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Transitive closures of binary relations α are investigated.

This note is a continuation of [1]. We therefore refer to [1] for terminology, nota-
tion, etc.

1. C o n f l u e n t r e l a t i o n s ( a )

Throughout this work, let α be a binary relation defined on a set S . Let γ =t(α),
δ =rt(α) (=tr(α)) and ε =t(δ ∪ δ−1) (=rt(α ∪ α−1)). Note that ε is the equivalence
relation generated by α.

Now let A denote the set of elements a ∈ S such that for all b, c ∈ S satisfying
(a, b), (a, c) ∈ α there exists at least one element d ∈ S such that (b, d), (c, d) ∈ δ.
Likewise, let B denote the set of all elements a ∈ S such that for every b, c ∈ S
satisfying (a, b), (a, c) ∈ δ (and a � b � c � a with (b, c) � δ and (c, b) � δ) there
exists at least one element d ∈ S such that (b, d), (c, d) ∈ δ.

An element a ∈ A will be called critical if there doesn’t exist an element b ∈ S�B
with b � a and (a, b) ∈ δ.

Lemma 1 Let a ∈ S be critical. Then a ∈ B.

Proof. Suppose b, c ∈ S such that (a, b), (a, c) ∈ δ. Since δ is reflexive, we may
assume that a � b � c � a. Since (a, b) ∈ γ and a � b, there exists an element
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b1 ∈ S such that (a, b1) ∈ α, (b1, b) ∈ δ, and b1 � a. Similarly, there exists an
element c1 ∈ S such that (a, c1) ∈ α, (c1, c) ∈ δ, and c1 � a. Since a ∈ A, there
exists a d1 ∈ S such that (b1, d1), (c1, d1) ∈ δ. Now let d2 = d1 if d1 � a and
let d2 = b1 if d1 = a. In both cases, (a, d2) ∈ δ and d2 � a. Since a is critical,
the elements b1, c1, and d2 are contained in B. Consequently, there are elements
d3, d4 ∈ S such that (b, d3), (d2, d3), (d2, d4), (c, d4) ∈ δ. Finally, there is a d ∈ S such
that (d3, d), (d4, d) ∈ δ. Clearly, (b, d), (c, d) ∈ δ and hence a ∈ B. �

Lemma 2 Suppose a, b ∈ S with (a, b) ∈ δ. If a ∈ B then b ∈ B.

Let A1 denote the set of elements a ∈ S such that for all b, c, d ∈ S satisfying
(a, b) ∈ δ and (b, c), (b, d) ∈ α (and b � c � d � b with (c, d) � δ and (d, c) � δ), there
exists at least one element e ∈ S such that (c, e), (d, e) ∈ δ.

Lemma 3 (i) B ⊆ A1 ⊆ A.
(ii) If (a, b) ∈ δ with a ∈ A1 then b ∈ A1.

Lemma 4 For every a ∈ A1�B there exists an infinite α-sequence, say (a0, a1,
a2, ...), such that a0 = a, ai ∈ A1�B, and ai � ai+1 for all i ≥ 0.

Proof. By Lemma 1, the element a0 = a is not critical. Thus (a0, b) ∈ δ for some
b ∈ S�B with b � a0. Consequently (a0, b) ∈ γ and there are elements a1, ..., am ∈ S ,
m ≥ 1, such that (a0, ..., am) is an α-sequence, am = b and ai � ai+1 for all i ∈
∈ {0, ..,m − 1}. By Lemmas 2 and 3, all of the elements a0, ..., am are contained in A1
and none of them are in B since b � B. Since am = b ∈ A1 is not critical, one can
proceed by induction to form an infinite α-sequence. �

Corollary 5 Assume that there exists no weakly pseudoirreducible infinite
α-sequence containing only elements from A1�B. Then A1 = B.

Corollary 6 Assume that there exists no weakly pseudoirreducible infinite
α-sequence. Then the reflexive and transitive closure δ =rt(α) of the relation α is
right (strictly) confluent if and only if the following condition is satisfied:
(A) For all a, b, c ∈ S such that (a, b), (a, c) ∈ α (and a � b � c � a with (b, c) � δ
and (c, b) � δ) there exists at least one element d ∈ S such that (b, d), (c, d) ∈ δ.

Example 7 Let S = {a, b, c, d} be a four-element set and let α = {(a, b), (b, a), (a, c),
(b, d)}. Then γ = α ∪ {(a, a), (b, b), (a, d), (b, c)} and thus α is irreflexive but not su-
perirreflexive. The elements c and d are right strictly isolated. Here B = {c, d} and
the relation δ is not right confluent. On the other hand, A = S , namely, condition (A)
is satisfied.

Example 8 Let S = {ai, bi, c, d | i ∈ Z} and α = {(ai, c), (bi, d), (ai, bi), (bi, ai+1) | i ∈
∈ Z}. Then γ = α ∪ {(ai, a j), (bi, b j), (ai, d), (bi, c) | i, j ∈ Z, i < j} and the relation
α is superirreflexive. Here the elements c and d are right strictly isolated. We have
B = {c, d} and the relation δ is not right confluent. On the other hand, the condition
(A) is satisfied. Notice that Z can be replaced by N.
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Remark 9 Suppose there exists no weakly pseudoirreducible infinite α-sequence.
Then α is antisymmetric and i(α) is superirreflexive. For every a ∈ S there exists at
least one right α-isolated element b ∈ S with (a, b) ∈ δ. If (a0, a1, a2, ...) is an infinite
α-sequence then am = am+1 = am+2 = · · · for some m ≥ 0. Note that if α is irreflexive
then there exists no infinite α-sequence at all.

Remark 10 Suppose that δ is right confluent. Let (a, b) ∈ ε. Then either (a, b) ∈ δ
or (b, a) ∈ δ or there exists an element c ∈ S such that (a, c), (b, c) ∈ δ. Hence
ε = δ ∪ δ−1 ∪ (δ−1 ◦ δ).

Remark 11 If A and B are two distinct blocks of the equivalence ε then (a, b) � δ
for all a ∈ A and b ∈ B. Thus, for practical purposes, one can always assume that
ε = S × S . In particular, δ is confluent if the restriction δ|A is confluent.

2. C o n f l u e n t r e l a t i o n s ( b )

Lemma 12 For every a ∈ S ,

R(a, γ) = R(a, α) ∪
⋃

b ∈ R(a, α)
b � a

R(b, γ).

Lemma 13 Let a ∈ S such that the set R(a, α) is finite and the set R(a, γ) is
infinite. Then:
(i) R(a, α) contains at least two elements, and
(ii) R(b, γ) is infinite for at least one element b ∈ R(a, α) with b � a.

Proof. This follows from Lemma 12. �

Lemma 14 Suppose that R(a, α) is finite for every a ∈ S . If there exists an element
b ∈ S such that R(b, γ) is infinite then there exists a weakly pseudoirreducible infinite
α-sequence (b0, b1, b2, ...) with b0 = b.

Proof. This follows inductively using Lemma 14 (ii). �

Corollary 15 Suppose there exists no weakly pseudoirreducible infinite α-sequence
and that R(a, α) is finite for any a ∈ S . Then the set R(a, γ) is finite for any a ∈ S .

Proposition 16 The following are equivalent:
(i) The irreflexive core i(α) is superirreflexive and R(a, γ) is finite fore every a ∈ S .
(ii) There exists no weakly pseudoirreducible infinite α-sequence and R(a, α) is finite
for every a ∈ S .

Proof. Suppose i(α) is superirreflexive and that R(a, γ) is finite fore every a ∈
∈ S . If (a0, a1, a2, ...) is a weakly pseudoirreducible infinite α-sequence then it is a
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i(α)-sequence and is therefore pseudoirreducible. But then R(a0, γ) would be infi-
nite. Thus, there doesn’t exist a weakly pseudoirreducible infinite α-sequence and
R(a, α) ⊆ R(a, γ) is finite for every a ∈ S .

Now suppose that there are no weakly pseudoirreducible infinite α-sequences and
that R(a, α) is finite for every a ∈ S . Hence, by Corollary 15, all of the sets R(a, γ)
are finite and thus i(α) is superirreflexive. �

Proposition 17 Suppose that i(α) is superirreflexive and that R(a, γ) is finite fore
every a ∈ S . Then the relation δ is right confluent if and only if condition (A) is
satisfied.

Proof. This follows from Corollary 6 and Proposition 16. �

3. C o n f l u e n t r e l a t i o n s ( c )

Proposition 18 The transitive and reflexive closure δ is right confluent if and only
if the following condition is satisfied:
(B) For all a, b ∈ S such that (a, b) ∈ ε there exists at least one c ∈ S such that
(a, c), (b, c) ∈ δ.

Proof. Suppose that δ is right confluent and that (a, b) ∈ ε = t(δ ∪δ−1). Then there
exists a sequence (d0, ..., dn) with n ≥ 1 such that d0 = a, dn = b and (di, di+1) ∈ δ∪δ−1

for every 0 ≤ i ≤ n − 1. Now we proceed by inducting on n.
For n = 1 either (a, b) ∈ δ or (a, b) ∈ δ−1. If (a, b) ∈ δ then let c = b otherwise let

c = a.
Now assume that n ≥ 2 and that there exists an element c1 ∈ S with (a, c1),

(dn−1, c1) ∈ δ. Also, (dn−1, b) = (dn−1, dn) ∈ δ ∪ δ−1. If (dn−1, b) ∈ δ then, since δ is
right confluent, there exists a c ∈ S such that (c1, c), (b, c) ∈ δ. Thus (a, c) ∈ δ and
(b, c) ∈ δ. Otherwise, if (dn−1, b) ∈ δ−1 then (b, dn−1) ∈ δ and thus (b, c1) ∈ δ. Now
just let c = c1. Hence, by induction on n, condition (B) is satisfied.

Now suppose that (B) is true and let a, b, c ∈ S such that (a, b), (a, c) ∈ δ. Then
(b, c) ∈ ε and by (B), there exists an element d ∈ S such that (b, d), (c, d) ∈ δ. Hence
δ is confluent. �

Proposition 19 Suppose that the relation δ is right confluent. Then for any a ∈ S
there exists at most one right α-isolated element b such that (a, b) ∈ ε.

Proof. Let b1 and b2 be right α-isolated elements such that (a, b1), (a, b2) ∈ ε.
Then (b1, b2) ∈ ε and by Proposition 18 there exists a c ∈ S with (b1, c), (b2, c) ∈ δ.
Since b1 and b2 are right α-isolated, and therefore right δ-isolated, b1 = c = b2. �

Corollary 20 Suppose that δ is right confluent. If a, b ∈ S are right α-isolated
with (a, b) ∈ ε then a = b.

Proposition 21 Suppose that there are no weakly pseudoirreducible infinite
α-sequences. Then the following are equivalent:
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(i) δ is right confluent.
(ii) For any a ∈ S there exists exactly one right α-isolated element b ∈ S such that
(a, b) ∈ ε.
(iii) For every a ∈ S there exists exactly one right α-isolated element b ∈ S such that
(a, b) ∈ δ.

Proof. First note that, by [1, 5.4(iii)], for any a ∈ S there exists at least one right
α-isolated element b ∈ S such that (a, b) ∈ δ. Now, by Proposition 19, (i) implies (ii).
Also, (iii) clearly follows from (ii). So suppose (iii) holds and let (a, b), (a, c) ∈ δ.
Then there are right α-isolated elements e, f ∈ S such that (b, e), (c, f ) ∈ δ. Thus
(a, e), (a, f ) ∈ δ and from (iii), e = f . �

Remark 22 (i) Every infinite α-sequence is weakly pseudoirreducible if and only
if α is irreflexive.
(ii) If there are no infinite weakly pseudoirreducible α-sequences then α is antisym-
metric and i(α) is superirreflexive.
(iii) The relation δ is confluent provided that for any a ∈ S there exists exactly one
right α-isolated element b ∈ S with (a, b) ∈ δ (see the proof of Proposition 21).

Example 23 Let S = {ai | i ≥ 0} ∪{b} with b � ai and α = {(a0, b), (ai, ai+1) | i ≥ 0}.
Then the relation δ is not confluent. On the other hand, for every u ∈ S there exists
exactly one v ∈ S (namely, v = b) such that (u, v) ∈ ε.

4. T e c h n i c a l r e s u l t s ( a )

Let α, γ, δ, and ε be as usual. The set of right α-isolated elements will be denoted
by Ir(α). From this point on we will assume that for every a ∈ S there exists at least
one element b ∈ Ir(α) such that (a, b) ∈ δ.

Let σ be a symmetric relation defined on S and let η = rt(σ) so that η is the
equivalence relation generated by σ. Now define a relation ρ on S by (a, b) ∈ ρ if and
only if (a, b) ∈ η and the following condition is true:
For every c, d ∈ S such that (a, c), (b, d) ∈ δ there exist elements e, f ∈ S such that
(c, e), (d, f ) ∈ δ and (e, f ) ∈ η.

Lemma 24 ρ is a symmetric relation and ρ ⊆ η.

Lemma 25 The following are equivalent:
(i) (a, b) ∈ ρ,
(ii) (a, b) ∈ η and if (a, c), (b, d) ∈ δ with c, d ∈ Ir(α) then (c, d) ∈ η.

Proof. Suppose (a, b) ∈ ρ. Then there exist elements c1, d1 ∈ S such that (c, c1),
(d, d1) ∈ δ and (c, d1) ∈ η. Since c, d ∈ Ir(α), c1 = c and d1 = d. Hence, (c, d) =
= (c1, d1) ∈ η.
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Now let (a, c), (b, d) ∈ δ. There exist elements c1, d1 ∈ Ir(α) such that (c, c1),
(d, d1) ∈ δ. Thus (a, c1), (b, d1) ∈ δ. From (ii), (c1, d1) ∈ η. Hence, by definition of ρ,
(a, b) ∈ ρ. �

Lemma 26 If (a, b), (b, b), (b, c) ∈ ρ then (a, c) ∈ ρ.

Proof. Since η is transitive, (a, c) ∈ η. Now it must be shown that Lemma 25 (ii)
is true for the pair (a, c). Let (a, d), (c, e) ∈ δ where d, e ∈ Ir(α). Since (a, b) ∈ ρ there
exist d1, f ∈ S such that (d, d1), (b, f ) ∈ δ and (d, f ) ∈ η. Since d ∈ Ir(α), d1 = d and
hence (d, f ) ∈ η. Furthermore, ( f , h) ∈ δ for some h ∈ Ir(α) and thus (b, h) ∈ δ. Since
(a, b) ∈ ρ, there are d2, h1 ∈ S such that (d, d2), (h, h1) ∈ δ and (d2, h1) ∈ η. But d, h ∈
∈ Ir(α) and hence d2 = d, h1 = h and (d, h) ∈ η. Similarly, there exists an element k ∈
∈ Ir(α) such that (b, k) ∈ δ and (e, k) ∈ η. Now (b, h) ∈ δ, (b, k) ∈ δ, (b, b) ∈ ρ
and h, k ∈ Ir(α). Therefore, (h, k) ∈ η. Since η is transitive, (d, e) ∈ η. Hence, by
Lemma 25, (a, c) ∈ ρ. �

Lemma 27 The relation ρ is an equivalence relation if and only if ρ is reflexive.

Proof. The relation ρ is symmetric. Thus, if ρ is reflexive then, by Lemma 26, ρ
would be transitive and therefore an equivalence relation. �

An ordered pair (a, b) ∈ η�ρ will be called critical if there doesn’t exist a pair
(c, d) ∈ η�ρ such that:

(i) (c, d) � (a, b),
(ii) (a, c) ∈ ρ, and
(iii) (b, d) ∈ ρ.

Clearly, (a, b) is critical if and only if (b, a) is critical.

Lemma 28 Suppose that there doesn’t exist any infinite weakly pseudoirreducible
α-sequence. Then for every pair (a, b) ∈ η�ρ there exists a critical pair (c, d) ∈ η�ρ
such that (a, c) ∈ δ and (b, d) ∈ δ.

Proof. Assume this is not true and let (a, b) ∈ η�ρ be a counter example. Then
(a, b) is not critical. Let a0 = a and b0 = b. Since (a, b) is not critical, there exists
a pair (a1, b1) ∈ η�ρ such that (a0, a1), (b0, b1) ∈ δ and (a1, b1) � (a0, b0). Now, by
induction, for i > 0 there exists a pair (ai, bi) ∈ η�ρ such that (ai−1, ai), (bi−1, bi) ∈ δ
and (ai, bi) � (ai−1, bi−1). Let I = {i ≥ 0 | ai � ai+1} and J = { j ≥ 0 | b j � b j+1}. Then
I ∪ J = No, and hence either I or J is infinite. Thus there exists an infinite weakly
pseudoirreducible α-sequence forming a contradiction. �

Lemma 29 If a, b ∈ Ir(α) and (a, b) ∈ η then (a, b) ∈ ρ.

Observation 30 Let (a, b) ∈ η. First note that if (a, c) ∈ δ with c ∈ Ir(α) and
c � a then there exists a c1 ∈ S�{a} such that (a, c1) ∈ α and (c1, c) ∈ δ. Likewise, if
(b, d) ∈ δ with d ∈ Ir(α) and d � b then there exists a d1 ∈ S�{b} such that (b, d1) ∈ α
and (d1, d) ∈ δ.
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Now assume that (c1, e), (b, f ) ∈ δ and that (e, f ) ∈ η. Assume also that (c1, c1) ∈ ρ.
Let g ∈ Ir(α) be such that (e, g) ∈ δ. Since (c1, c1) ∈ ρ, by definition of ρ, (c, g) ∈ η.
Now let h ∈ Ir(α) be such that ( f , h) ∈ δ. Assume that (e, f ) ∈ ρ. Then by definition of
ρ, (g, h) ∈ η. Since η is transitive, (c, h) ∈ η.

(i) Let b � f . Then there is an f1 ∈ S�{b} such that (b, f1) ∈ α and ( f1, f ) ∈ δ.
Now assume that ( f1, p), (d1, q) ∈ δ and that (p, q) ∈ η. Choose r, s ∈ Ir(α) such that
(p, r), (q, s) ∈ δ. Assume that ( f1, f1), (d1, d1) ∈ ρ. Then (h, r) ∈ η and (s, d) ∈ η.
Thus, since η is transitive, (c, r) ∈ η. Assume also that (p, q) ∈ ρ. Then (r, s) ∈ η and
hence (c, d) ∈ η.

(ii) Let b = f . Thus (e, f ) ∈ ρ. Assume that (e, p), (d1, q) ∈ δ and that (p, q) ∈ η.
Choose r, s ∈ Ir(α) such that (p, r), (q, s) ∈ δ. Let (d1, d1), (e, e), (p, q) ∈ ρ. Then
(d, s) ∈ η, (r, s) ∈ η and (g, r) ∈ η. Thus, since η is transitive, (c, d) ∈ η.

Observation 31 Let (a, b) ∈ η where b ∈ Ir(α) and let (a, c) ∈ δ where c ∈ Ir(α)
with c � a. Then there exists a c1 ∈ S�{a} such that (a, c1) ∈ α and (c1, c) ∈ δ. Let
d ∈ S such that (c1, d) ∈ δ and (d, b) ∈ η. Now choose e ∈ Ir(α) such that (d, e) ∈ δ.
If (c1, c1), (d, b) ∈ ρ then (c, e), (b, e) ∈ η. Hence (c, b) ∈ η.

5. T e c h n i c a l r e s u l t s ( b )

The preceding section is immediately continued.

Lemma 32 (a, a) ∈ ρ for every a ∈ Ir(α).

An element a ∈ S will be called 1-critical if (a, a) � ρ and for every b ∈ S�{a}
with (a, b) ∈ δ, (b, b) ∈ ρ.

Lemma 33 Assume that there is no infinite weakly pseudoirreducible α-sequence.
Then for every a ∈ S such that (a, a) � ρ there is at least one 1-critical element b ∈ S
such that (a, b) ∈ δ.

Proof. If a is 1-critical then, since (a, a) ∈ δ, we are done. Suppose a is not
1-critical and let a0 = a. Then there exists an element a1 ∈ S�{a0} such that (a0, a1) ∈
∈ δ and (a1, a1) � ρ. Then (a0, a1) ∈ γ and proceeding in this way, by induction,
there exists an infinite weakly pseudoirreducible γ-sequence forming a contradiction.
Hence, there exists an n ≥ 0, such that (a0, an) ∈ δ and an is 1-critical with (an, an) �
� ρ. �

Lemma 34 Suppose there is no infinite weakly pseudoirreducible α-sequence and
that there are no 1-critical elements. Then the relation ρ is an equivalence relation.

Proof. From Lemma 33, (a, a) ∈ ρ for every a ∈ S . Hence, by Lemma 27, ρ is an
equivalence relation. �
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Observation 35 Suppose (a, b), (a, c) ∈ δ with b, c ∈ Ir(α) and a � Ir(α). Then
b � a � c and thus there exist elements b1, c1 ∈ S�{a} such that (a, b1), (a, c1) ∈ α
and (b1, b), (c1, c) ∈ δ. Now suppose that there are elements d, e ∈ S such that
(b1, d), (c1, e) ∈ δ and (d, e) ∈ η. Choose f , g ∈ Ir(α) such that (d, f ), (e, g) ∈ δ. Then
(b1, f ), (c1, g) ∈ δ.

(i) Assume that (b1, b1), (c1, c1) ∈ ρ. This is true provided that a is 1-critical. Then
(b, f ) ∈ η and (c, g) ∈ η. Thus, if (d, e) ∈ ρ then ( f , g) ∈ η and hence (b, c) ∈ η.

(ii) Let a be 1-critical. Then, by Lemma 25, the elements b and c can be chosen
so that (b, c) � η. But then ( f , g) � η and (d, e) ∈ η�ρ. So if the pair (a, a) is critical
then d = a = e and hence the relation i(α) is not superirreflexive.

Lemma 36 Suppose that the following condition is satisfied:
(α) If a is 1-critical and (a, b), (a, c) ∈ α with b � a � c then there exist d, e ∈ S such
that (b, d), (c, e) ∈ δ and (d, e) ∈ η.
(i) Then there exist elements a1, a2 ∈ S and a 1-critical element a ∈ S�Ir(α) such
that (a, a1), (a, a2) ∈ γ and (a1, a2) ∈ η�ρ.
(ii) If i(α) is superirreflexive then the pair (a, a) is not critical.

Proof. This follows from 35. �

Proposition 37 Suppose that there exists no weakly pseudoirreducible infinite
α-sequence. Then the following are equivalent:
(i) The relation ρ is an equivalence relation.
(ii) The relation ρ is reflexive.
(iii) If a is 1-critical then the pair (a, a) is critical and if (a, b), (a, c) ∈ α with
b � a � c then (b, d), (c, e) ∈ δ and (d, e) ∈ η for some d, e ∈ S .

Proof. Suppose that ρ is reflexive. Then, by definition, there are no 1-critical
elements at all and condition (iii) is true.

Suppose condition (iii) is true. It then follows from Lemma 36 that there are no
1-critical elements. Hence, by Lemma 34, ρ is an equivalence relation. �

6. T e c h n i c a l r e s u l t s ( c )

Again, we continue with the preceding two sections.

Observation 38 Let a ∈ S be 1-critical and let (a, b), (a, c) ∈ δ be such that b, c ∈
∈ Ir(α) and a � Ir(α). Then b � a � c and there exist elements b1, c1 ∈ S�{a} such
that (a, b1), (a, c1) ∈ α and (b1, b), (c1, c) ∈ δ.

Now assume that (b1, d), (c1, e) ∈ δ and (d, e) ∈ η for some d, e ∈ S (property (α)
of Lemma 36).
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(i) Suppose (d, e) ∈ ρ. Since a is 1-critical, (b1, b1), (c1, c1) ∈ ρ and hence (d, f ) ∈ δ,
(b, f ) ∈ η, (e, g) ∈ δ, and (c, g) ∈ η for some f , g ∈ S . Furthermore, ( f , h), (g, k) ∈ δ
for some h, k ∈ Ir(α). Since (d, e) ∈ ρ, (h, k) ∈ η. Similarly, since (b1, h) ∈ δ and
(b1, b1) ∈ ρ, (b, h) ∈ η. Likewise (c, k) ∈ η. Hence, since η is an equivalence relation,
(b, c) ∈ η.

(ii) Now suppose (d, e) � ρ. Let ( f , g) ∈ η�ρ be a critical pair such that (d, f ), (e, g) ∈
∈ δ (see Lemma 28). Then (b1, f ), (e, g) ∈ δ and since (b1, b1), (c1, c1) ∈ ρ, there exist
elements h, k ∈ S such that ( f , h), (g, k) ∈ δ and (b, h), (c, k) ∈ η.

If f = h and g = k then (b, f ), (c, g) ∈ η and so (b, c) ∈ η. Now assume that either
f � h or g � k. Without loss we may assume that f � h. Thus there exists an element
f1 ∈ S�{ f } such that ( f , f1) ∈ α and ( f1, h) ∈ δ. Further assume that there exist
elements p, q ∈ S such that ( f1, p), (g, q) ∈ δ and (p, q) ∈ η. Thus there exist r, s ∈
∈ Ir(α) such that (h, r) ∈ δ and (k, s) ∈ δ. Since (b1, b1), (c1, c1) ∈ ρ, (b, r) ∈ η and
(c, s) ∈ η.

Now choose u, v ∈ Ir(α) such that (p, u), (q, v) ∈ δ.
(ii1) If either p = f or f1 = a or g = a then the relation i(α) is not superirreflexive
(ii2) Now assume that p � f , f1 � a and g � a. Since the pair ( f , g) is critical
we have (p, q) ∈ ρ and it follows that (u, v) ∈ η. Since a is 1-critical, by defini-
tion, ( f1, f1) ∈ ρ and hence (r, u) ∈ η. Likewise, (g, g) ∈ ρ and (v, s) ∈ η. Thus
(b, r), (r, u), (u, v), (v, s), (s, c) ∈ η and hence (b, c) ∈ η.

Lemma 39 Suppose that there exists no infinite weakly pseudoirreducible
α-sequence such that condition (α) in Lemma 36 is satisfied and the following condi-
tion is also satisfied:
(β) If (a, b) ∈ η�ρ is critical and (a, c) ∈ α with c � a then there exist elements
d, e ∈ S such that (c, d), (b, e) ∈ δ and (d, e) ∈ η.
Then the relation ρ is an equivalence relation.

Proof. Since there are no infinite weakly pseudoirreducible α-sequences, the re-
lation i(α) is superirreflexive. Now by using Lemma 25, Lemma 28, condition (β)
and condition (α) from Lemma 36, it follows from Observation 38 that there are no
1-critical elements in S . Hence, by Lemma 34, ρ is an equivalence relation. �

7. T e c h n i c a l r e s u l t s ( d )

Here an element a ∈ S will be called 2-critical if (a, b) ∈ η�ρ for some b ∈ S and
there are no elements c ∈ S�{a} and d ∈ S such that (a, c) ∈ δ and (c, d) ∈ η�ρ.

Lemma 40 Suppose that there exists no infinite weakly pseudoirreducible
α-sequence. If (a, b) ∈ η�ρ then (a, c) ∈ δ for at least one 2-critical element c ∈ S .

Proof. Let a0 = a and b0 = b. If a0 is not 2-critical then there exists an element
a1 ∈ S�{a0} such that (a0, a1) ∈ δ and (a1, b1) ∈ η�ρ for some b1 ∈ S . By induction,
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there exists a weakly pseudoirreducible infinite α-sequence (a0, a1, a2, ...). But, since
there is no weakly pseudoirreducible infinite α-sequence, an is 2-critical for some
n ≥ 0. �

Lemma 41 Suppose there is no weakly pseudoirreducible infinite α-sequence.
Then ρ = η provided that there are no 2-critical elements in S .

Proof. This immediately follows from Lemma 40. �

Observation 42 Let a be 2-critical with (a, b) ∈ η�ρ, (a, c) ∈ δ, and c ∈ Ir(α)�{a}.
Thus there exists an element c1 ∈ S�{a} such that (a, c1) ∈ α and (c1, c) ∈ δ.

Now suppose that (c1, d1), (b, e) ∈ δ and (d, e) ∈ η (condition (β) in Lemma 39).
Since a is 2-critical, (c1, c1) ∈ ρ. Since (c1, c1) ∈ ρ and (c1, c), (c1, d1) ∈ δ, by
definition of ρ, there exist elements c2, f ∈ S such that (c, c2), (d1, f ) ∈ δ and (c2, f ) ∈
∈ η. Since c ∈ Ir(α), c = c2 and hence (c, f ) ∈ η.

Let g ∈ Ir(α) so that ( f , g) ∈ δ. Since a is 2-critical with (a, c) ∈ δ and c � a,
(c, f ) ∈ ρ and hence (c, g) ∈ η. If d1 = a then i(α) would not be superirreflexive.
So assume that d1 � a. Then (d1, e) ∈ ρ and thus (e, h) ∈ δ with h ∈ Ir(α). Hence
(g, h) ∈ η and therefore (c, h) ∈ η.

Now let d ∈ Ir(α) such that (h, d) ∈ δ. Then, since (b, e), (e, h) ∈ δ, (b, d) ∈ δ.
Furthermore, (c, d) ∈ η provided that (g, d) ∈ η. But this can shown using the fact
that g ∈ Ir(α). Since g ∈ Ir(α) and a � Ir(α), g � a with (a, g) ∈ δ. Thus (g, h) ∈ ρ
and, by definition of ρ, (g, d) ∈ η. Hence, (c, d) ∈ η.

Lemma 43 Suppose that there does not exist an infinite weakly pseudoirreducible
α-sequence and that the following condition is satisfied:
(γ) If a is 2-critical with (a, b) ∈ η�ρ and (a, c) ∈ α for some c � a then (c, d), (b, e) ∈
∈ δ and (d, e) ∈ η for some d, e ∈ S .
Then the following is true:
(i) If a ∈ S is 2-critical with a � Ir(α), (a, b1) ∈ η�ρ and (a, c1) ∈ δ for some c ∈ Ir(α)
then there exists an element h ∈ Ir(α) such that (b1, h) ∈ δ and (c, h) ∈ η.

Proof. This follows from Observation 42. �

Lemma 44 Suppose that there does not exist a weakly pseudoirreducible infinite
α-sequence and that the condition (γ) in Lemma 43 is satisfied. If (a, b) ∈ η is a pair
such that a is 2-critical with a � Ir(α) and (b, b) ∈ ρ then (a, b) ∈ ρ.

Proof. From Lemma 25, it is enough to show that for c, d ∈ Ir(α) with (a, c), (b, d) ∈
∈ δ, (c, d) ∈ η. By Lemma 43 (i), there exists an element e ∈ Ir(α) such that (b, e) ∈ δ
and (c, e) ∈ η. Since (b, b) ∈ ρ and d, e ∈ Ir(α), (e, d) ∈ η. Hence (c, d) ∈ η. �

Lemma 45 Suppose that there exists no weakly pseudoirreducible infinite
α-sequence and that the condition (γ) in Lemma 43 is satisfied. If ρ is reflexive
(Proposition 37 (ii)) then every 2-critical element is contained in Ir(α).
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Proof. Let a ∈ S be 2-critical. Then there exists an element b ∈ S such that
(a, b) ∈ η�ρ. Assume that a � Ir(α). Since (b, b) ∈ ρ, by Lemma 45, (a, b) ∈ ρ.
Hence, by contradiction, a ∈ Ir(α). �

Lemma 46 Let a ∈ S be 2-critical. Then a is 1-critical if and only if (a, a) � ρ.
Moreover, in such a case, the pair (a, a) is critical.

Proof. If a is 1-critical then, by definition, (a, a) � ρ. Now suppose that (a, a) � ρ
and thus a � Ir(α). If (a, b) ∈ δ with b � a then, since (b, b) ∈ η and a is 2-critical,
(b, b) ∈ ρ. Hence a is 1-critical. Moreover, if (a, c), (a, d) ∈ δ with (c, d) ∈ η and
(c, d) � (a, a) then, since a is 2-critical with either c or d not equal to a, (c, d) ∈ ρ.
Therefore, (a, a) is critical. �

8. T e c h n i c a l r e s u l t s ( e )

Let a ∈ Ir(α) be such that (a, b) ∈ η�ρ for at least one b ∈ S . Note that b � Ir(α).
An element c ∈ S will be called a-critical if (a, c) ∈ η�ρ and there doesn’t exist an
element d ∈ S�{c} such that (c, d) ∈ δ and (a, d) ∈ η�ρ.

Lemma 47 Suppose that there does not exist a weakly pseudoirreducible infinite
α-sequence. If (a, b) ∈ η�ρ with a ∈ Ir(α) then there exists an a-critical element
c ∈ S such that (b, c) ∈ δ and thus (a, c) ∈ η�ρ.

Proof. Assume that there does not exist an a-critical element c ∈ S such that
(b, c) ∈ δ. Let b0 = b. Since (a, b0) ∈ η�ρ and b0 is not a-critical, there exists
an element b1 ∈ S�{b0} such that (b0, b1) ∈ δ and (a, b1) ∈ η�ρ. Proceeding by
induction, there exists a weakly pseudoirreducible infinite α-sequence (b0, b1, b2, ...)
forming a contradiction. �

Observation 48 Let a ∈ Ir(α) and let b be a-critical with (a, b) ∈ η�ρ. Then b �
� Ir(α). Now let c ∈ Ir(α) such that (b, c) ∈ δ. Since b � c, there exists an element
c1 ∈ S�{b} such that (b, c1) ∈ α and (c1, c) ∈ δ. Now suppose that (c1, d) ∈ δ where
(a, d) ∈ η. If d = b then i(α) is not superirreflexive. So suppose d � b. Then, since
(b, d) ∈ δ and b is a-critical, (a, d) ∈ ρ. Assume that (c1, c1) then, by definition of ρ,
there exists an e ∈ S such that (d, e) ∈ δ and (c, e) ∈ η. Since (a, d) ∈ ρ and (d, e) ∈ δ
there exists an f ∈ S such that (e, f ) ∈ δ and (a, f ) ∈ η. Choose g ∈ Ir(α) so that
( f , g) ∈ δ and g ∈ Ir(α). Since (c1, c1) ∈ ρ with (c1, g) ∈ δ and (c1, c) ∈ δ, (c, g) ∈ η.
Now if f = b then i(α) is not superirreflexive. So suppose f � b. Then, since (b, f ) ∈ δ
and b is a-critical, (a, f ) ∈ ρ and hence (a, g) ∈ η. Therefore, (a, c) ∈ η.

Lemma 49 Suppose that there is no weakly pseudoirreducible α-sequence. Sup-
pose further that the relation ρ is reflexive and that the following condition is satisfied:
(δ) If a ∈ Ir(α), b be a-critical with (a, b) ∈ η�ρ and c ∈ S�{b} with (b, c) ∈ α then
there exists an element d ∈ S such that (c, d) ∈ δ and (a, d) ∈ η.
Then (a1, b1) ∈ ρ for any (a1, b1) ∈ η with a1 ∈ Ir(α).
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Proof. Assume that (a1, b1) ∈ η�ρwith a1 ∈ Ir(α). Then b1 ∈ Ir(α) and, by Lemma
47, b1 can be chosen to be a1-critical. Thus, from Observation 48, the pair (a1, b1)
satisfies condition (ii) in Lemma 25. Thus (a1, b1) ∈ ρ forming a contradiction. �

9. L o c a l s u m m a r y

Proposition 50 Let α be a relation such that there are no weakly pseudo-irreduc-
ible α-sequences and let η be an equivalence relation defined on S . Consider the
following condition:
(C) For any (a, b) ∈ η and (a, c), (b, d) ∈ δ there exist elements e, f ∈ S such that
(c, e), (d, f ) ∈ δ and (e, f ) ∈ η.
Then condition (C) is satisfied if and only if the following two (formally weaker)
conditions are satisfied:
(D) For any (a, b), (a, c) ∈ α with b � a � c there exist elements d.e ∈ S such that
(b, d), (c, e) ∈ δ and (d, e) ∈ η;
(E) For any (a, b) ∈ η with a � b and (a, c) ∈ α with c � a there exist elements d.e ∈ S
such that (b, d), (c, e) ∈ δ and (d, e) ∈ η.

Proof. Suppose that (D) and (E) are true. Note that in order for (C) to be true ρ
must equal η.

Let (a, b) ∈ η. From Lemma 39, ρ is reflexive. Hence, if a = b then (a, b) ∈ ρ.
Furthermore, by Lemma 49, if either a ∈ Ir(α) or b ∈ Ir(α) then (a, b) ∈ ρ. Thus, from
Lemma 46, there are no 2-critical elements in S . Hence, by Lemma 40, (a, b) ∈ ρ. �

Example 51 Let

S = {a, b, c, d},
α = {(a, c), (b, d)}, and
η = {(a, b), (b, a)} ∪ idS .

Then α = γ, δ = α ∪ idS and there is no infinite α-sequence. Moreover, η and ρ =
= idS are equivalence relations and condition (D) in Proposition 50 is satisfied while
condition (E) in Proposition 50 is not satisfied.

Example 52 Let

S = {a, b, c, d, e, f , g, h, k},
α = {(a, c), (a, c), (b, d), (b, f ), (c, e), (c, g), ( f , h), (g, k)}, and
η = {(d, h), (h, d), (e, k), (k, e), ( f , g), (g, f )} ∪ idS .

There is no infinite α-sequence and Ir(α) = {d, e, h, k}. Moreover, η is an equivalence
relation and (d, e) � η. Thus condition (C) in Proposition 50 is not satisfied while
condition (D) in Proposition 50 is satisfied with ρ = η�{(a, a), ( f , g), (g, f )}. Thus ρ
is not reflexive and a is the only 1-critical element. Also, ( f , g) and (g, f ) are the only
critical pairs and the only 2-critical elements are f and g.
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An ordered pair (a, b) ∈ η�ρ will be called ultracritical if
(i) (a, b) is critical,
(ii) there doesn’t exist a pair (c, d) � (a, a) such that (a, c), (a, d) ∈ δ

and (c, d) ∈ η�ρ, and
(iii) there doesn’t exist a pair (e, f ) � (b, b) such that (b, e), (b, f ) ∈ δ

and (e, f ) ∈ η�ρ.
Note that if (a, b) is ultracritical then (b, a) is also ultracritical and either (a, a) ∈ ρ
((b, b) ∈ ρ respectfully) or (a, a) ((b, b) respectfully) is critical. If the latter is true
then a (b respectfully) is 1-critical. Also note that if (a, b) ∈ η�ρ where both a and b
are 2-critical then (a, b) is ultracritical.

Remark 53 Let (a, b) ∈ η�ρ be a critical pair that is not ultracritical. Then there
exists a pair (c, d) ∈ η�ρ such that at least one of the following four cases is true:
(1) (a, c), (a, d) ∈ δ with a � c;
(2) (a, c), (a, d) ∈ δ with a = c and a � d;
(3) (b, c), (b, d) ∈ δ with b � c;
(4) (b, c), (b, d) ∈ δ with b = c and b � c.

Remark 54 Suppose (a, b) ∈ η�ρ such that (a, b) ∈ δ with a � b (thus (a, b) ∈ γ).
Then the pair (a, b) is not ultracritical.

Example 55 Let S = {a, b, c}, α = {(a, b), (a, c)} and η = {(a, b), (b, a)} ∪ idS .
Then γ = α, δ = α ∪ idS , ρ = {(b, b), (c, c)} and there is no infinite α-sequence. Thus
η�ρ = {(a, a), (a, b), (b, a)} and both (a, b) and (b, a) are critical pairs. On the other
hand, there are no ultracritical pairs in S × S .

An ordered pair (a, b) ∈ η�ρ is called semi-ultracritical if:
(i) (a, b) is critical,
(ii) (c, d) ∈ ρ whenever (a, c), (a, d) ∈ δ with c � a � d, and
(iii) (e, f ) ∈ ρ whenever (b, e), (b, f ) ∈ δ with e � b � f .

Note that if (a, b) is semi-ultracritical then (b, a) is also semi-ultracritical and either
(a, a) ∈ ρ ((b, b) ∈ ρ respectfully) or a (b respectfully) is 1-critical. Also note that if
(a, b) is ultracritical then (a, b) is also semi-ultracritical.

Remark 56 Let (a, b) ∈ η�ρ be a critical pair that is not semi-ultracritical. Then
there exists a pair (c, d) ∈ η�ρ such that either (a, c), (a, d) ∈ δ with c � a � d or
(b, c), (b, d) ∈ δ with c � b � d.

Proposition 57 Suppose that there exists no weakly pseudoirreducible infinite
α-sequence. Then for every pair (a, b) ∈ η�ρ there is a semi-ultracritical pair
(c, d) ∈ η�ρ such that (a, c), (b, d) ∈ δ.

Proof. By Lemma 28, for every pair (a, b) ∈ η�ρ there is a critical pair (c, d) ∈
∈ η�ρ such that (a, c), (b, d) ∈ δ.
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Let (a0, b0) ∈ η�ρ be critical but not semi-ultracritical. Then there exists a pair
(a1, b1) ∈ η�ρ such that either (a0, a1), (a0, b1) ∈ δ with a1 � a0 � b1 (in which case
we let µ(0) = 0) or (b0, a1), (b0, b1) ∈ δwith a1 � b0 � b1 (in which case we let µ(0) =
= 1). Furthermore, there is a critical pair (a2, b2) ∈ η�ρ such that (a1, a2), (b1, b2) ∈ δ.

Continuing in this way, by induction, there exists a sequence α0 = (a0, b0), α1 =

= (a1, b1), α2 = (a2, b2), ... of pairs in η�ρ and a mapping µ : {2i} → {0, 1} such that:

(1) (a2i, b2i) is a critical pair for all i ≥ 0;
(2) (a2i+1, a2i+2), (b2i+1, b2i+2) ∈ δ for all i ≥ 0;
(3) if i ≥ 0 is such that µ(2i) = 0 then (a2i, a2i+1), (a2i, b2i+1) ∈ δ

with a2i+1 � a2i � b2i+1;
(4) if i ≥ 0 is such that µ(2i) = 1 then (b2i, a2i+1), (b2i, b2i+1) ∈ δ

with a2i+1 � b2i � b2i+1.

Now let c2i = a2i if µ(2i) = 0 an let c2i = b2i if µ(2i) = 1. Furthermore, let
c2i+1 = a2i+1 if µ(2i+2) = 0 an let c2i+1 = b2i+1 if µ(2i+2) = 1. Thus, using induction,
one can show that (c0, c1, c2, ...) is an infinite δ-sequence. In fact, (c2i, c2i+1) ∈ δ for
any i ≥ 0. It remains to show that (c2i+1, c2i+2) ∈ δ for any i ≥ 0.

If µ(2i + 2) = 0 then c2i+1 = a2i+1 and c2i+2 = a2i+2 and thus (c2i+1, c2i+2) =
= (a2i+1, a2i+2) ∈ δ. Likewise, if µ(2i + 2) = 1 then c2i+1 = b2i+1 and c2i+2 = b2i+2
and hence (c2i+1, c2i+2) = (b2i+1, b2i+2) ∈ δ. Therefore, the sequence (c0, c1, c2, ...) is
an infinite δ-sequence with c2i � c2i+1 for all i ≥ 0. But this contradicts the fact that
there is no weakly pseudoirreducible infinite α-sequence. �

Remark 58 Suppose that there exists no weakly pseudoirreducible infinite
α-sequence. Suppose also that conditions (D) and (E) in Proposition 50 are satisfied.

Let (a0, b0) ∈ η�ρ. By Proposition 57, there exists a semi-ultracritical pair (a, b) ∈
∈ η�ρ such that (a0, a), (b0, b) ∈ δ. Now, taking into account Observation 30, either
a ∈ Ir(α) with b � Ir(α) or b ∈ Ir(α) with a � Ir(α).

Without loss, assume that a ∈ Ir(α) and b � Ir(α). By Lemma 40 there exists an
a-critical element b1 ∈ S such that (b, b1) ∈ δ and (a, b1) ∈ η�ρ. Since the pair (a, b)
is critical, b1 = b and hence b is a-critical. By Observation 48, (a, b) ∈ ρ which forms
a contradiction. This here is another proof of Proposition 50.
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