# Acta Universitatis Carolinae. Mathematica et Physica 

## Tomáš Kepka; Petr Němec <br> Quasitrivial semimodules. V.

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 54 (2013), No. 1, 23-35

Persistent URL: http://dml.cz/dmlcz/143709

## Terms of use:

© Univerzita Karlova v Braze, 2013

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.


This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

# QUASITRIVIAL SEMIMODULES V 

TOMÁŠ KEPKA, PETR NĚMEC<br>Praha

Received September 19, 2012

In the paper, critical semimodules over congruence-simple semirings are studied.

This part is an immediate continuation of [4] (but see also [1], [2] and [3]). The notation introduced in the preceding parts is used. Here, critical semimodules over congruence-simple semirings are studied. All the results collected here are fairly basic and we will not attribute them to any particular source.

## 1. Auxiliary results (A)

In this part, let $M$ be an idempotent (left $S$-)semimodule over a semiring $S$.
1.1 Lemma. Let $w \in P(M)$. Put $A_{w}=\{x \in M \mid x+w=w\}$ and $B_{w}=\{x \mid x+w=x\}$. Then:
(i) $A_{w}$ is a subsemimodule of $M$ and $w \in A_{w}$.
(ii) $B_{w}$ is an ideal of $M$ (i.e., $B_{w}$ is a subsemimodule and $B_{w}+M \subseteq B_{w}$ ) and $w \in B$.
(iii) $A_{w} \cap B_{w}=\{w\}$ and $A_{w} \cup B_{w}$ is a subsemimodule of $M$.
(iv) $A_{w}=M$ iff $w=o_{M}$.
(v) $B_{w}=M$ iff $w=0_{M}$.

[^0]Proof. All the assertions are easy to check.
1.2 Lemma. Let $w \in P(M)$ be such that $w \neq o_{M}$ and $B_{w} \subseteq P(M)$. Then $M \backslash A_{w}$ is an ideal of $M$.

Proof. Since $w \neq o_{M}$, we have $C=M \backslash A_{w} \neq \emptyset$. If $x \in C, y \in M$ then $x+w \neq w$ and $x+x+y+w=x+y+w$. Consequently, $x+y+w \neq w$ and $x+y \in C$. Furthermore, if $r \in S$ then $x+w \in B_{w} \subseteq P(M)$ (use 1.1(ii)) implies $w \neq x+w=r(x+w)=r x+r w=r x+w$. Thus $r x \in C$.
1.3 Proposition. Assume that $M$ is not id-quasitrivial but that every proper subsemimodule of $M$ is id-quasitrivial. Then $P(M) \subseteq\left\{0_{m}, o_{M}\right\}$.

Proof. Let $w \in P(M)$. If $A_{w}=M$ then $w=o_{M}$ by 1.1(iv). If $B_{w}=M$ then $w=0_{M}$ by $1.1(\mathrm{v})$. Henceforth, assume that $C=M \backslash A_{w} \neq \emptyset \neq M \backslash B_{w}$. We have $w \in A_{w} \cap B_{w}$ and, by $1.1(\mathrm{i}),(\mathrm{ii})$, both $A_{w}$ and $B_{w}$ are proper subsemimodules of $M$. According to our assumptions, we get $A_{w} \cup B_{w} \subseteq P(M)$. Of course, $w \notin C$ and, by $1.2, C$ is a proper subsemimodule of $M$. Again, $C \subseteq P(M)$ and it follows that $M=A_{w} \cup C \subseteq P(M)$, a contradiction.
1.4 Proposition. Assume that $M$ is not id-quasitrivial but that every proper subsemimodule of $M$ is id-quasitrivial. Then just one of the following seven cases takes place:
(1) $P(M)=\emptyset, M$ is strictly minimal and $M=S x$ for every $x \in M$;
(2) $P(M)=\left\{0_{M}\right\}, S M=\left\{0_{M}\right\},|M|=2$ and $M$ is minimal;
(3) $P(M)=\left\{0_{M}\right\}, M$ is minimal and $M=S v$ for every $v \in M \backslash\left\{0_{M}\right\}$;
(4) $P(M)=\left\{o_{M}\right\}, S M=\left\{o_{M}\right\},|M|=2$ and $M$ is minimal;
(5) $P(M)=\left\{o_{M}\right\}, M$ is minimal and $M=S u$ for every $u \in M \backslash\left\{o_{M}\right\}$;
(6) $P(M)=\left\{o_{M}, 0_{M}\right\}, M=P(M) \cup\{z\},|M|=3$ and $S M=P(M)=S z$ (then $M$ is congruence simple);
(7) $P(M)=\left\{o_{M}, 0_{M}\right\}, M$ is almost minimal and $M=S w$ for every $w \in M \backslash$ $\backslash\left\{o_{M}, 0_{M}\right\}$.

Proof. If $P(M)=\emptyset$ then $M$ has no proper subsemimodules at all and (1) is clear. Assume, henceforth, that $P(M) \neq \emptyset$.

First, let $P(M)=\{w\}$ be one-element. By 1.3, either $w=o_{M}$ or $w=0_{M}$. Anyway, $S w=\{w\}$ and $w \in N=\{x \in M \mid S x=\{w\}\}$. Clearly, $N$ is a subsemimodule of $M$. Assume, for a moment, that $N \neq M$. Then $N \subseteq P(M)$, and hence $N=$ $=\{w\}$. Moreover, $S y=M$ for every $y \in M \backslash\{w\}$ and either (3) or (5) is true. Now, assume that $N=M$. Then $S M=\{w\}$, and hence any subsemigroup $K$ of the additive semigroup $M(+)$ is a subsemimodule. Since $M$ is idempotent and $w \in\left\{o_{M}, 0_{M}\right\}$, the set $\{x, w\}$ is a subsemimodule of $M$ for every $x \in M$. However, $\{w\}$ is the only proper subsemimodule of $M$. Consequently, $|M|=2$ and either (2) or (4) is true.

Next, let $\mid P(M) \geq 2$. According to 1.3 , we have $P(M)=\left\{0_{M}, o_{M}\right\}$. If $M$ is almost minimal then (7) is true. On the other hand, if $M$ is not almost minimal then $S z \subseteq P(M)$ for some $z \in M \backslash P(M)$. The set $L=\{x \in M \mid S x \subseteq P(M)\}$ is a subsemimodule of $M, z \in L$ and it means that $L=M$. Thus $S M=P(M)$. Besides, the set $P(M) \cup\{z\}$ is a subsemimodule of $M$ and it means that $M=P(M) \cup\{z\}$. If $S z=\left\{o_{M}\right\}$ then the set $\left\{o_{M}, z\right\}$ is a subsemimodule of $M$, a contradiction. Similarly, if $S z=\left\{0_{M}\right\}$. Thus $S z=P(M)$ and (6) is true.
1.5 Remark. Let $M$ be as in 1.4. Then $M$ is minimal, provided that any of the subcases (1),...,(5) holds, If (6) is true then $M$ is not almost minimal. If (7) is true then $M$ is almost minimal. In all the cases, $M$ contains at most four different subsemimodules.

## 2. Auxiliary results (B)

Let $M$ be a semimodule over a semiring $S$.
2.1 Lemma. Assume that $o_{S} \in S$ and $o_{M} \in M$. Then:
(i) If $x \in M$ is such that $o_{M} \in S x$ then $o_{M}=o_{S} x$.
(ii) If $o_{M} \in S y$ for every $y \in M$ then $o_{S} M=\left\{o_{M}\right\}$.

Proof. (i) We have $o_{M}=r x$ for some $r \in S$, and hence $o_{S} x=\left(r+o_{S}\right) x=r x+o_{S} x=$ $=o_{M}+o_{S} x=o_{M}$.
(ii) This follows immediately from (i).
2.2 Lemma. Assume that $o_{S} \in S$ and $o_{S}$ is right multiplicatively absorbing in $S$. If $o_{M} \in M$ and $o_{M}=r_{1} x_{1}+\ldots r_{n} x_{n}$ for some $n \geq 1, r_{i} \in S$ and $x_{i} \in M$ then $S o_{M}=\left\{o_{M}\right\}$ (i.e., $o_{M} \in P(M)$ ).

Proof. For $r=r_{1}+\cdots+r_{n}$, we have $r o_{M}=r_{1} o_{M}+\cdots+r_{n} o_{M}=r_{1}\left(x_{1}+o_{M}\right)+$ $+\cdots+r_{n}\left(x_{n}+o_{M}\right)=r_{1} x_{1}+\cdots+r_{n} x_{n}+r_{1} o_{M}+\cdots+r_{n} o_{M}=o_{M}+r o_{M}=o_{M}$. Now, $o_{S} o_{M}=\left(r+o_{S}\right) o_{M}=r o_{M}+o_{S} o_{M}=o_{M}+o_{S} o_{M}=o_{M}$ and $s o_{M}=s\left(o_{S} o_{M}\right)=$ $=\left(s o_{S}\right) o_{M}=o_{S} o_{M}=o_{M}$ for every $s \in S$.
2.3 Lemma. Assume that $o_{S} \in S, o_{M} \in M$ and $o_{M} \in S x$ for every $x \in M$. Then $o_{S} M=\left\{o_{M}\right\}$. If, moreover, $o_{S}$ is right multiplicatively absorbing in $S$ then $S o_{M}=$ $=\left\{o_{M}\right\}$.

Proof. Combine 2.1 and 2.2.
2.4 Lemma. Assume that $M$ is faithful and $|r M|=1$ for some $r \in S$. Then $r$ is left multiplicatively absorbing in $S$.

Proof. We have $(r s) x=r(s x)=r x$ for every $s \in S$ and $x \in M$. Since $M$ is faithful, we get $r s=r$.
2.5 Lemma. Assume that $o_{S} \in S, M$ is faithful, $o_{M} \in M$ and $o_{M} \in S x$ for every $x \in M$. Then $o_{S} M=\left\{o_{M}\right\}$ and $o_{S}$ is left multiplicatively absorbing in $S$. If $o_{S}$ is right multiplicatively absorbing then $o_{S}$ is bi-absorbing and $S o_{M}=\left\{o_{M}\right\}$.

Proof. Combine 2.3 and 2.4.
2.6 Lemma. Assume that $0_{S} \in S$ and $0_{M} \in M$. Then:
(i) If $x \in M$ is such that $0_{M} \in S x$ then $0_{M}=0_{S} x$.
(ii) If $0_{M} \in S y$ for every $y \in M$ then $0_{S} M=\left\{0_{M}\right\}$.

Proof. (i) We have $0_{M}=r x$ for some $r \in S$, and hence $0_{S} x=0_{M}+0_{S} x=$ $=r x+0_{S} x=\left(r+0_{S}\right) x=r x=0_{M}$.
(ii) This follows immediately from (i).
2.7 Lemma. Assume that $0_{S} \in S$ and $0_{S}$ is right multiplicatively absorbing in $S$. If $0_{M} \in M$ and $0_{M}=r_{1} x_{1}+\cdots+r_{n} x_{n}$ for some $n \geq 1, r_{i} \in S$ and $x_{i} \in M$ then $S 0_{M}=\left\{0_{M}\right\}$ (i.e., $0_{M} \in P(M)$ ).

Proof. For $r=r_{1}+\cdots+r_{n}$, we have $0_{M}=r_{1} x_{1}+\cdots+r_{n} x_{n}=r_{1}\left(x_{1}+0_{M}\right)+$ $+\cdots+\left(r_{n}\left(x_{n}+0_{M}\right)=r_{1} x_{1}+\cdots+r_{n} x_{n}+r_{1} 0_{M}+\cdots+r_{n} 0_{M}=0_{M}+r 0_{M}=r 0_{M}\right.$. Now, $0_{M}=r 0_{M}=\left(r+0_{S}\right) 0_{M}=r 0_{M}+0_{S} 0_{M}=0_{M}+0_{S} 0_{M}=0_{S} 0_{M}$ and $s 0_{M}=s\left(0_{S} 0_{M}\right)=$ $=\left(s 0_{S}\right) 0_{M}=0_{S} 0_{M}=0_{M}$ for every $s \in S$.
2.8 Lemma. Assume that $0_{S} \in S, 0_{M} \in M$ and $0_{M} \in S x$ for every $x \in M$. Then $0_{S} M=\left\{0_{M}\right\}$. If, moreover, $0_{S}$ is right multiplicatively absorbing in $S$ then $S 0_{M}=$ $=\left\{0_{M}\right\}$.

Proof. Combine 2.6 and 2.7.
2.9 Lemma. Assume that $0_{S} \in S, M$ is faithful, $0_{M} \in M$ and $0_{M} \in S$ x for every $x \in M$. Then $0_{S} M=\left\{0_{M}\right\}$ and $0_{S}$ is left multiplicatively absorbing in $S$. If $0_{S}$ is right multiplicatively absorbing in $S$ then $0_{S}$ is multiplicatively absorbing and $S 0_{M}=\left\{0_{M}\right\}$.

Proof. Combine 2.8 and 2.4.
2.10 Lemma. Let the semiring $S$ be additively idempotent. Put $\operatorname{Id}(M)=\{x \in$ $\in M \mid 2 x=x\}$. Then:
(i) If $M=S v$ for at least one $v \in M$ then $\operatorname{Id}(M)=M$ and $M$ is idempotent.
(ii) If $M$ is not idempotent then $S M \subseteq \operatorname{Id}(M)$ and $\operatorname{Id}(M)$ is a proper subsemimodule of $M$.

Proof. We have $r x=(r+r) x=r x+r x$ for all $r \in S$ and $x \in M$.

## 3. Critical semimodules (A)

In this section, let $S$ be a congruence-simple semiring.
3.1 Proposition. Assume that $S$ is not left quasitrivial. Let $M$ be a critical semimodule. Then $M$ is faithful, congruence-simple and not almost quasitrivial. Moreover, $R(M)=Q(M)=P(M) \neq M, M=S v$ for every $v \in M \backslash P(M)$ and just one of the followng four cases takes place:
(1) $P(M)=\emptyset$ and $M$ is strictly minimal;
(2) $0_{M} \in M, P(M)=\left\{0_{M}\right\}$ and $M$ is minimal;
(3) $o_{M} \in M, P(M)=\left\{o_{M}\right\}$ and $M$ is minimal;
(4) $0_{M} \in M, o_{M} \in M, P(M)=\left\{0_{M}, o_{M}\right\}$ and $M$ is almost minimal.

Proof. Taking into account [4, 5.5], we have to show that (at least) one of the four cases takes place. We know that $M$ is not (almost) quasitrivial, and hence it is not id-quasitrivial either. On the other hand, every proper subsemimodule of $M$ is quasitrivial (see $[4,5.3]$ ), and hence every proper subsemimodule of $M$ is contained in $Q(M)=P(M)$. It follows that every proper subsemimodule of $M$ is id-quasitrivial. The rest follows from 1.4.
3.2 Proposition. Let $M$ be a congruence-simple semimodule that is not quasitrivial. If $M$ is minimal or almost minimal then $M$ is critical.

Proof. See [4, 5,6,5.8].
3.3 Corollary. Assume that $S$ is not left quasitrivial. A semimodule $M$ is critical if and only if $M$ is congruence-simple, minimal or almost minimal and not quasitrivial.
3.4 Proposition. Let a semimodule $M$ be minimal or almost minimal. If $M$ is not quasitrivial there there is a congruence $\varrho$ of $M$ such that the factrosemimodule $M / \varrho$ is critical.

$$
\text { Proof. See }[4,5.7,5.9] .
$$

3.5 Proposition. The following conditions are equivalent:
(i) The semiring $S$ is finite.
(ii) There is at least one finite critical semimodule (see [4, 5.3]).

Proof. (i) implies (ii). If the (left $S$-)semimodule ${ }_{S} S$ is faithful then the result is clear. Assume, henceforth, that ${ }_{S} S$ is not faithful. Then $S$ is left quasitrivial and, in view of $[4,3.6]$, we have to distinguish the following four cases:
(a) $S$ is a zero multiplication ring $|S|=p$ is a prime number. Without loss of generality, we can assume that $S(+)=\mathbb{Z}_{p}(+), \mathbb{Z}_{p}=\{0,1, \ldots, p-1\}$. Put $M(+)=\mathbb{Z}_{p^{2}}(+)$,
$\mathbb{Z}_{p^{2}}=\left\{0,1, \ldots, p^{2}-1\right\}$, and define an $S$-scalar multiplication $*$ on $M$ by $a * x=$ pax for all $0 \leq a \leq p-1$ and $0 \leq x \leq p^{2}-1$. One checks readily that $M$ becomes a left $S$-semimodule and that $M$ is critical.
(b) $S=\{0,1\}, 0+0=0,0+1=1+0=1+1=1$ and $a b=b$ for all $a, b \in S$. By $[4$, 4.12], there is an idempotent critical semimodule $M$ such that $|M| \leq 5$.
(c) $S=\{0,1\}, 0+0=0,0+1=1+0=1+1=1$ and $|S S|=1$ (either $S S=\{0\}$ or $S S=\{1\}$ ). Again, by $[4,4.12]$, there is an idempotent critical semimodule $M$ such that $|M| \leq 5$.
(d) $S=\{0,1\}$ and $S+S=\{0\}=S S$. Take $\alpha \notin S$, put $M=S \cup\{\alpha\}, M+M=\{0\}$ and extend the interior multiplication of $S$ to an $S$-scalar multiplication on $M$ by $a \alpha=a$ for all $a \in S$. Then $M$ becomes a critical left $S$-semimodule.
(ii) implies (i). $S$ imbeds into the full endomorphism semiring $\operatorname{End}(M(+))$.

## 4. Criticalsemimodules (B)

In this section, let $S$ be an additively idempotent congruence-simple semiring. Assume, furthermore, that $S$ is not left quasitrivial. The latter assumption is equivalent to: Either $|S| \geq 3$ or $|S|=2$, the multiplication of $S$ is not constant and $a b \neq b$ for some $a, b \in S$.

Let $M$ be a critical semimodule (see [4, 5.3,5.4]). Then $M$ is faithful, congruencesimple and not almost quasitrivial. In view of 3.1, just one of the following four cases takes place:
( $\alpha$ ) $M$ is strictly minimal (then $R(M)=Q(M)=P(M)=\emptyset)$;
( $\beta$ ) $R(M)=Q(M)=P(M)=\left\{0_{M}\right\}$ and $M$ is minimal;
( $\gamma$ ) $R(M)=Q(M)=P(M)=\left\{o_{M}\right\}$ and $M$ is minimal;
( $\delta$ ) $R(M)=Q(M)=P(M)=\left\{o_{M}, 0_{M}\right\}$ and $M$ is almost minimal.
In all the four cases, $M=S v$ for every $v \in M \backslash P(M)$. In particular, the mapping $s \mapsto s v$ is a projective homomorphism of the left $S$-semimodule ${ }_{S} S$ onto ${ }_{S} M$. Thus $M$ is finite if and only if $S$ is finite. Furthermore, $M$ is idempotent. If $0_{S} \in S$ then $0_{M} \in M$. If $o_{S} \in S$ then $o_{M} \in M$.
4.1 Lemma. Let $o_{S} \in S$. Then:
(i) $o_{M} \in M$.
(ii) $o_{S} x=o_{M}$ for every $x \in(M \backslash P(M)) \cup\left(M \backslash\left\{0_{M}\right\}\right)$.

Proof. (i) ${ }_{S} M$ is a homomorphic image of ${ }_{S} S$.
(ii) If $x \in M \backslash P(M)$ then $M=S x, o_{M}=r x$ and $o_{M}=o_{S} x$ by 2.1(i). If $x \in M \backslash\left\{0_{M}\right\}$ then either $x \notin P(M)$ and $o_{M}=o_{S} x$, or $x \in P(M)$ and then $x=o_{M}$ and $o_{S} x=x=$ $=o_{M}$.
4.2 Corollary. If $o_{S} \in S$ and $0_{M} \notin P(M)$ then $o_{S} M=\left\{o_{M}\right\}$.
4.3 Lemma. An element $r \in S$ is right multiplicatively absorbing in $S$ if and only if $r M \subseteq P(M)$.

Proof. If $r M \subseteq P(M)$ then $s r x=r x$ for all $x \in S$ and $x \in M$. Since $M$ is faithful, we get $s r=r$. Conversely, if $r$ is right multiplicatively absorbing then $s r x=r x$ for all $s \in S$ and $x \in M$. Thus $r x \in P(M)$.
4.4 Proposition. Assume that $o_{S} \in S$ (e.g., if $S$ is finite then $o_{S}=\sum s, s \in S$ ). Then:
(i) $o_{M} \in M$ and $o_{S}\left(M \backslash\left\{0_{M}\right\}\right)=\left\{o_{M}\right\}$ (possibly $0_{M} \notin M$ ).
(ii) If $0_{M} \notin P(M)$ then os $M=\{o\}$.
(iii) If $M$ is of type $(\alpha)$ then $o_{S} M=\left\{o_{M}\right\}, S o_{M}=M$, os is left multiplicatively absorbing in $S$ and $o_{S}$ is not right multiplicatively absorbing in $S$.
(iv) If $M$ is of type ( $\beta$ ) then $o_{S} M=\left\{o_{M}, 0_{M}\right\}, S o_{M}=M$ and $o_{S}$ is neither left nor right multiplicatively absorbing in $S$.
(v) If $M$ is of type ( $\gamma$ ) then $o_{S} M=\left\{o_{M}\right\}, S o_{M}=\left\{o_{M}\right\}$ and $o_{S}$ is bi-absorbing in $S$.
(vi) If $M$ is of type ( $\delta$ ) then $o_{S} M=\left\{o_{M}, 0_{M}\right\}, S o_{M}=\left\{o_{M}\right\}$ and $o_{S}$ is right, but not left multiplicatively absorbing in $S$.

Proof. (i) By 4.1, $o_{M} \in M$. Since $P(M) \subseteq\left\{o_{M}, 0_{M}\right\}$, we have $o_{S}\left(M \backslash\left\{0_{M}\right\}\right)=\left\{o_{M}\right\}$. (ii) See 4.2.
(iii) We have $P(M)=\emptyset$, and so $o_{S} M=\left\{o_{M}\right\}$ by (ii). Since $M$ is strictly minimal, we have $S o_{M}=M$. Furthermore, $o_{S} r x=o_{M}=o_{S} x$ for all $r \in S$ and $x \in M$. Since $M$ is faithful, we get $o_{S} r=o_{S}$, i.e., $o_{S}$ is left multiplicatively absorbing. By 4.3, $o_{S}$ is not right multiplicatively absorbing.
(iv) We have $P(M)=\left\{o_{M}\right\}$. Thus $o_{S} 0_{M}=0_{M}$ and $o_{S} M=\left\{o_{M}, 0_{M}\right\}$ follows from (i). Since $o_{M} \notin P(M)$, we have $S o_{M}=M$. By 4.3, $o_{S}$ is not right multiplicatively absorbing. Finally, $r o_{M}=0_{M}$ for some $r \in S$ and $o_{S} r o_{M}=o_{S} 0_{M}=0_{M} \neq o_{M}=$ $=o_{S} o_{M}$. Thus $o_{S} r \neq o_{S}$ and $o_{S}$ is not left multiplicatively absorbing.
(v) We have $P(M)=\left\{o_{M}\right\}$, and hence $S o_{M}=\left\{o_{M}\right\}=o_{S} M$ (see (ii)). By 4.3, $o_{S}$ is right multiplicatively absorbing. Finally, $o_{S} r x=o_{M}=o_{S} x$ for all $r \in S$ and $x \in M$. Since $M$ is faithful, we have $o_{S} r=o_{S}$ and $o_{S}$ is left multiplicatively absorbing. Thus $o_{S}$ is bi-absorbing.
(vi) We have $P(M)=\left\{o_{M}, 0_{M}\right\}$ and $o_{S} M=P(M)$ follows from (i). Of course, $S o_{M}=$ $=\left\{o_{M}\right\}$ and $o_{S}$ is right multiplicatively absorbing by 4.3. On the other hand, if $x \in$ $\in M \backslash P(M)$ then $0_{M}=r x$ for some $r \in S$ and we have $o_{S} r x=o_{S} 0_{M}=0_{M} \neq o_{M}=$ $=o_{S} x$. Thus $o_{S} r \neq o_{S}$ and $o_{S}$ is not left multiplicatively absorbing.
4.5 Corollary. Let $o_{S} \in S$. Then any two critical semimodules have the same type.

Assume that $o_{S} \in S$. With respect to 4.5, we can define the type of $S$ to be the type of $M$. Thus $S$ is of type
$(\alpha)$ if $o_{S}$ is left, but not right multiplicatively absorbing;
$(\beta)$ if $o_{S}$ is neither left nor right multiplicatively absorbing;
$(\gamma)$ if $o_{S}$ is bi-absorbing;
$(\delta)$ if $o_{S}$ is right, but not left multiplicatively absorbing.

## 5. Critical semimodules (C)

The preceding section is immediately continued. We will assume here that $0_{S} \in S$.
5.1 Lemma. (i) $0_{M} \in M$.
(ii) $0_{S} x=0_{M}$ for every $x \in(m \backslash P(M)) \cup\left(M \backslash\left\{o_{M}\right\}\right.$.

Proof. (i) ${ }_{S} M$ is a homomorphic image of ${ }_{S} S$.
(ii) If $x \in M \backslash P(M)$ then $M=S x, 0_{M}=r x$ for some $r \in S$ and $0_{M}=0_{S} x$ by 2.6(i). If $x \in M \backslash\left\{o_{M}\right\}$ then either $x \notin P(M)$ and $0_{M}=0_{S} x$ or $x \in P(M)$ and then $x=0_{M}$ and $0_{S} x=x=0_{M}$.
5.2 Corollary. If $o_{M} \notin P(M)$ then $0_{S} M=\left\{0_{M}\right\}$.
5.3 Proposition. (i) $0_{M} \in M$ and $0_{S}\left(M \backslash\left\{o_{M}\right\}\right)=\left\{0_{M}\right\}$ (possibly $o_{M} \notin M$ ).
(ii) If $o_{M} \notin P(M)$ then $0_{S} M=\left\{0_{M}\right\}$.
(iii) If $M$ is of type $(\alpha)$ then $0_{S} M=\left\{0_{M}\right\}, S 0_{M}=M$ and $0_{S}$ is left multiplicatively absorbing, but not right multiplicatively absorbing.
(iv) If $M$ is of type ( $\beta$ ) then $0_{S} M=\left\{0_{M}\right\}, S 0_{M}=\left\{0_{M}\right\}$ and $0_{S}$ is multiplicatively absorbing.
(v) If $M$ is of type ( $\gamma$ ) then $0_{S} M=\left\{o_{M}, 0_{M}\right\}, S 0_{M}=M$ and $0_{S}$ is neither left nor right multiplicatively absorbing in $S$.
(vi) If $M$ is of type $(\gamma)$ then $\left.\left.0_{S} M=\left\{o_{M}, 0_{M}\right\}, S 0_{M}=\right\} 0_{M}\right\}$ and $0_{S}$ is right, but not left multiplicatively absorbing.

Proof. (i) By 5.1, $0_{M} \in M$. Since $P(M) \subseteq\left\{o_{M}, 0_{M}\right\}$, we have $0_{S}\left(M \backslash\left\{o_{M}\right\}\right)=\left\{0_{M}\right\}$. (ii) See 5.2.
(iii) We have $P(M)=\emptyset$, and so $0_{S} M=\left\{0_{M}\right\}$ by (ii). Since $M$ is strictly minimal, we have $S 0_{M}=M$. Furthermore, $0_{S} r x=0_{M}=0_{S} x$ for all $r \in S$ and $x \in M$. Since $M$ is faithful, we get $0_{S} r=0_{S}$, i.e., $0_{S}$ is left multiplicatively absorbing. By 4.3, $0_{S}$ is not right multiplicatively absorbing.
(iv) We have $P(M)=\left\{0_{M}\right\}$. Thus $0_{S} M=\left\{0_{M}\right\}$ follows from (ii). Of course, $S 0_{M}=$ $=\left\{0_{M}\right\}$. By 4.3, $0_{S}$ is right multiplicatively absorbing. Finally, $0_{S} r x=0_{M}=0_{S} x$ for all $r \in S$ and $x \in M$. Since $M$ is faithful, we have $0_{S} r=0_{S}$, i.e., $0_{S}$ is left multiplicatively absorbing.
(v) We have $P(M)=\left\{o_{M}\right\}$, and hence $0_{S} M=\left\{o_{M}, 0_{M}\right\}$ and $S 0_{M}=M$ (use (i)). By 4.3, $0_{S}$ is not right multiplicatively absorbing. Finally, $r 0_{M}=o_{M}$ for some $r \in S$ and $0_{S} r 0_{M}=0_{S} o_{M}=o_{M} \neq 0_{M}=0_{S} 0_{M}$. Thus $0_{S} r \neq 0_{S}$ and $0_{S}$ is not left multiplicatively absorbing.
(vi) We have $P(M)=\left\{o_{M}, 0_{M}\right\}$ and $0_{S} M=P(M)$ follows from (i). Of course, $S 0_{M}=$ $=\left\{0_{M}\right\}$ and $0_{S}$ is right multiplicatively absorbing by 4.3. On the other hand, if $x \in$ $\in M \backslash P(M)$ then $o_{M}=r x$ for some $r \in S$ and we have $0_{S} r x=0_{S} o_{S}=o_{M} \neq 0_{M}=$ $=0_{S} x$. Thus $0_{S} r \neq 0_{S}$ and $0_{S}$ is not left multiplicatively absorbing.
5.4 Corollary. Any two critical semimodules have the same type.

With respect to 5.4 , we can define the type of $S$ to be the type of $M$. Thus $S$ is of type
$(\alpha)$ if $0_{S}$ is left but not right multiplicatively absorbing;
$(\beta)$ if $0_{S}$ is multiplicatively absorbing;
$(\gamma)$ if $0_{S}$ is neither left nor right multiplicatively absorbing;
$(\delta)$ if $0_{S}$ is right, but not left multiplicatively absorbing.
5.5 Lemma. Assume that $M$ is of type $(\gamma)$ or $(\delta)$. Then $o_{M} \in P(M)$ and $o_{M}$ is irreducible.

Proof. Left $o_{M}=u+v$ for some $u, v \in M$. Then $o_{M}=0_{S} o_{M}=0_{S}(u+v)=$ $=0_{S} u+0_{S} v$, and hence either $0_{S} u \neq 0_{M}$ pr $0_{S} v \neq 0_{M}$. If $0_{S} u \neq 0_{M}$ then $u=o_{M}$ by 5.1(ii). Similarly, if $0_{S} v \neq 0_{M}$ then $v=o_{M}$. Thus $o_{M}$ is irreducible.

## 6. Critical semimodules (D)

Let $S$ be an additively idempotent congruence-simple semiring that is not left quasitrivial. Let $M$ be a critical semimodule.
6.1 Lemma. Let $0_{S} \notin S, o_{M} \in M$ and $0_{M} \in M$. Then:
(i) $M$ is of type $(\gamma)$ or $(\delta)$.
(ii) If $o_{S} \in S$ then $o_{S}$ is right multiplicatively absorbing.

Proof. (i) We have to show that $o_{M} \in P(M)$. Suppose, on the contrary, that $o_{M} \notin$ $\notin P(M)$. Then $S o_{M}=M$ and there is $r \in S$ such that $r o_{M}=0_{M}$ and $0_{M}=r o_{M}=$ $=r\left(x+o_{M}\right)=r x+r o_{M}=r x+0_{M}=r x$ for every $x \in M$. That is $r M=\left\{0_{M}\right\}$. Now, $(r+s) x=r x+s x, 0_{M}+s x=s x$ for all $s \in S$ and $x \in M$. Since $M$ is faithful, we get $r+s=s$ and $r=0_{S}$, a contradiction.
(ii) Combine (i) and 4.4(v),(vi).
6.2 Lemma. Let $0_{S} \notin S, o_{S} \notin S, o_{M} \in M$ and $0_{M} \in M$. Then $M$ is of type ( $\delta$ ).

Proof. By 6.1, $M$ is of type $(\gamma)$ or $(\delta)$. Proceeding by contradiction, assume that $M$ is of type $(\gamma)$. Then $P(M)=\left\{o_{M}\right\}, S 0_{M}=M, o_{M}=r 0_{M}$ for some $r \in S$ and $r x=r\left(x+0_{M}\right)=r x+r 0_{M}=r x+o_{M}=o_{M}$ for every $x \in M$. That is, $r M=\left\{o_{M}\right\}$. Now, $(r+s) x=r x+s x=o_{M}+s x=o_{M}=r x$ for all $s \in S$ and $x \in M$. Since $M$ is faithful, we get $r+s=r$ and $r=o_{S}$, a contradiction.
6.3 Lemma. Let $o_{S} \notin S, o_{M} \in M$ and $0_{M} \in M$. Then:
(i) $M$ is of type $(\beta)$ or $(\delta)$.
(ii) If $0_{S} \in S$ then $0_{S}$ is right multiplicatively absorbing.

Proof. (i) We have to show that $0_{M} \in P(M)$. Suppose, on the contrary, that $0_{M} \notin$ $\notin P(M)$. Then $S 0_{M}=M, r 0_{M}=o_{M}$ for some $r \in S, r x=r\left(x+0_{M}\right)=r x+r 0_{M}=$ $=r x+o_{M}=o_{M}$ for every $x \in M$, and hence $r M=\left\{o_{M}\right\}$. Now, $(r+s) x=r x+s x=$ $=o_{m}+s x=o_{M}=r x$ for all $s \in S$ and $x \in M$. Since $M$ is faithful, we get $r+s=r$ and $r=o_{S}$, a contradiction.
(ii) Combine (i) and 5.3(iv),(vi).
6.4 Lemma. Let $o_{S} \in S$ be not right multiplicatively absorbing. Then:
(i) $0_{S} \in S$ if and only if $0_{M} \in M$.
(ii) If $0_{S} \in S$ then $0_{S}$ is left multiplicatively absorbing.
(iii) $M$ is of type $(\alpha)$ or $(\beta)$ and $o_{M} \in M$.

Proof. Since $o_{S} \in S$ is not right multiplicatively absorbing, the semimodule $M$ is of type $(\alpha)$ or $(\beta)$ (use 4.4). Of course, $o_{M} \in M$. If $0_{S} \in S$ then $0_{M} \in M$ and $0_{S}$ left multiplicatively absorbing by 5.3. Finally, if $0_{M} \in M$ then $0_{S} \in S$ by 6.1.
6.5 Lemma. Let $o_{S} \in S$ be neither left nor right multiplicatively absorbing. Then:
(i) $0_{S} \in S$ and $0_{S}$ is multiplicatively absorbing.
(ii) $M$ is of type $(\beta)$ and $o_{M} \in M, 0_{M} \in M$.

Proof. Since $o_{S} \in S$ is neither left nor right multiplicatively absorbing, the semimodule $M$ is of type $(\beta)$ by 4.4. Of course, $o_{M} \in M, 0_{M} \in M$ and we have $P(M)=\left\{0_{M}\right\}$. By $6.4,0_{S} \in S$ and $0_{S}$ is multiplicatively absorbing by $5.3(\mathrm{iv})$.
6.6 Lemma. Let $0_{S} \in S$ be not right multiplicatively absorbing. Then:
(i) $M$ is of type $\alpha$ ) or $(\gamma)$ and $0_{M} \in M$.
(ii) $o_{S} \in S$ if and only if $o_{M} \in M$.
(iii) If $o_{S} \in S$ then $o_{S}$ is left multiplicatively absorbing.

Proof. By 5.3, $M$ is of type $(\alpha)$ or $(\gamma)$ and $0_{M} \in M$. If $o_{S} \in S$ then $o_{M} \in M$ and $o_{S}$ is left multiplicatively absorbing by 4.4 Conversely, if $o_{M} \in M$ then $o_{S} \in S$ by 6.3.
6.7 Lemma. Let $0_{S} \in S$ be neither left nor right multiplicatively absorbing. Then:
(i) $M$ is of type $(\gamma)$ and $o_{M} \in M, 0_{M} \in M$.
(ii) $o_{S} \in S$ is bi-absorbing.

Proof. By 5.3, $M$ is of type ( $\gamma$ ) and we have $0_{M} \in M$. Of course, $P(M)=\left\{o_{M}\right\}$, and hence $o_{S} \in S$ by 6.6. By 4.4(v), $o_{S}$ is bi-absorbing.
6.8 Proposition. Assume that the semimodule $M$ is of type ( $\alpha$ ). Then:
(i) If $o_{S} \in S$ then $o_{S}$ is left multiplicatively absorbing, os is not right multiplicatively absorbing, $o_{M} \in M, S o_{M}=M$ and $o_{S} M=\left\{o_{M}\right\}$.
(ii) If $0_{S} \in S$ then $0_{S}$ is left multiplicatively absorbing, $0_{S}$ is not right multiplicatively absorbing, $0_{M} \in M, 0_{M}=M$ and $0_{S} M=\left\{0_{M}\right\}$.
(iii) If $o_{S} \in S$ and $0_{M} \in M$ then $0_{S} \in S$.
(iv) If $0_{S} \in S$ and $o_{M} \in M$ then $o_{S} \in S$.
(v) Assume that either $o_{S} \in S$ or $0_{S} \in S$. If $N$ is a critical semimodule then $N$ is of type ( $\alpha$ ).

Proof. See 4.4(i),(iii), 5.3(i),(iii), 6.4(i), 6.6(ii), 4.5 and 5.4.
6.9 Proposition. Assume that the semimodule $M$ is of type ( $\beta$ ). Then:
(i) If $o_{S} \in S$ then $o_{S}$ is neither left nor right multiplicatively absorbing, $o_{M} \in M$, $S o_{M}=M, 0_{M} \in M$ and $o_{S} M=\left\{o_{M}, 0_{M}\right\}$.
(ii) If $0_{S} \in S$ then $0_{S}$ is multiplicatively absorbing, $0_{M} \in M$ and $S 0_{M}=\left\{0_{M}\right\}=0_{S} M$.
(iii) If $o_{S} \in S$ then $0_{S} \in S$.
(iv) If $o_{M} \in M$ then $0_{M} \in M$.
(v) Assume that either $o_{S} \in S$ or $0_{S} \in S$. If $N$ is a critical semimodule then $N$ is of type ( $\beta$ ).

Proof. See 4.4(i),(iv), 5.3(iv), 6.1, 4.5 and 5.4.
6.10 Proposition. Assume that the semimodule $M$ is of type ( $\gamma$ ). Then:
(i) If $o_{S} \in S$ then $o_{S}$ is bi-absorbing and $S o_{M}=\left\{o_{M}\right\}=o_{S} M$.
(ii) If $0_{S} \in S$ then $0_{S}$ is neither left nor right multiplicatively absorbing in $S, 0_{M} \in M$, $S 0_{M}=M$ and $0_{S} M=\left\{o_{M}, 0_{M}\right\}$.
(iii) If $0_{S} \in S$ then $o_{S} \in S$.
(iv) If $0_{M} \in M$ then $o_{S} \in S$.
(v)(Assume that either $o_{S} \in S$ or $0_{S} \in S$. If $N$ is a critical semimodule then $N$ is of type $(\gamma)$.

Proof. See 4.4(v), 5.3(i),(v), 6.3, 4.5 and 5.4.
6.11 Proposition. Assume that the semimodule $M$ is of type ( $\delta$ ). Then:
(i) If $o_{S} \in S$ then $o_{S}$ is right multiplicatively absorbing, $o_{S}$ is not left multiplicatively absorbing and $o_{S} M=\left\{o_{M}, 0_{M}\right\}$.
(ii) If $0_{S} \in S$ then $0_{S}$ is right, but not left multiplicatively absorbing and $0_{S} M=$ $=\left\{o_{M}, 0_{M}\right\}$.
(iii) Assume that either $o_{S} \in S$ or $0_{S} \in S$. If $N$ is a critical semimodule then $N$ is of type ( $\delta$ ).

Proof. See 4.4(vi), 5.3(vi), 4.5 and 5.4.
6.12 Remark. Put $S^{\mathrm{op}}=T(=T(+, *), a * b=b a)$.
(i) Let $M$ be a right $S$-semimodule. Put $a \circ x=x a$ for all $a \in S$ and $x \in M$. Then $a \circ(x+y)=(x+y) a=x a+y a=a \circ x+a \circ y,(a+b) \circ x=x(a+b)=x a+x b=a \circ x+b \circ x$ and $a \circ(b \circ x)=a \circ x b=(x b) a=x(b a)=x(a *)=(a * b) \circ x$. Thus $M(*, \circ)$ is a left $T$-semimodule.
(ii) Let $M(+, \circ)$ be a left $T$-semimodule. Put $x a=a \circ x$ for all $a \in S$. Again, $(x a) b=b \circ(a \circ x)=(b * a) \circ x=x(b * a)=x(a b)$. It means that $M$ becomes a right $S$-semimodule.
(iii) Combining (i) and (ii), we get a biunique correspondence between right $S$ semimodules and left $T$-semimodules.
(iv) $T^{\mathrm{op}}=S$, and hence there is a biunique correspondence between right $T$-semimodules and left $S$-semimodules as well.
(iv) Assume that $S$ is neither left nor right quasitrivial. Let $N$ be a critical right $S$ semimodule. Denote by $\bar{N}$ the corresponding left $T$-semimodule. A subset $K$ of $N$ is a subsemimodule of $N$ if and only if $K$ is a subsemimodule of $\bar{N}$. Clearly, $\bar{N}$ is a faithful $T$-semimodule and $P(\bar{N})=P(N)$. Consequently, $\bar{N}$ is critical and of the same type as $N$.
6.13 Proposition. Assume that $S$ is neither left nor right quasitrivial (e.g., if $|S| \geq 3$ ) and that either $o_{S} \in S$ or $0_{S} \in S$. Let $M$ be a critical left $S$-semimodule and $N$ be a critical right $S$-semimodule. Then:
(i) $M$ is of type $(\alpha)$ iff $N$ is of type ( $\delta$ ).
(ii) $M$ is of type $(\beta)$ iff $N$ is of type $(\beta)$.
(iii) $M$ is of type $(\gamma)$ iff $N$ is of type $(\gamma)$.

Proof. (i) First, let $M$ be of type ( $\alpha$ ). If $o_{S} \in S$ ( $0_{S} \in S$, resp.) then $o_{S}$ ( $0_{S}$, resp.) is left, but not right multiplicatively absorbing in $S$ (see 6.8)i),(ii)). Put $T=S^{\mathrm{op}}$. If $o_{S} \in S\left(0_{S} \in S\right.$, resp.) then $o_{T} \in T\left(0_{T} \in T\right.$, resp.) and if $o_{S}$ ( $0_{S}$, resp.) is left multiplicatively absorbing in $S$ then $o_{T}\left(0_{T}\right.$, resp.) is right multiplicatively absorbing in $T$. By 6.11 , the left $T$-semimodule $\bar{N}$ is of type ( $\delta$ ). By 6.12 (v), the right $S$ semimodule $N$ is of type ( $\delta$ ) as well.
(ii) and (iii). Combine 6.9, 6.10 and 6.12.

## 7. Criticalsemimodules (E)

Let $S$ be a finite additively idempotent and congruence-simple semiring such that $|S| \geq 3$. Then $o_{S}=\sum S \in S$ and $S$ is neither left nor right quasitrivial.
7.1 Remark. Let $M$ be a critical left $S$-semimodule and $N$ be a critical right $S$ semimodule. The type of $M$ ( $N$, resp.) is uniquely determined and $M$ is of type ( $\alpha$ ) $((\beta),(\gamma),(\delta)$, resp. $)$ if and only if $N$ is of type $(\delta)((\beta,(\gamma),(\alpha)$, resp.). We will say that $S$ is of type (I) ((II), (III), (IV), resp.). The semiring $S$ is of this type if and only if the opposite semiring $S^{\text {op }}$ is of the type (IV) ((II), (III), (I), resp.). We have $o_{M}=\sum M \in M$ and $o_{N}=\sum N \in N$.
(i) If $S$ is of type (I) then $o_{S} M=\left\{o_{M}\right\}$ and $N o_{S}=\left\{o_{N}, 0_{N}\right\}=P(N)$. If $S$ is of type (II) then $o_{S} M=\left\{o_{M}, 0_{M}\right\}$ and $N o_{S}=\left\{o_{N}, 0_{N}\right\}$. If $S$ is of type (III) then $o_{S} M=$ $=\left\{o_{M}\right\}=S o_{M}$ and $N o_{S}=\left\{o_{N}\right\}=o_{N} S$. If $S$ is of type (IV) then $o_{S} M=\left\{o_{M}, 0_{M}\right\}$ and $o_{S}=\left\{o_{N}\right\}$.
(ii) $S$ is of type (I) ((IV), resp.) if and only if $o_{S}$ is left (right, resp.) and not right (left, resp.) multiplicatively absorbing. $S$ is of type (I) if and only if $o_{S}$ is neither left nor right multiplicatively absorbing. $S$ is of type (III) if and only if $o_{S}$ is bi-absorbing. (iii) If $S$ is of type (II) then $0_{S} \in S$. If $S$ is of type (I) ((IV), resp.) then $0_{M} \in M$ ( $0_{N} \in N$, resp.) implies $0_{S} \in S$.
(iv) Assume that $0_{S} \in S$. Then $0_{M} \in M$ and $0_{N} \in N . S$ is of type (I) if and only if $0_{S}$ is left but not right multiplicatively absorbing. Then $0_{S} M=\left\{0_{M}\right\}, S 0_{M}=M$, $0_{N} S=\left\{0_{N}\right\}$ and $N 0_{S}=\left\{o_{N}, 0_{N}\right\} . S$ is of type (II) if and only if $0_{S}$ is multiplicatively absorbing. Then $S 0_{M}=\left\{0_{M}\right\}=0_{S} M$ and $0_{N} S=\left\{0_{N}\right\}=N 0_{S} . S$ is of type (III) if and only if $0_{S}$ is neither left nor right multiplicatively absorbing. Then $S 0_{M}=M$, $0_{S} M=\left\{o_{M}, 0_{M}\right\}, 0_{N} S=N$ and $N 0_{S}=\left\{o_{N}, 0_{N}\right\}$. Finally, $S$ is of type (IV) if and only if $0_{S}$ is right but not left multiplicatively absorbing. Then $S 0_{M}=\left\{0_{M}\right\}, 0_{S} M=$ $=\left\{o_{M}, 0_{M}\right\}=P(M), 0_{N} S=N$ and $N 0_{S}=\left\{0_{N}\right\}$.

## References

[1] K. Al-Zoubi, T. Kepka and P. Němec: Quasitrivial semimodules I, Acta Univ. Carolinae Math. Phys. 49/1 (2008), 3-16.
[2] K. Al-Zoubi, T. Kepka and P. Němec: Quasitrivial semimodules II, Acta Univ. Carolinae Math. Phys. 49/1 (2008), 17-24.
[3] K. Al-Zoubi, T. Kepka and P. Němec: Quasitrivial semimodules III, Acta Univ. Carolinae Math. Phys. 50/1 (2009), 3-13.
[4] T. Kepka and P. Němec: Quasitrivial semimodules IV, this issue, pp. 3-22.


[^0]:    Department of Algebra, MFF UK, Sokolovská 83, 18675 Praha 8, Czech Republic (T. Kepka)
    Department of Mathematics, Czech University of Life Sciences, Kamýcká 129, 16521 Praha 6 Suchdol, Czech Republic (P. Němec)

    Supported by the Grant Agency of the Czech Republic, grant GAČR 201/09/0296.
    2000 Mathematics Subject Classification. 16Y60
    Key words and phrases. semiring, congruence-simple semiring, semimodule, critical semimodule
    E-mail address: kepka@karlin.mff.cuni.cz, nemec@tf.czu.cz

