Tomáš Kepka; Petr Němec Quasitrivial semimodules. IV.

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 54 (2013), No. 1, 3-22

Persistent URL: http://dml.cz/dmlcz/143708

Terms of use:

© Univerzita Karlova v Praze, 2013

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz

QUASITRIVIAL SEMIMODULES IV

TOMÁŠ KEPKA, PETR NĚMEC

Praha

Received September 19, 2012

In the paper, almost quasitrivial and critical semimodules are studied.

The foregoing parts [1], [2] and [3] are continued and the notation introduced in these parts is used. More attention is paid to almost quasitrivial and critical semimo-dules.

1. Preliminaries (A)

Let *S* be a non-trivial semiring and *M* be a (left *S*-)semimodule. We put $R(M) = \{x \in M | rtx = stx \text{ for all } r, s, t \in S \}$.

1.1 Lemma. (i) Either $R(M) = \emptyset$ or R(M) is a subsemimodule of M. (ii) $P(M) \subseteq Q(M) \subseteq R(M)$.

Proof. Easy to check.

1.2 Lemma. (i) $SR(M) \subseteq Q(M)$. (ii) SQ(M)=P(M).

Department of Algebra, MFF UK, Sokolovská 83, 186 75 Praha 8, Czech Republic (T. Kepka) Department of Mathematics, Czech University of Life Sciences, Kamýcká 129, 165 21 Praha 6 – Suchdol, Czech Republic (P. Němec)

Supported by the Grant Agency of the Czech Republic, grant GAČR 201/09/0296.

²⁰⁰⁰ Mathematics Subject Classification. 16Y60

Key words and phrases. semiring, semimodule, almost quasitrivial, critical

E-mail address: kepka@karlin.mff.cuni.cz, nemec@tf.czu.cz

(iii) SSR(M) = P(M). (iv) If $R(M) \neq \emptyset$ then $P(M) \neq \emptyset$.

Proof. (i) If $x \in R(M)$ and $r, s, t \in S$ then rtx = stx, and hence $tx \in Q(M)$. Thus $SR(M) \subseteq Q(M)$. (ii) If $x \in Q(M)$ and $r, s \in S$ then r(sx) = (rs)x = sx. Thus $sx \in P(M)$ and $SQ(M) \subseteq P(M)$. Of course, SP(M) = P(M). (iii) Combining (i) and (ii), we get $SSR(M) \subseteq SQ(M) \subseteq P(M)$. (iv) This follows immediately from (iii). □

1.3 Lemma. Assume that for all $r, s \in S$, $r \neq s$, there are elements $r_i, s_i, t_i \in S$, i = 1, 2, ..., n, such that $r = \sum r_i t_i$ and $s = \sum s_i t_i$. Then: (i) ra = sa for every $a \in R(M)$. (ii) R(M) = Q(M).

Proof. It is easy.

1.4 Lemma. If St = S for at least one $t \in S$ (e.g., if t is right multiplicatively neutral) then R(M) = Q(M).

Proof. Use 1.3(ii).

1.5 Proposition. Let the semimodule M be minimal. Then just one of the following four cases takes place:

- (1) $R(M) = \emptyset$ (then $Q(M) = P(M) = \emptyset$) or, equivalently, for every $x \in M$ there are elements $r, s, t \in S$ such that $rtx \neq stx$;
- (2) $R(M) = Q(M) = P(M) = \{w\}$, where Sw = w and 2w = w (then Sx = M for every $x \in M \setminus \{w\}$);
- (3) R(M) = Q(M) = M and $P(M) = \{w\}$ (then $SM = \{w\}$);
- (4) R(M) = Q(M) = P(M) = M (then rx = x for all $r \in S$, $x \in M$ and M(+) is idempotent).

Proof. If $R(M) = \emptyset$ then $Q(M) = \emptyset = P(M)$ by 1.2(ii) and (1) is true. If $R(M) = \{w\}$ then $Q(M) = P(M) = \{w\}$ follows from 1.1(ii) and 1.2(iv) and (2) is true. If $|R(M)| \ge 2$ then R(M) = M, since M is minimal and, using 1.2(iv), we get $Q(M) \ne \ne \emptyset \ne P(M)$. If P(M) = M then Q(M) = M and (4) is true.

Assume, finally, that $P(M) \neq M$. Since *M* is minimal, we get $P(M) = \{w\}$. If Q(M) = M then (3) is true (use 1.2(ii)). On the other hand, if $Q(M) \neq M$ then $Q(M) = P(M) = \{w\}$ and, by 1.2(i), $SM = SR(M) = \{w\}$. But then Q(M) = M, a contradiction.

1.7 Proposition. Let *M* be minimal of type 1.5(3). Then just one of the following three cases takes place:

- (1) M(+) is a two-element semilattice;
- (2) M(+) is a two-element constant semigroup;
- (3) M(+) is a finite cyclic group of prime order.

Proof. Let *M* be of type 1.5(3). Then $SM = \{w\}$, and hence every subsemigroup *N* of M(+) such that $w \in N$ is a subsemimodule of *M*. Since *M* is minimal, it follows that $\{w\}$ and *M* are the only subsemigroups of M(+) and the rest is clear. \Box

1.8 Proposition. Let M be minimal of type 1,5(4). Then M(+) is a two-element semilattice.

Proof. M(+) is idempotent and rx = x for all $r \in S$ and $x \in M$. Thus every subsemigroup of M(+) is a subsemimodule of M and the rest is clear.

The semimodule M will be called

- *cs*-quasitrivial if |SM| = 1;
- *id-quasitrivial* if P(M) = M (i.e., rx = x for all $r \in S$ and $x \in M$);
- quasitrivial if Q(M) = M;
- almost quasitrivial if R(M) = M.

1.9 Proposition. (i) *If M is cs-quasitrivial or id-quasitrivial then M is quasitrivial.* (ii) *If M is quasitrivial then M is almost quasitrivial.*

Proof. It is obvious.

1.10 Lemma. Assume that M = Sv for at least one $v \in M$. If ϱ is a congruence of M such that the factorsemimodule M/ϱ is almost quasitrivial then $\varrho = M \times M$.

Proof. Since M = Sv, we have v = tv for some $t \in S$. Since M/ϱ is almost quasitrivial, we see that $(rv, sv) = (rtv, stv) \in \varrho$ for all $r, s \in S$. Using the equality M = Sv one more, we get $\varrho = M \times M$.

1.11 Corollary. Assume that M is non-trivial, M = Sv for at least one $v \in M$ and that every proper factorsemimodule of M is almost quasitrivial. Then M is congruence-simple.

1.12 Lemma. Assume that the subsemimodule S x is quasitrivial for every $x \in M$. Then M is almost quasitrivial.

Proof. It is easy.

1.13 Lemma. Assume that M is not almost quasitrivial and that every proper subsemimodule of M is quasitrivial. Then $R(M) \neq M$ and Sv = M for every $v \in M \setminus R(M) \neq \emptyset$.

Proof. Since *M* is not almost quasitrivial, we have $R(M) \neq M$ and $M \setminus R(M) \neq \emptyset$. If $v \in M$ is such that $Sv \neq M$ then the subsemimodule Sv is quasitrivial. It means that |Sv| = 1 for every $r \in S$, and therefore $v \in R(M)$.

1.14 Lemma. Every proper subsemimodule is (almost) quasitrivial in each of the following three cases:

- (1) M is minimal;
- (2) *M* is (almost) quasitrivial;
- (3) *M* is finite, not (almost) quasitrivial and the order |M| of *M* is minimal with respect to these properties.

Proof. It is easy.

1.15 REMARK. Notice that there is at least one semimodule of type 1.14(3) if and only if there is at least one finite semimodule that is not (almost) quasitrivial. For instance, if *S* is finite and not left (almost) quasitrivial.

1.16 Lemma. Assume that $S = \{\sum_{i=1}^{n} r_i s_i | n \ge 1, r_i, s_i \in S\}$ (e.g., if S is ideal-simple and $|S| \ge 2$). Assume, moreover, that every proper subsemimodule of M is almost quasitrivial. Then Sv = M for every $v \in M \setminus R(M)$.

Proof. If $v \in M$ is such that $Sv \neq M$ then the subsemimodule Sv is almost quasitrivial, and so rtpv = stpv for all $r, s, t, p \in S$. Now, given $q \in S$, we have $q = \sum t_i p_i$, and therefore rqv = sqv. Thus $v \in R(M)$.

1.17 Proposition. Assume that M is not almost quasitrivial, while every proper subsemimodule of M is quasitrivial and every proper factorsemimodule of M is almost quasitrivial. Then:

(i) The semimodule M is congruence-simple.
(ii) M = S v for every v ∈ M \ R(M) (≠ Ø).

Proof. By 1.13, $M \setminus R(M) \neq \emptyset$ and M = Sv for every $v \in M \setminus R(M)$. Consequently, *M* is congruence-simple by 1.11.

1.18 Proposition. Assume that $S = \{\sum_{i=1}^{n} r_i s_i | n \ge 1, r_i, s_i \in S\}$. Assume, moreover, that M is not almost quasitrivial, while all proper subsemimodules and all proper factorsemimodules of M are almost quasitrivial. Then:

(i) The semimodule M is congruence-simple.

(ii) Sv = M for every $v \in M \setminus R(M)$.

Proof. By 1.16, Sv = M for every $v \in M \setminus R(M)$. Now, M is congruence-simple by 1.11.

1.19 Lemma. If M is a non-trivial semimodule then $S v \neq M$ for every $v \in R(M)$.

Proof. If *M* is quasitrivial then |Sx| = 1, and hence $Sx \neq M$ for every $x \in M$. Now, assume that *M* is not quasitrivial. Then $|Su| \ge 2$ for at least one $u \in M$ and we have $ru \neq su$ for some $r, s \in S$. If u = tv for some $t \in S$ and $v \in M$ then $rtv \neq stv$, and so $v \notin R(M)$. Consequently, if $v \in R(M)$ then $u \notin Sv$ and $Sv \neq M$ (of course, $(M \setminus Q(M)) \cap SR(M) \subseteq (M \setminus Q(M) \cap Q(M) = \emptyset)$.

In the sequel, a semimodule *M* will be called *decent* if M = Sv for every $v \in M \setminus R(M)$ (see 1.19).

1.20 Proposition. A semimodule M is decent in each of the following three cases:

- (1) *M* is almost quasitrivial;
- (2) Every proper subsemimodule of M is quasitrivial and every proper factorsemimodoule of M is almost quasitrivial;
- (3) $S = \{\sum_{i=1}^{n} r_i s_i | n \ge 1, r_i, s_i \in S\}$ and all proper subsemimodules and all proper factors emimodules of M are almost quasitrivial.

Proof. See 1.17 and 1.18.

1.21 Proposition. Let M be a decent semimodule such that M is not almost quasitrivial, but every proper factorsemimodule of M is almost quasitrivial. Then M is congruence-simple.

Proof. See 1.11.

1.22 Lemma. Let $w \in M$ and $N = \{a \in M \mid w \notin Sa\}$. Then: (i) $SN \subseteq N$. (ii) If $N = \emptyset$ then $w \in \bigcap Sa$, $a \in M$. (iii) If N = M then $w \notin \bigcup Sa$, $a \in M$. (iv) If N = M and w = x + y then, for every $z \in M$, either $x \notin Sz$ or $y \notin Sz$. (v) If $N = \{v\}$ then $Sv = \{v\}$. (vi) If $w \notin M + (M \setminus \{w\})$ then $N + M \subseteq N$.

Proof. It is easy.

1.23 Lemma. Let $w \in M$ be such that $w \notin M + (M \setminus \{w\})$. Put $N = \{a \in M | w \notin Sa\}$. Then:

(i) Either $N = \emptyset$ or N is an ideal of the semimodule M. (ii) $(N \times N) \cup id_M$ is a congruence of the semimodule M.

(iii) If $N = \{v\}$ then $v = o_M$, $So_M = \{o_M\}$ and $w \in Sa$ for every $a \neq o_M$.

Proof. Use 1.22.

1.24 Proposition. Let M be an ideal-simple semimodule such that $0_M \in M$ and $0_M \notin K + K$, where $K = M \setminus \{0_M\}$ (e.g., M idempotent). Then just one of the following three cases takes place:

- (1) $0_M \in Sa$ for every $a \in M$;
- (2) $o_M \in M$, $So_M = \{o_M\}$ and $0_M \in Sb$ for every $b \neq o_M$;
- (3) $0_M \notin Sc$ for every $c \in M$.

Proof. Use 1.23.

1.25 Proposition. Let M be a non-quasitrivial minimal ideal-simple semimodule such that $0_M \in M$ and $0_M \notin K + K$, where $K = M \setminus \{0_M\}$ (e.g., M idempotent). Then just one of the following three cases takes place:

- (1) *M* is strictly minimal and idempotent;
- (2) $Q(M) = P(M) = \{0_M\}$ and Sa = M for every $a \in K$ (either M is idempotent or 0_M is the only idempotent element);
- (3) $o_M \in M$, $Q(M) = P(M) = \{o_M\}$, M is idempotent and Sa = M for every $a \in K$.

Proof. Since *M* is minimal, we have Sa = M for every $a \in M \setminus Q(M)$. Furthermore, either $Q(M) = \emptyset$ or $Q(M) = \{w\}$ is a one-element set. We have $0_M \in Id(M)$, and hence either *M* is idempotent or $Id(M) = \{0_M\}$. If *M* is strictly minimal then *M* is idempotent.

Now, assume that 1.24(1) is true. Then $P(M) \subseteq \{0_M\}$. If $Q(M) = \emptyset$ then M is strictly minimal and (1) is true. If $Q(M) = \{w\}$ then $w = 0_M$ and (2) is true.

Next, let 1.24(2) be true. Then $P(M) = Q(M) = \{o_M\}, \{o_M, 0_M\} \subseteq Id(M)$, hence M is idempotent and (3) is true.

Finally, let 1.24(3) be satisfied. Then $Sc \neq M$ for every $c \in M$ and, since M is minimal, it follows that |Sc| = 1 and M is quasitrivial, a contradiction.

1.26 REMARK. Let *M* be as in 1.24 and, moreover, assume that *M* is minimal and quasitrivial (cf. 1.25). Using [1, 4.1], we see that |M| = 2 and *M* is isomorphic to one of the semimodules $Q_{1,S}$, $Q_{2,S}$ and $Q_{3,S}$. Consequently, *M* is idempotent and either id-quasitrivial or cs-quasitrivial.

1.27 REMARK. Let *M* be a minimal semimodule.

(i) If $0_S \in S$ and *M* is not quasitrivial then Sa = M for at least one $a \in M$ and we have $0_M = 0_S a \in M$.

(ii) If *M* is not quasitrivial then (by [1, 6.3]) there is at least one congruence ρ of *M* such that the factorsemimodule $N = M/\rho$ is minimal, congruence-simple (and hence ideal-simple) and not quasitrivial. Of course, if $0_M \in M$ then $0_n = 0_M/\rho \in N$.

(iii) If $0_M \in M$ and $K = M \setminus \{0_M\}$ then $L = \{a \in M | 0_M \in M + a\}$ is a subgroup of M(+). If M is idempotent then $L = \{0_M\}$ and $0_M \notin K + K$. If $S0_M = \{0_M\}$ then L

is a subsemimodule of *M*. Then either L = M and M(+) is a group or $L = \{0_M\}$ and $0_M \notin K + K$ again.

1.28 Lemma. Let M be a finite strictly minimal semimodule. Then for every $w \in M$ there is at least one $r \in S$ with $rM = \{w\}$.

Proof. We have S x = M for every $x \in M$. Consequently, $r_x x = o_M \in M$ for some $r_x \in S$ and, setting $r = \sum r_x$, $x \in M$, we get $rM = \{o_M\}$. But $So_M = M$, $w = so_M$ and $rM = \{w\}$.

2. Preliminaries (B)

2.1 Proposition. Let M be a finite semimodule that is not quasitrivial and whose order |M| is minimal possible. Then:

(i) All proper subsemimodules as well as all proper factorsemimodules of M are quasitrivial.

(ii) M is decent.

(iii) *M* is a one-generated semimodule.

(iv) If M is not almost quasitrivial then M is congruence-simple.

(v) *M* is subdirectly irreducible.

Proof. (i) This is obvious.

(ii) Combine (i) and 1.20(2).

(iii) If $u \in M \setminus Q(M)$ then $\langle u \rangle \not\subseteq Q(M)$, and hence $\langle u \rangle = M$.

(iv) Combine (ii) and 1.11.

(v) This is obvious.

2.2 Proposition. Let M be a finite semimodule that is not almost quasitrivial and whose order |M| is minimal possible. Then:

(i) All proper subsemimodules as well as all proper factorsemimodules of M are almost quasitrivial.

(ii) If M = Sv for at least one $v \in M$ then M is congruence-simple.

(iii) M is subdirectly irreducible.

(iv) M is a one-generated semimodule.

(v) If $M \neq Sx$ for every $x \in M$ then rtpx = stpx for all $r, s, t, p \in S$.

Proof. It is easy.

2.3 Proposition. Define a relation v on M by $(x, y) \in v$ if and only if rx = ry for all $r \in S$. Then:

(i) v is a congruence of the semimodule M.

(ii) If $v = M \times M$ and $R(M) \neq \emptyset$ then M is cs-quasitrivial.

(ii) If $u, v \in P(M)$ are such that $(uv) \in v$ then u = v (i.e., v|P(M) = id).

9

(iv) If $u, v \in Q(M)$ are such that $r_0u = s_0v$ for some $r_0, s_0 \in S$ then $(u, v) \in v$ and ru = sv for all $r, s \in S$. (v) If $u, v \in R(M)$ are such that $r_0p_0u = s_0q_0v$ for some $r_0, s_0, p_0, q_0 \in S$ then $(p_0u, q_0v) \in v$ and $rp_0u = sq_0v$ for all $r, s \in S$.

Proof. (i) Easy to see.

(ii) Since $R(M) \neq \emptyset$, we have $P(M) \neq \emptyset$ by 1.2(iv). Now, if $w \in P(M)$ then $(x, v) \in v$ for every $x \in M$, and hence rx = rw = w for every $r \in S$. Thus $SM = \{w\}$. (iii) We have u = rurv = v. (iv) We have $ru = r_0u = s_0v = sv$. (v) We have $rp_0u = r_0p_0u = s_0q_0v = sq_0v$.

2.4 Lemma. If $v = id_M$ then SR(M) = P(M).

Proof. If $u \in R(M)$ and $r, s, t \in S$ then rstu = rtu. It means that $(stu, tu) \in v = id_M$, stu = tu and $tu \in P(M)$.

2.5 Lemma. If $v = id_M$ then Q(M) = P(M).

Proof. If $u \in Q(M)$ and $r, s \in S$ then rsu = ru. It means that $(su, u) \in v = id_M$, su = u and $u \in P(M)$.

2.6 Proposition. Assume that M is congruence-simple. Then SR(M) = Q(M) = P(M).

Proof. If *M* is cs-quasitrivial then SR(M) = Q(M) = P(M) = M. If $R(M) = \emptyset$ then $SR(M) = Q(M) = P(M) = \emptyset$. Assume, therefore, that $R(M) \neq \emptyset$ and *M* is not cs-quasitrivial. According to 2.3(ii), we have $\nu \neq M \times M$. Since *M* is congruence-simple, we have $\nu = id_M$ and we can use 2.4 and 2.5.

2.7 Proposition. Assume that M = Sv for at least one $v \in M$ and that every proper subsemimodule of M is almost quasitrivial. Then SR(M) = Q(M) = P(M).

Proof. We can assume that M is non-trivial. Then M is congruence-simple by 1.11 and we can use 2.6.

2.8 Proposition. Assume that M is not almost quasitrivial, every proper subsemimodule of M is quasitrivial and every proper factorsemimodule of M is almost quasitrivial. Then SR(M) = Q(M) = P(M).

Proof. Just combine 2.7 and 1.17.

2.9 Proposition. Assume that $S = \{\sum_{i=1}^{n} r_i s_i\}$. Let M be not almost quasitrivial. If all proper subsemimodules and all proper factorsemimodules of M are almost quasitrivial then SR(M) = Q(M) = P(M).

Proof. Just combine 2.7 and 1.18.

3. Preliminaries (C)

A semimodule *M* is called *faithful* if for all $r, s \in S$, $r \neq s$, there is at least one $x \in M$ with $rx \neq sx$.

3.1 Lemma. Let M be a faithful semimodule such that $o_M \in M$. If $r \in S$ is such that $rM = \{o_M\}$ then $r = o_S$ is additively absorbing in S.

Proof. We have $(r + s)x = rx + sx = o_M + sx = o_M = rx$ for all $s \in S$ and $x \in M$. Since *M* is faithful, we get r + s = r, and hence $r = o_S$.

3.2 Lemma. Let *M* be a faithful semimodule such that $0_M \in M$. If $r \in S$ is such that $rM = \{0_M\}$ then $r = 0_S$ is additively neutral in *S*.

Proof. We have $(r + s)x = rx + sx = 0_M + sx = sx$ for all $s \in S$ and $x \in M$. Since *M* is faithful, we get r + s = s, and hence $r = 0_S$.

3.3 Lemma. Let M be a faithful semimodule such that $0_M \in M$ and $o_M \in M$. Then: (i) If $S o_M = \{o_M\}$ and if $r \in S$ is such that $r(M \setminus \{o_M\}) \subseteq \{0_M\}$ then $r = 0_S$. (ii) If $S 0_M = \{0_M\}$ and if $r \in S$ is such that $r(M \setminus \{0_M\}) \subseteq \{o_M\}$ then $r = o_S$.

Proof. It is easy.

3.4 Lemma. Assume that there is a faithful semimodule M such that M is almost quasitrivial. Then rt = st for all $r, s, t \in S$ (i.e., the (left S-)semimodule $_SS$ is quasitrivial.

Proof. We have rtx = stx for every $x \in M$.

3.5 Lemma. Define a relation μ_S on S by $(r, s) \in \mu_S$ if and only if rt = st for every $t \in S$. Then: (i) μ_S is a congruence of the semiring S. (ii) $\mu_S = id_S$ if and only if the (left S-)semimodule $_SS$ is faithful. (iii) $\mu_S = S \times S$ if and only if rt = st for all $r, s, t \in S$.

Proof. It is easy.

3.6 Proposition. Let *S* be a congruence-simple semiring. Then just one of the following five cases takes place:

- (1) The left S-semimodule $_{S}S$ is faithful;
- (2) *S* is a zero multiplication ring of finite prime order;
- (3) S(+) is a two-element semilattice and ab = b for all $a, b \in S$;
- (4) S(+) is a two-element semilattice and SS = {w} (there are two non-isomorphic cases);
- (5) S(+) is a two element constant semigroup and $S + S = \{\} = SS$.

Proof. In view of 3.5(ii), assume that $\mu_S \neq id_S$. Then $\mu_S = S \times S$ and rt = st for all $r, s, t \in S$. That is, there is a transformation α of S such that $ab = \alpha(b)$ for all $a, b \in S$. One checks readily that α is an endomorphism of the additive semigroup S(+) and $\alpha^2 = \alpha = 2\alpha$. Consequently, α is an endomorphism of the semiring S and ker(α) is a congruence of S.

Assume first that ker(α) = id_S. Then α is injective and $\alpha^2 = \alpha$ implies $\alpha = id_S$ and ab = b for all $a, b \in S$. We get a = (a + a)a = aa + aa = a + a, so that S(+) is a semilattice. Besides, every congruence of S(+) is a congruence of the semiring S. Thus S(+) is a congruence-simple semilattice and |S| = 2 immediately follows. This means that (3) is true.

Next, assume that $\ker(\alpha) \neq \operatorname{id}_S$. Then $\ker(\alpha) = S \times S$, α is constant and $SS = \{w\}$. Clearly, 2w = w and every congruence of S(+) is a congruence of the semiring S. Thus S(+) is a congruence-simple (commutative) semigroup and the rest is clear. \Box

3.7 Corollary. Let *S* be a congruence-simple semiring such that $|SS| \ge 2$ and either $|S| \ge 3$ or $ab \ne b$ ($ab \ne a$, resp.) for some $a, b \in S$. Then the left (right, resp.) semimodule $_{S}S$ (S_{S} , resp.) is faithful.

3.8 Proposition. Let *S* be a congruence-simple semiring. Then every semimodule is either faithful or quasitrivial.

Proof. The map $r \mapsto (x \mapsto rx)$ is a semiring homomorphism of the semiring *S* into the full endomorphism semiring End(M(+)) of the additive semigroup M(+). This homomorphism is injective if and only if *M* is faithful and it is constant if and only if *M* is quasitrivial. \Box

4. Critical semimodules (A)

A semimodule *M* will be called *1-critical* if it is faithful but none of proper subsemimodules and proper factorsemimodules of *M* is faithful.

4.1 Proposition. Let M be a finite faithful semimodule whose order |M| is minimal. Then M is 1-critical.

Proof. It is obvious.

4.2 Corollary. *If there is at least one finite faithful semimodule then there is at least one finite 1-critical semimodule.*

4.3 Proposition. Let the semiring *S* be congruence-simple, finite and not left quasitrivial. Then there is at least one finite 1-critical semimodule.

Proof. It follows from 3.2 that $_{S}S$ is faithful and we can use 4.2.

A semimodule M will be called 2-*critical* if M is not quasitrivial, but all proper subsemimodules and all proper factors emimodules of M are quasitrivial.

4.4 Proposition. Let M be a finite non-quasitrivial semimodule whose order |M| is minimal. Then M is 2-critical.

Proof. It is obvious.

4.5 Corollary. *If there is at least one finite non-quasitrivial semimodule then there is at least one finite 2-critical semimodule.*

4.6 Proposition. Let S be a finite semiring. Then:

(i) If for all $r, s \in S$, $r \neq s$, there is at least one $t \in S$ with $rt \neq st$ then there is at least one finite 1-critical semimodule.

(ii) If $rt \neq st$ for some $r, s, t \in S$ then there is at least one finite 2-critical semimodule.

Proof. (i) The left semimodule ${}_{S}S$ is faithful and we use 4.2. (ii) The left semimodule ${}_{S}S$ is not quasitrivial and we use 4.5.

4.7 Lemma. Let M be a semimodule and let $N = \{\sum_{i=1}^{n} r_i x_i | n \ge 1, r_i \in S, x_i \in M\}$. Then:

(i) N is a subsemimodule of M.

(ii) If M is minimal then either N = M or |N| = 1.

(iii) If N is faithful then the left semimodule $_{S}S$ is faithful.

(iv) If N is not quasitrivial then the left semimodule $_{S}S$ is not quasitrivial.

(v) N is quasitrivial if and only if M is almost quasitrivial.

Proof. It is easy.

4.8 CONSTRUCTION. Let *S* be a semiring and $\alpha \notin S$. Put $T = S \cup \{\alpha\}$ and $\alpha = 0_T$, where α is additively neutral and multiplicatively absorbing in *T*. Then *T* becomes a semiring. *T* is additively idempotent if and only if *S* is so. Similarly, *T* is commutative if and only if *S* is commutative, *T* is finite if and only if *S* is finite, etc.

4.9 CONSTRUCTION. Let *S* be a semiring. Put $R = S \times \{0, 1\}$ and define an addition and multiplication on *R* by the following rules: (a, 0) + (b, i) = (b, i) + (a, 0) = (a + b, i),

(a, 1) + (b, i) = (b, i) + (a, 1) = (a+b, 1), (a, 0)(b, 0) = (ab, 0), (a, 0)(b, 1) = (ab+a, 0),(a, 1)(b, 0) = (ab+b, 0) and (a, 1)(b, 1) = (ab+a+b, 1).

Clearly, the addition is both associative and commutative. As concerns the multiplication, we have (a, 0)((b, 0)(c, 0)) = (abc, 0) = ((a, 0)(b, 0))(c, 0), (a, 0)((b, 0)(c, 1)) == (a,0)(bc + b,0) = (abc + ab,0) = (ab,0)(c,1) = ((a,0)(b,0))(c,1), (a,0)((b, 1)(c, 0)) = (a, 0)(bc + c, 0) = (abc + ac, 0) = (ab + a, 0)(c, 0) = ((a, 0)(b, 1))(c, 0),(a, 1)((b, 0)(c, 0)) = (a, 1)(bc, 0) = (ab+bc, 0) = (ab+b, 0)(c, 0) = ((a, 1)(b, 0))(c, 0),(a, 0)((b, 1)(c, 1)) = (a, 0)(bc + b + c, 1) = (abc + ab + ac + a, 0) = (ab + a, 0)(c, 1) = (ab + a, 0)(c, 1)(c, 1)(c,= ((a, 0)(b, 1))(c, 1), (a, 1)((b, 0)(c, 1)) = (a, 1)(bc + b, 0) = (abc + ab + bc + b, 0) == (ab + b, 0)(c, 1) = ((a, 1)(b, 0))(c, 1), (a, 1)((b, 1)(c, 0)) = (a, 1)(bc + c, 0) = (abc + c, 0)(a, 1)(b, 1)(c, 0) = (ab + a + b, 1)(c, 0) = ((a, 1)(b, 1))(c, 0) and (a, 1)((b, 1)(c, 1)) = (ab + a + b, 1)(c, 0) = ((a, 1)(b, 1))(c, 0)= (a, 1)(bc + b + c, 1) = (abc + ab + ac + bc + a + b + c, 1) = (ab + a + b, 1)(c, 1) == ((a, 1)(b, 1))(c, 1). We have checked that the multiplication is associative. Furthermore, (a, 0)((b, 0) + (c, 0)) = (a, 0)(b + c, 0) = (ab + ac, 0) = (ab, 0) + (ac, 0) = (ab, 0) + (ab, 0) + (ac, 0) = (ab, 0) + (ac, 0) = (ab, 0) + (ac, 0) = (ab, 0) + (ab, 0) + (ab, 0) + (ab, 0) + (ab, 0) = (ab, 0) + (ab, 0) + (ab, 0) + (ab, 0) = (ab, 0) + (ab, 0) = (ab, 0) + (ab,= (a, 0)(b, 0) + (a, 0)(c, 0), (a, 0)((b, 0) + (c, 1)) = (a, 0)(b + c, 1) = (ab + ac + a, 0) = (ab + ac += (ab, 0) + (ac + a, 0) = (a, 0)(b, 0) + (a, 0)(c, 1), (a, 1)((b, 0) + (c, 0)) = (a, 1)(b + a)(a, 0)(c, 1)(+ c, 0) = (ab + ac + b + c, 0) = (ab + b, 0) + (ac + c, 0) + (a, 1)(b, 0) + (a, 1)(c, 0)(a, 1)+(ac+c, 0) = (a, 1)(b, 1)+(a, 1)(c, 0). On the other hand, (a, 0)((b, 1)+(c, 1)) = (a, 1)(b, 1)+(a, 1)(c, 0). = (a, 0)(b+c, 1)+(ab+ac+a, 0) and (a, 0)(b, 1)+(a, 0)(c, 1) = (ab+a, 0)+(ac+a, 0) = (ab+a, 0)+(ac+a, 0)= (ab + ac + 2a, 0), (a, 1)((b, 1) + (c, 1)) = (a, 1)(b + c, 1) = (ab + ac + a + b + c, 1) and (a, 1)(b, 1)+(a, 1)(c, 1) = (ab+a+b, 1)+(ac+a+c, 1) = (ab+ac+2a+b+c, 1). Consequently, the algebraic structure $R = R(+, \cdot)$ is a semiring if and only if ab + ac + 2a == ab + ac + a and ab + ac + a + b + c = ab + ac + 2a + b + c for all $a, b, c \in S$. Of course, these equations are satisfied if the semiring S is additively idempotent.

If $0_S \in S$ then $(0_S, 0) = 0_R$ is additively neutral in R. If $o_S \in S$ then $(o_S, 1) = o_R$ is additively absorbing in R. If $0_S \in S$ and 0_S is multiplicatively absorbing in S then $(0_S, 1) = 1_R$ is multiplicatively neutral in R. If $w \in S$ is multiplicatively absorbing in S then (w, 0) is multiplicatively absorbing in R. If S is additively idempotent then R is so.

4.10 Proposition. Let *S* be an additively idempotent semiring. Then *S* is a subsemiring of a semiring *R* such that:

- (1) *R* is additively idempotent;
- (2) $0_R \in R$, 0_R is multiplicatively absorbing;
- (3) $1_R \in R$;
- (4) If $o_S \in S$ then $o_R \in R$;
- (5) If S is finite then $|R| \le 2|S| + 2$.

Proof. Combine 4.8 and 4.9.

4.11 Proposition. Let a semiring S be a subsemiring of a semiring R such that $1_R \in R$. Put $Q = S \cup (S + 1_R) \cup \{1_R\}$. Then Q is a subsemirign of R, $1_R = 1_Q \in Q$ and S is an ideal of the semiring Q.

Proof. It is easy.

4.12 Proposition. Let *S* be a finite additively idempotent semiring. Then there is a finite 1-critical semimodule *M* such that $|M| \le 2|S| + 1$.

Proof. By 4.10 and 4.11, S is a subsemiring of a finite additively idempotent semiring Q such that $|Q| \le 2|S| + 1$ and $1_Q \in Q$. Of course, ${}_SQ$ is a faithful left S-semimodule.

4.13 Lemma. |S| = 1 if and only if there is a faithful quasitrivial semimodule.

Proof. It is obvious.

4.14 Lemma. Assume that $|S| \ge 2$. Then every faithful 2-critical semimodule is *1*-critical.

Proof. Use 4.13.

5. Critical semimodules (B)

Throughout this section, let *S* be a congruence-simple semiring.

- **5.1 Lemma.** *Let M be a semimodule. Then just one of the following two cases holds:*
 - (1) *M* is faithful;
 - (2) *M* is quasitrivial.

Proof. Due to 3.8, at least one of the two cases is true. On the other hand, if M were both faithful and quasitrivial then |S| = 1, a contradiction.

5.2 Lemma. Assume that *S* is not left quasitrivial. Let *M* be a semimodule. Then just one of the following two cases holds:

- (1) *M* is faithful and not almost quasitrivial;
- (2) *M* is quasitrivial.

Proof. Combine 5.1 nad 3.4.

5.3 Proposition. A semimodule is 1-critical if and only if it is 2-critical.

Proof. This follows immediately from 5.1.

A semimodule satisfying the equivalent conditions of 5.3 will be called *critical*.

5.4 Proposition. Assume that *S* is not left quasitrivial. The following conditions are equivalent for a seminmodule *M*:

- (i) *M* is critical.
- (ii) *M* is not almost quasitrivial, but all proper subsemimodules and all proper factorsemimodules of *M* are quasitrivial.

15

(iii) *M* is not almost quasitrivial, but all proper subsemimodules and all proper factorsemimodules of *M* are almost quasitrivial.

Proof. Combine 5.2 and 5.3.

5.5 Proposition. *Assume that S is not left quasitrivial. Let M be a critical semimodule. Then:*

(i) M is faithful and not almost quasitrivial.
(ii) M is congruence-simple.
(iii) R(M) = Q(M) = P(M) ≠ M and M = S v for every v ∈ M \ P(M).
(iv) Every proper subsemimodule of M is id-quasitrivial and contained in P(M).
(v) Either P(M) = Ø and M is strictly minimal or P(M) is the greatest proper subsemimodule of M.
(vi) M is minimal if and only if |P(M)| = 1.

Proof. M is faithful and not almost quasitrivial by 5.2. By 1.20, *M* is decent, i.e. M = Sv for every $v \in M \setminus R(M)$, and *M* is congruence-simple by 1.21. By 2.6, we have Q(M) = P(M). Now, if *N* is a proper subsemimodule of *M* then *N* is quasitrivial, and hence $N \subseteq Q(M) = P(M)$ and *N* is id-quasitrivial. Since *M* is not almost quasitrivial, we have $R(M) \neq M$ and $R(M) \subseteq P(M)$. Thus R(M) = Q(M) = P(M) and the rest is clear.

5.6 Lemma. Let *M* be a minimal semimodule that is congruence-simple and not quasitrivial (see [1, 4.1]). Then *M* is critical.

Proof. It is easy.

5.7 Lemma. Let M be a minimal semimodule that is not quasitrivial (see [1, 4.1]). Then there is at least one congruence ρ on M such that the factorsemimodule M/ρ is minimal, congruence-simple and critical.

Proof. Combine [1, 6.3] and 5.6.

5.8 Lemma. Let M be an almost minimal semimodule that is congruence-simple and $|M| \ge 3$. Then M is critical.

Proof. Use [3, 1.1].

5.9 Lemma. Let M be an almost minimal semimodule such that $|M| \ge 3$. Then there is at least one congruence η of M such that the factorsemimodule M/η is almost minimal, congruence-simple and critical.

Proof. Combine [3, 1.4] and 5.8.

Let *S* be a semiring and *M* be a (left *S*-)semimodule. For all $u, v \in M$ define a relation $\alpha_{u,v}$ on *M* by $(a, b) \in \alpha_{u,v}$ if and only if $\{u, v\} \notin \{ra, rb\}$ for every $r \in S$.

6.1 Lemma. (i) $\alpha_{u,v}$ is symmetric. (ii) If $u \neq v$ then $\alpha_{u,v}$ is reflexive. (iii) If u = v then $\alpha_{u,u}$ is reflexive if and only if $u \notin \bigcup Sa$, $a \in M$.

Proof. (i) This follows immediately from the definition of the relation $\alpha_{u,v}$.

(ii) We have $|\{ra\}| = 1$ and $|\{u, v\}| = 2$.

(ii) This is obvious.

6.2 Lemma. If $(a, b) \in \alpha_{u,v}$ then $(ra, rb) \in \alpha_{u,v}$ for every $r \in S$.

Proof. It is easy.

6.3 Lemma. Assume that $u \neq v$ and that the following two conditions are satisfied:

(a) $u \notin M + N$, where $N = M \setminus \{u\}$;

(b) $v \notin K + u$, where $K = M \setminus \{v\}$.

Then $(a + c, b + c) \in \alpha_{u,v}$ for all $(a, b) \in \alpha_{u,v}$ and $c \in M$.

Proof. Let, on the contrary, u = r(a + c) and v = r(b + c) for some $r \in S$. Then ra + rc = u and, using (a), we get ra = u = rc. Further, rb + u = rb + rc = v, and hence rb = v by (b). Thus ra = u and rb = v, $(u, v) \in \alpha_{u,v}$, a contradiction.

Let $\beta_{u,v}$ denote the transitive closure of $\alpha_{u,v}$. Clearly, $\beta_{u,v}$ is symmetric.

6.4 Lemma. If $u \neq v$ then $\beta_{u,v}$ is an equivalence.

Proof. Use 6.1(i),(ii).

6.5 Lemma. If $(a, b) \in \beta_{u,v}$ then $(ra, rb) \in \beta_{u,v}$ for every $r \in S$.

Proof. Use 6.2.

6.6 Lemma. Assume that $u \neq v$ and the the conditions 6.3(*a*),(*b*) are satisfied. Then $\beta_{u,v}$ is a congruence of the semimodule *M*. In particular, if *M* is congruence-simple then either $\alpha_{u,v} = \beta_{u,v} = \operatorname{id}_M \operatorname{or} \beta_{u,v} = M \times M$.

Proof. Use 6.4, 6.3 and 6.5.

6.7 Lemma. Assume $u \neq v$. The following conditions are equivalent:

(i) $\alpha_{u,v} = \mathrm{id}_M$. (ii) $\beta_{u,v} = \mathrm{id}_M$.

17

(iii) For all $a, b \in M$, $a \neq b$, there is at least one $r \in S$ such that either ra = u, rb = v or ra = v, rb = u.

Proof. It is easy.

6.8 Lemma. Assume that *M* is idempotent and that $u \neq u + v = v$. If $a, b \in M$ are such that a + b = b and $(a, b) \notin \alpha_{u,v}$ then ra = u and rb = v for at least one $r \in S$.

Proof. We have $\{u, v\} = \{ra, rb\}$ for some $r \in S$. If ra = v then rb = u and ra = v = u + v = rb + ra = r(b + a) = rb = u. Thus u = v, a contradiction.

6.9 Lemma. Assume that $u = 0_M$ and $0_M \notin N + N$, where $N = M \setminus \{0_M\}$. Then the conditions 6.3(*a*),(*b*) are satisfied.

Proof. First, if $u = 0_M = a + b$ for some $a, b \in M$ then either $a = 0_M$ or $b = 0_M$. But then $b = 0_M$ or $a = 0_M$. In both cases, we get $a = 0_M = b$ and 6.3(a) is true. The condition 6.3(b) is clear.

6.10 Lemma. Assume that M is idempotent and $u = 0_M$. Then the conditions (6.3(a), (b)) are satisfied for every $v \in M$.

Proof. It is easy to see that $0_M \notin N + N$, where $N = M \setminus \{0_M\}$ and 6.9 applies. \Box

6.11 REMARK. Assume that *M* is idempotent and put $x \le y$ iff y = x + y; then \le is a compatible relation of order on *M*. Now, it is clear that the condition 6.3(a) is satisfied if and only if the element *u* is minimal in the ordered set $M(\le)$.

If $u \leq v$ then 6.3(b) is true. If u < v and v is irreducible then 6.3(b) is true as well. Thus 6.3(b) is satisfied if and only if either $u \leq v$ or $u \leq v$ and $v \neq y + u$ for every $z \in M$ such that z < v.

6.12 Lemma. Assume that M is idempotent and u is minimal in $M(\leq)$. If either $u \leq v$, or u < v and v is irreducible, then the conditions 6.3(a),(b) are satisfied.

Proof. See 6.11.

6.13 Lemma. Assume that $Su = \{u\}$. If $(u, b) \in \alpha_{u,v}$ then $v \notin Sb$.

Proof. If v = rb for some $r \in S$ then $\{u, v\} = \{ru, rb\}$ and $(u, b) \notin \alpha_{u,v}$, a contradiction.

6.14 Lemma. Assume that $Sv = \{v\}$. If $(a, v) \in \alpha_{u,v}$ then $u \notin Sa$.

Proof. Similar to that of 6.13.

18

6.15 Lemma. Assume that $Su = \{u\}$ and $v \in Sz$ for every $z \in M \setminus \{u\}$. If $(u, a) \in \beta_{u,v}$ then a = u.

Proof. Assume $a \neq u$. Since $(u, a) \in \beta_{u,v}$, there is $b \in M$ with $u \neq b$ and $(u, b \in \alpha_{u,v})$. By 6.13, we have $v \notin Sb$, a contradiction.

6.16 Lemma. Assume that $Sv = \{v\}$ and $u \in Sz$ for every $z \in M \setminus \{v\}$. If $(a, v) \in \beta_{u,v}$ then a = v.

Proof. Similar to that of 6.15.

6.17 Proposition. Assume that M is idempotent and congruence-simple. Assume further that $u \neq v$, u is minimal in $M(\leq)$, either $u \leq v$ or u < v and $v \neq x + u$ for every x < v and that at least one of the following two conditions is satisfied:

(1) $Su = \{u\}$ and $v \in Sz$ for every $z \in M \setminus \{u\}$;

(2) $Sv = \{v\}$ and $u \in Sz$ for every $z \in M \setminus \{v\}$.

Then:

(i) For all $a, b \in M$ such that $a \neq b$ there is at least one $r \in S$ such that either ra = u, rb = v or ra = v, rb = u.

(ii) If u < v then for all $a, b \in M$ such that a < b there is at least one $r \in S$ such that ra = u and rb = v.

Proof. By 6.11 (see also 6.12), the conditions 6.3(a),(b) are satisfied. Now, by 6.6, the relation $\beta_{u,v}$ is a congruence of the semimodule M. Using 6.15 or 6.16, we see that $(u, v) \notin \beta_{u,v}$, and so $\beta_{u,v} \neq M \times M$. Since M is congruence-simple, we get $\beta_{u,v} = id_M$. Thus $\alpha_{u,v} = id_M$ as well and (i) follows from 6.7. As for (ii), if ru = b and rv = a then ru = b = a + b = rv + ru = r(v + u) = rv = a, so that a = b, a contradiction. \Box

6.18 Proposition. Assume that M is idempotent, congruence-simple and that $0_M \in M$. Assume further that $v \neq 0_M$ and at least one of the following two conditions is satisfied:

(1) $S 0_M = \{0_M\}$ and $v \in Sz$ for every $z \neq 0_M$;

(2) $Sv = \{v\}$ and $0_M \in Sz$ for every $z \neq v$.

Then:

(i) For all $a, b \in M$, $a \neq b$, there is at least one $r \in S$ such that either $ra = 0_M$, rb = vor ra = v, $rb = 0_M$.

(ii) If a < b then there is at least one $r \in S$ such that $ra = 0_M$ and rb = v.

Proof. Use 6.17, where $u = 0_M$.

6.19 Proposition. Assume that M is idempotent, congruence-simple and that $o_M \in M$. Assume further that u is minimal in $M(\leq)$, $o_M \neq x + u$ for every $x \neq o_M$ and that at least one of the following two conditions is satisfied:

(1) $S u = \{u\}$ and $o_M \in Sz$ for every $z \neq u$;

(2) S0_M = {o_M} and u ∈ Sz for every z ≠ o_M.
Then:
(i) For all a, b ∈ M such that a ≠ b, there is at least one r ∈ S such that either ra = u, rb = o_M or ra = o_M, rb = u.
(ii) If a < b then there is at least one r ∈ S such that ra = u and rb = o_M.

Proof. Use 6.17, where $v = o_M$.

7. Observations continued

Let S be a semiring and M be an idempotent and congruence-simple (left S-)semimodule.

7.1 Let $u \in M$ be minimal in $M(\leq)$ and let $v \in M$ be such that u < v and $v \neq w + u$ for every $w \in M$, w < v. (Notice that these conditions are satisfied for $u = 0_M$.)

7.1.1 Proposition. Assume that $Su = \{u\}$ (i.e., $u \in P(M)$) and $v \in Sz$ for every $z \in M \setminus \{u\}$). Then, for all $a, b \in M$ such that $b \leq a$, there is at least one $r \in S$ such that ra = u and rb = v.

Proof. Since $b \leq a$, we have a < b and, by 6.17(ii), there is $r \in S$ with ra = u and r(a + b) = v. Now, v = r(a + b) = ra + rb = u + rb and $rb \leq v$. According to our assumptions, we get rb = v.

7.1.2 Proposition. Assume that $Su = \{u\}$ and $v \in Sz$ for every $z \neq u$. Let $a \in M$ be such that $a \neq o_M$ and the set $P_a = \{b \mid b \notin a\}$ is finite. Then there is at least one $r \in S$ such that $rb \geq v$ for every $b \in P_a$ and rc = u for every $c \in M \setminus P_a$.

Proof. Since $a \neq 0_M$, the set P_a is non-empty. Of course, $a \in M \setminus P_a$ and this set is non-empty as well. By 7.1.1, for every $b \in P_a$ there is $r_b \in S$ with $r_b a = u$ and $r_b b = v$. Put $r = \sum r_b$, $b \in P_a$. Then $ra = \sum r_b a = \sum u$ and, since u is minimal in $M(\leq)$, it follows that rc = u. Finally, $rb = r_b b + \sum \cdots \ge r_b b = v$.

7.1.3 Corollary. Assume that $Su = \{u\}$, $o_M \in M$ and $o_m \in Sz$ for every $z \neq u$. Let $a \in M$ be such that $a \neq o_M$ and the set P_a is finite. Then there is at least one $r \in S$ such that $rb = o_M$ for every $b \in P_a$ and rc = u for every $c \in M \setminus P_a$.

7.1.4 Proposition. Assume that $Su = \{u\}$, $o_M \in M$, $o_M \in Sz$ for every $z \neq u$. Let $a \in M$ be such that $a \neq o_M$ and ther set P_a is finite. Then for every $s \in S$ there is at least one $r \in S$ such that $rb = so_M$ for every $b \in P_a$ and rc = u for every $c \in M \setminus P_a$.

Proof. This follows easily from 7.1.3.

7.2 Corollary. Assume that $0_M \in M$, $o_M \in M$, $S0_M = \{0_M\}$ and $o_M \in Sx$ for every $x \neq o_M$. Let $a \in M$ be such that $a \neq o_M$ and the set $P_a = \{b \mid a + b \neq a\}$ is finite. Then there is $r \in S$ such that $rb = o_M$ for every $b \in P_a$ and $rc = 0_M$ for every $c \in M \setminus P_a$.

7.3 Corollary. Assume that $0_M \in M$, $o_M \in M$, $S0_M = \{0_M\}$, $So_M = S$ and $o_M \in Sx$ for every $x \neq 0_M$. Let $a \in M$ be such that $a \neq o_M$ and the set $P_a = \{b \mid a + b \neq a\}$ is finite. Then for every $w \in M$ there is $r \in S$ such that rb = w for every $b \in P_a$ and $rc = 0_M$ for every $c \in M \setminus P_a$.

7.4 Let $u \in M$ be minimal in $M(\leq)$ and let $v \in M$ be such that u < v and $v \neq w + u$ for every $w \in M$, w < v. (Notice that these conditions are satisfied for $u = 0_M$.)

7.4.1 Proposition. Assume that $Sv = \{v\}$ (i.e., $v \in P(M)$ and $u \in Sz$ for every $z \in M \setminus \{v\}$). Then, for all $a, b, \in M$ such that $b \leq a$, there is at least one $r \in S$ such that ra = u and rb = v.

Proof. It is the same as that of 7.1.1.

7.4.2 Proposition. Assume that $Sv = \{v\}$ and $u \in Sz$ for every $z \neq v$. Let $a \in M$ be such that $a \neq o_M$ and the set P_a is finite. Then there is at least one $r \in S$ such that $rb \geq v$ for every $b \in P_a$ and rc = u for every $c \in M \setminus P_a$.

Proof. Using 7.4.1, we can proceed in the same way as in the proof of 7.1.2. \Box

7.4.3 Corollary. Assume that $o_M \in M$, $So_M = \{o_M\}$ and $u \in Sz$ for every $z \neq o_M$. Let $a \in M$ be such that $a \neq o_M$ and the set P_a is finite. Then there is at least one $r \in S$ such that $rb = o_M$ for every $b \in P_a$ and rc = u for every $c \in M \setminus P_a$.

7.4.4 Proposition. Assume that $o_M \in M$, $So_M = \{o_M\}$ and $u \in Sz$ for every $z \neq o_M$. Let $a \in M$ be such that $a \neq o_M$ and the set P_a is finite. Then for every $s \in S$ there is at least one $r \in S$ such that $rb = o_M$ for every $b \in P_a$ and rc = su for every $c \in M \setminus P_a$.

Proof. This follows easily from 7.4.3.

7.5 Corollary. Assume that $0_M \in M$, $o_M \in M$, $So_M = \{o_M\}$ and $0_M \in Sx$ for every $x \neq o_M$. Let $a \in M$ be such that $a \neq o_M$ and the set $P_a = \{b \mid a + b \neq a\}$ is finite. Then there is $r \in S$ such that $rb = o_M$ for every $b \in P_a$ and $rc = 0_M$ for every $c \in M \setminus P_a$.

7.6 Corollary. Assume that $0_M \in M$, $o_M \in M$, $So_M = \{o_M\}$, $SO_M = M$ and $0_M \in Sx$ for every $x \neq o_M$. Let $a \in M$ be such that $a \neq o_M$ and the set $P_a = \{b \mid a + b \neq a\}$ is finite. Then for every $w \in M$ there is $r \in S$ such that rb = w for every $b \in P_a$ and $rc = 0_M$ for every $c \in M \setminus P_a$.

21

References

- K. AL-ZOUBI, T. KEPKA AND P. NĚMEC: *Quasitrivial semimodules I*, Acta Univ. Carolinae Math. Phys. 49/1 (2008), 3–16.
- [2] K. AL-ZOUBI, T. KEPKA AND P. NĚMEC: Quasitrivial semimodules II, Acta Univ. Carolinae Math. Phys. 49/1 (2008), 17–24.
- [3] K. AL-ZOUBI, T. KEPKA AND P. NĚMEC: Quasitrivial semimodules III, Acta Univ. Carolinae Math. Phys. 50/1 (2009), 3–13.