for some c ∈ T.

(vi) ua = ub for every u ∈ S .

Proof. If ca = cb for some c ∈ T then S = S c implies (vi). Consequently, the
conditions (iii),. . . ,(vi) are equivalent. If (iv) is true then f (a+b) = f a+ f b = f a � o
(S is additively idempotent), and hence a + b � o and (i) is true. Finally, if a + b � o
then f a + f b = f (a + b) � o and f a = f b by 3.2(iii). Hence (iv) is true and
(l(a)+l(b)) ·(a+b) = l(a)a+l(a)b+l(b)a+l(b)b = a+b. Thus l(a+b) = l(a)+l(b). �

3.5 Lemma. Let e, f ∈ A and a ∈ T. Then l(ea) = e and f ea = f a (i.e., (l(ea), f ea) =
= (e, f a)).

Proof. It is obvious. �

4. E x a m p l e s

4.1 Every two-element semiring is both left- and right-ideal-simple (see I.2.1).

4.2 Let S (+) be semilattice (i.e., an idempotent commutative semigroup). Define a
multiplication on S by ab = a for all a, b ∈ S . Them S = S (+, ·) becomes a bi-
idempotent semiring. If |S | ≥ 2 then this semiring is left-ideal-free and contains no
right multiplicatively absorbing element.

4.3 Let S 1 be a semiring of type 4.2. Let 0 � S 1 and put S = S 1 ∪ {0}, where 0 is
additively neutral and multiplicatively absorbing. Then S becomes a bi-idempotent
semiring that is left-ideal-simple. If |S 1| ≥ 2 then the semiring S is not congruence-
simple.

4.4 Let S 1 be a semiring of type 4.2. Let o � S 1 and put S = S 1 ∪ {o}, where o is
bi-absorbing. Then S becomes a bi-idempotent semiring that is left-ideal-simple. If
|S 1| ≥ 2 then S is not congruence-simple.

4.5 Let G = G(·) be a group, o � G, S = G ∪ {o}, a + b = a + o = o + a = o,
a + a = a and ao = o = oa for all a, b ∈ G, a � b. Then S is an additively idempotent
semiring, o = oS is bi-absorbing and the unity of G is multiplicatively neutral. The
semiring S is both left- and right-ideal-simple. If |G| ≥ 2 then S has no additively
neutral element. If |G| = 1 then S � Z6 (see I.2.1).

4.6 Let A = A(+) be a semilattice, G = G(·) a group and S = (A × G) ∪ {o}, where
o � A ×G. Define an addition and a multiplication on S by the following rules:
(a) x + o = o + x = xo = ox = o for every x ∈ S ;
(b) (a, u) + (b, v) = o for all a, b ∈ A, u, v ∈ G, u � v;
(c) (a, u) + (b, u) = (a + b, u) for all a, b ∈ A, u ∈ G;
(d) (a, u) · (b, v) = (a, uv) for all a, b ∈ A, u, v ∈ G.
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It is moderately tedious but easy to check that S becomes an additively idempotent
semiring and o = oS is bi-absorbing. Furthermore, S x = S for every x ∈ T = S \ {o},
and hence S is left-ideal-simple. We have o ∈ T + y for every y ∈ S . For every a ∈ A,
the set ({a} × G) ∪ {o} is a right ideal. Consequently, S is right-ideal-simple if and
only if |A| = 1 (see 4.4). For every a ∈ A, the element (a, 1) is right multiplicatively
neutral. If |A| ≥ 2 then the semiring S has no multiplicatively neutral element. The
semiring S has an additively neutral element if and only if |G| = 1 and A(+) has such
an element (then 0S = (0A, 1G)).

4.7 Let G = G(·) be a group, o � G, S = G ∪ {o} and x + y = xo = ox = o for all
x, y ∈ S . Then S is an additively constant semiring, o = oS is bi-absorbing and the
unity of G is multiplicatively neutral. The semiring S is both left- and right-ideal-
simple and has no additively neutral element. If |G| = 1 then S � Z2 (see I.2.1).

4.8 Let A be a non-empty set, o � A and S = A ∪ {o}. Put x + y = xo = ox = o for all
x, y ∈ S and ab = a for all a, b ∈ A. Then S is an additively constant semiring, o = oS

is bi-absorbing and S a = S for every a ∈ A. Consequently, S is left-ideal-simple.

4.9 Let A be a non-empty set, G (= G(·)) a group and S =)A × G) ∪ {o}, where
o � A ×G. Define an addition and a multiplication on S by the following rules:
(a) x + y = o = ox = xo for all x, y ∈ S ;
(b) (a, u)(b, v) = (a, uv) for all a, b ∈ A, u, v ∈ G.

It is easy to check that S becomes an additively constant semiring and that o = oS

is bi-absorbing. Furthermore, S x = S for every x ∈ T = S \ {o}, and hence S is
left-ideal-simple. We have o ∈ T + y for every y ∈ S . For every a ∈ A, the set
({a} × G) ∪ {o} is a right ideal. Consequently, S is right-ideal-simple if and only if
|A| = 1 (see 4.7). For every a ∈ A, the element (a, 1) is right multiplicatively neutral.
If |A| ≥ 2 then the semiring S has no multiplicatively neutral element. The semiring
S has no additively neutral element.

4.10 Let R be a semiring such that the multiplicative semigroup R(·) is a group.
Let the group R(·) be subgroup of a group T (·). Let o � T and S = T ∪ {o}. Define
an addition on S by x + o = o = o + x for every x ∈ S , a + b = o for a, b ∈ T ,
a−1b � R (equivalently, b−1 � R) and a + b = a(1 + a−1b) for a, b ∈ T , a−1b ∈ R
(equivalently, b−1a ∈ R). Setting xo = o = ox for every x ∈ S , we get an algebraic
structure S = S (+, ·) with two binary operations, where o = oS is apparently bi-
absorbing. T (·) is a subgroup of S (·) and S (·) is a monoid, 1S = 1T . If a, b ∈ T are
such that a−1b � R then b−1a � R and a + b = o = b + a. If a−1b ∈ R then b−1a ∈ R,
a−1b(1 + b−1a) = a−1b + 1 and a + b = a(1 + a−1b) = b(1 + b−1a) = b + a. It means
that S (+) is a commutative groupoid.
(i) If x, y, z ∈ S are such that o ∈ {x, y, z} then x + (y + z) = o = (x + y) + z.
(ii) Let a, b, c ∈ T be such that a−1b ∈ R and b−1c ∈ R. Then a−1c ∈ R, a + b =
= a(1+a−1b), b+ c = b(1+b−1c), c−1a(1+a−1b) = c−1a+ c−1b ∈ R, a−1b(1+b−1c) =
= a−1b + a−1c ∈ R and (a + b) + c = c + (a + b) = c(1 + c−1a(1 + a−1b)) = c(1 +
+ c−1a + c−1b) � o, a + (b + c) = a(1 + a−1b(1 + b−1c)) = a(1 + a−1b + a−1c) � o.
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But a−1c(1 + c−1a + c−1b) = a−1c + 1 + a−1b and (a + b) + c = c(1 + c−1a + c−1b) =
= a(1 + a−1b + a−1c) = a + (b + c).
(iii) Let a, b, c ∈ T be such that a−1b ∈ R and b−1c � R. Then a + b = a(1 + a−1b),
c−1a = c−1bb−1a � R, 1+ a−1b ∈ R, c−1a(1+ a−1b) � R and (a+ b)+ c = c+ (a+ b) =
= o = a + o = a + (b + c).
(iv) Let a, b, c ∈ T be such that a−1b � R and b−1c ∈ R. Similarly as in (iii), we have
(a + b) + c = o = a + (b + c).
(v) Let a, b, c ∈ T be such that a−1b � R and b−1c � R. Then (a+ b)+ c = o+ c = o =
= a + o = a + (b + c).
(vi) Combining (i),. . . ,(v), we have verified that S (+) is a commutative semigroup.
(vii) If x, y, z ∈ S are such that 0 ∈ {x, y, z} then x(y + z) = o = xy + xz and (y + z)x =
= o = yx + zx.
(viii) Let a, b, c ∈ T be such that b−1c ∈ R. Then (ab)−1(ac) = b−1c ∈ R and
a(b + c) = ab(1 + b−1c) = ab(1 + (an)−1(ac)) = ab + ac.
(ix) Let a, b, c ∈ T be such that b−1c � R. Then (ab)−1(ac) = b−1c � R and a(b + c) =
= o = ab + ac.
(x) Combining (vii), (viii) and (ix), we have verified that the multiplication is left
distributive over the addition. It means that S = S (+, ·) is a left near-semiring.
(xi) Let a, b, c ∈ T be such that b−1c ∈ R. Then b + c = b(1 + b−1c) and (b +
+ c)a = a−1b−1ca. If a−1b−1ca � R then ba + ca = o � (b + c)a. If a−1b−1ca ∈ R
then ba + ca = ba(1 + a−1b−1ca) � o. In the latter case, ba + ca = (b + c)a iff
a(1 + a−1b−1ca)a−1 = 1 + b−1c or 1 + a−1b−1ca = a−1(1 + b−1c)a.
(xii) Let a, b, c ∈ T be such that b−1c � R. Then b + c = o and (b + c)a = o. If
a−1b−1ca ∈ R then ba + ca � o = (b + c)a.
(xiii) Let a, b ∈ T and u ∈ R. then b−1bu = u, b+bu = b(1+u), (b+bu)a = b(1+u)a.
If a−1ua ∈ R then ba+bua = ba(1+a−1ua). Thus (b+bu)a = ba+bua iff a−1(1+u)a =
= 1 + a−1ua. If a−1ua � R then ba + bua = o.
(xiv) Combining (xi), (xii) and (xiii), we have verified that the near-semiring S is a
semiring if and only if R(·) is a normal subgroup of T (·) and a−1(1 + ua) = 1 + a−1ua
for all a ∈ T and u ∈ R. (Notice that these conditions are satisfied if R ⊆ Z(T (·)).)
(xv) Assume that S is a semiring (see (xiv)). The unity 1T = 1S is multiplicatively
neutral and o = oS is bi-absorbing. If |T | = 1 then S � Z6. If |T | ≥ 2 then S has no
additively neutral element. If |R| = 1 then S is as in 4.5.

We have a + a = (1 + 1)a = 2a for every a ∈ T . Consequently, either S is
additively idempotent or o is the only additively idempotent element of S . We have
also S a = S −aS for every a ∈ T . It follows that S is both left- and right-ideal-simple.
Of course, R = { a ∈ T | 1 + a � o }. If R � T then o ∈ T + x for every x ∈ S .

If S is not additively idempotent then 2S = 1S + 1 + S � 1S and the subgroup Q
of the semiring R generated by all nS , n ≥ 1, is a subsemiring of R and Q � Q+ (the
parasemifield of positive rational numbers). Clearly, Q ⊆ Z(T (·)).

In particular, if R(·) is an infinite cyclic group then S is additively idempotent and
we claim that R ⊆ Z(T (·)).
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Indeed, if R � Z(T (·)) then there is a ∈ T such that a−1ua = u−1 for every u ∈ R.
Now, (1 + u)−1 = a−1(1 + u)a = 1 + a−1ua = 1 + u−1, 1 = (1 + u)(1 + u−1) =
= 1 + u−1 + u + 1 = 1 + u + u−1, 1 + u = 1, 1 + u−1 = 1 for every u ∈ R. On the other
hand, 1 + u−1 = 1 implies u = u + 1, so that u = 1 and |R| = 1, a contradiction.

5. F i n i t e l e f t - i d e a l - s i m p l e s e m i r i n g s

In this part, let S be a finite left-ideal-simple semiring.

5.1 Theorem. Just one of the following eleven cases takes place:
(1) S is additively idempotent, oS ∈ S is bi-absorbing, 1S ∈ S is multiplicatively

neutral, T (·) is a subgroup of S (·), where T = S \ {oS } and a + b = o for all
a, b ∈ T, a � b (see 4.5);

(2) S is additively idempotent, oS ∈ S is bi-absorbing, S has no multiplicatively
neutral element, T (·) is a subgroup of S (·), where T = S \ {oS }, o ∈ a + T for
every a ∈ T and S is constructed in the way described in 4.6 (where |A| ≥ 2
and |G| ≥ 2; then |S | ≥ 5);

(3) S is additively idempotent, oS ∈ S is bi-absorbing, T = S \ {oS } is a sub-
semiring of S and ab = a for all a ∈ S , b ∈ T (see 4.4);

(4) S is additively idempotent and ab = a for all a, b ∈ S (see 4.2);
(5) S is additively idempotent, 0S ∈ S is additively neutral and multiplicatively

absorbing, T = S \ {0S } is a subsemiring of S and ab = a for all a ∈ S , b ∈ T
(see 4.3);

(6) S is additively constant, oS ∈ S is bi-absorbing, 1S ∈ S is multiplicatively
neutral and T (·) is a subgroup of S (·), where T = S \ {oS } (see 4.7);

(7) S is additively constant, oS ∈ S is bi-absorbing and ab = afor all a ∈ S and
b ∈ S \ {oS } (see 4.8);

(8) S is additively constant, oS is bi-absorbing, S has no multiplicatively neutral
element, ab � a for some a, b ∈ S \ {oS } and S is constructed in the way
described in 4.9 (where |A| ≥ 2 and |G| ≥ 2; then |S | ≥ 5);

(9) S is a (finite) field;
(10) S is a zero multiplication ring of prime order;
(11) S � Z1, Z3, Z4, Z9 (see I.2.1).

Proof. In view of 2.4, we will assume that either 2.4(1) or 2.4(5) is satisfied. In
both cases, S contains a bi-absorbing element o and we put T = S \{o}. We have Ta =
= T , o ∈ T + a and S a = S for every a ∈ T . Now, as in 3.1, put A = { a ∈ T | a2 = a }
and choose f ∈ A. Define a mapping ϕ : T → A × G, where G = f T , by ϕ(a) =
= (l(a), f a). By 3.3(i), the mapping ϕ is injective and, by 3.5, it is projective as well.
Thus ϕ is a biunique mapping of T onto A ×G and, by 3.3(ii), ϕ(ab) = (l(a), f ab) for
all a, b ∈ T . The rest of the proof is divided into six parts.
(i) Let S be additively idempotent and let |A| = 1. We have A = { f }, where f = 1S
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is multiplicatively neutral, and hence T = 1T = f T = G and T (·) is a group. Now,
using 3.4, we see that (1) is true.
(ii) Let S be additively idempotent and let |G| = 1. We have G = f T = { f }, so
that f a = f for every a ∈ T . Then e = e f = e f a = ea for all e ∈ A, a ∈ T ,
and hence l(a) = l(a)a = a. Thus A = T , ab = a for all a, b ∈ T . Moreover,
a(a + b) = a2 + ab = a + a = a and it follows that a + b ∈ T . Now, it is clear that (3)
is true.
(iii) Let S be additively idempotent and let |A| ≥ 2 and |G| ≥ 2. By 3.2(i), G(·) is a
group. If e1, e2 ∈ A then e1e2 = e1, e1(e1 + e2) = e2

1 + e1e2 = e1 + e1 = e1, so that
e1 + e2 � o. Of course, (e1 + e2)2 = e2

1 + e1e2 + e2e1 + e2
2 = e1 + e1 + e2 + e2 = e1 + e2

and e1 + e2 ∈ A. Thus A is a subsemiring of S . By 3.4, if a, b ∈ T then a + b � o iff
f a = f b; then l(a + b) = l(a) + l(b). By 3.1, l(ab) = l(a) = l(a)l(b) and f ab = f a f b
for all a, b ∈ T . Now, it is clear that (2) is true.
(iv) Let S be additively constant and let |A| = 1. By 3.2(i), T (·) = G(·) is a group and
(6) is true.
(v) Let S be additively constant and let |G| = 1. We have G = f T = { f } and A = T ,
ab = a for all a, b ∈ T . Thus (7) is true.
(vi) Let S be additively constant, |A| ≥ 2 and |G| ≥ 2. Then (8) is true. �

5.2 Corollary. Assume that 0S ∈ S . Then either 5.1(3) is true (and 0T ∈ T) or
5.1(4) is true (and 0 ∈ S (+)) or 5.1(5) is true or 5.1(9) is true or 5.1(10) is true or
S � Z3, Z4, Z9. �

5.3 Corollary. Assume that 0S ∈ S is multiplicatively absorbing. Then either 5.1(5)
is true or 5.1(9) is true or 5.1(10) is true or S � Z4. �

5.4 Corollary. Assume that 1S ∈ S . Then either 5.1(1) is true or 5.1(6) is true or
5.1(9) is true or S � Z5, Z6. �

5.5 Corollary. If 0S ∈ S and 1S ∈ S then either S is a field or S � Z5, Z6. �

5.6 Corollary. If S has no multiplicatively absorbing element then either 5.1(4) is
true or S � Z9. �

5.7 Corollary. If S is left-ideal-free then 5.1(4) is true. �

5.8 Corollary. If S is both left- and right-ideal-simple then either 5.1(1) is true or
5.1(6) is true or 5.1(9) is true or 5.1(10) is true or 5.1(11) is true or S � Z5, Z6, Z10.

�
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6. L e f t - a n d r i g h t - i d e a l - s i m p l e s e m i r i n g s

Let S be a left- and right-ideal-simple semiring.

6.1 Theorem. Just one of the following nine cases takes place:
(1) S (·) is a group (then S is infinite);
(2) 0S ∈ S is multiplicatively absorbing, T = S \ {0S } is a subsemiring of S and

T (·) is a group (then either S � Z5 or S is infinite;
(3) oS ∈ S is bi-absorbing, T = S \ {oS } is a subsemiring of S and T (·) is a group

(then either S � Z6 or S is infinite);
(4) S is additively idempotent, oS ∈ S is bi-absorbing, T (·) is a group and oS ∈
∈ T + a for every a ∈ T = S \ {oS };

(5) oS ∈ S is bi-absorbing, oS is the only additively idempotent element of S ,
T (·) is a group and 2a � oS ∈ T + a for every a ∈ T = S \ {oS };

(6) S is additively constant, oS ∈ S is bi-absorbing and T (·) is a group, where
T = S \ {oS } (see 4.7; then either S � Z2 or S is infinite);

(7) S is a skew-field;
(8) S is a zero-multiplication ring of prime order;
(9) S � Z1, Z3, Z4, Z9, Z10.

Proof. Assume that none of (1), (2), (3), (7), (8), and (9) is true. Now, considering
2.2 and the right hand form of 2.2, we conclude that o = oS ∈ S is bi-absorbing, T (·)
is a group and o ∈ T + a for every a ∈ T = S \ {o}. If S is additively idempotent
then (4) is true. If S is additively constant then (6) is true. Henceforth, assume that
a+b � o and 2c � c for some a, b, c ∈ S . Clearly, a, b, c ∈ T , 1+a−1b � o � 1+b−1a,
o � (1+a−1b)(1+b−1a) = 1+1+a−1b+b−1a, 1+1 � o, d+d � o and 2d = 2cc−1d �
� cc−1d = d for every d ∈ T . Thus (5) is true. �

6.2 Theorem. Let S satisfy 6.1(4) or (5). Then:
(i) The set R = { a ∈ T | 1+ a � o } is a subsemiring of S ,the multiplicative semigroup
R(·) is a subgroup of the group T (·), |T | ≥ 2 and T � R.
(ii) R(·) is a normal subgroup of T (·).
(iii) a−1(1 + u)a = 1 + a−1ua for all a ∈ T and u ∈ R.
(iv) If a, b ∈ T then a + b � o if and only if a−1b ∈ R (a + b = a(1 + a−1b)).
(v) 1T = 1S is multiplicatively neutral.
(vi) S has no additively neutral element.
(vii) If 1 + 1 = 1 then S is additively idempotent.
(viii) If 1 + 1 � 1 then o is the only additively idempotent element of S .
(ix) If R = {1} then S is additively idempotent and a + b = o for all a, b ∈ T, a � b
(see 4.5; of course, |T | ≥ 2).
(x) If |R| ≥ 2 then S is infinite. (Notice that S is constructed in the way described in
4.10.)

math_12_2.indd   28 1.3.2013   9:45:34



29

Proof. (i) We have 1 + 1 � o, and therefore 1 ∈ R. If a, b ∈ R then a−1 + 1 =
= a−1(1 + a) � o, 1 + a + b + ab = (1 + a)(1 + b) � o, and so 1 + ab � o and
1 + a + b � o. It follows that R is a subsemiring of S and R(·) is a subgroup of the
group T (·). Since 1 + 1 � o ∈ T + 1, we have |T | ≥ 2 and T � R.
(ii) If a ∈ T and u ∈ R then o � a−1(1 + u)a = 1 + a−1ua. Thus a−1ua ∈ R.

The remaining assertions are now easy. �

6.3 Corollary. Assume that 0S ∈ S . Then either 6.1(2) is true or 6.1(7) is true or
6.1(8) is true or S � Z3, Z4, Z6, Z9, Z10. (Notice that 0S is multiplicatively absorbing
in the first three cases and also if S � Z4.) �

6.4 Corollary. If 1S � S then either 6.1(8) is true or S � Z1, Z3, Z4, Z9, Z10. �

6.5 Corollary. Assume that 0S ∈ S and 1S ∈ S . Then either 6.1(2) is true or 6.1(7)
is true or S � Z6. (If either 0S is not multiplicatively absorbing or 0S = 1S then
S � Z6.) �

6.6 Corollary. Assume that 0S ∈ S , 1S ∈ S , a+b = 0S for some a ∈ S and b ∈ S \{0S }
and either 0S � 1S or |S | ≥ 3. Then S is a skew-field. �

6.7 Corollary. If S is left- and right-ideal-free then S (·) is a group. �
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[1] T. Kepka and P. Němec: Ideal-simple semirings I.

math_12_2.indd   29 1.3.2013   9:45:34


		webmaster@dml.cz
	2014-05-02T08:15:50+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




