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In the paper, critical semimodules over congruence-simple semirings are studied.

This part is an immediate continuation of [4] (but see also [1], [2] and [3]). The
notation introduced in the preceding parts is used. Here, critical semimodules over
congruence-simple semirings are studied. All the results collected here are fairly
basic and we will not attribute them to any particular source.

1. A u x i l i a r y r e s u l t s ( A )

In this part, let M be an idempotent (left S -)semimodule over a semiring S .

1.1 Lemma. Let w ∈ P(M). Put Aw = { x ∈ M | x+w = w } and Bw = { x | x+w = x }.
Then:
(i) Aw is a subsemimodule of M and w ∈ Aw.
(ii) Bw is an ideal of M (i.e., Bw is a subsemimodule and Bw + M ⊆ Bw) and w ∈ B.
(iii) Aw ∩ Bw = {w} and Aw ∪ Bw is a subsemimodule of M.
(iv) Aw = M iff w = oM.
(v) Bw = M iff w = 0M.
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Proof. All the assertions are easy to check. �

1.2 Lemma. Let w ∈ P(M) be such that w � oM and Bw ⊆ P(M). Then M \ Aw is an
ideal of M.

Proof. Since w � oM , we have C = M\Aw � ∅. If x ∈ C, y ∈ M then x+w � w and
x+x+y+w = x+y+w. Consequently, x+y+w � w and x+y ∈ C. Furthermore, if r ∈ S
then x+w ∈ Bw ⊆ P(M) (use 1.1(ii)) implies w � x+w = r(x+w) = rx+rw = rx+w.
Thus rx ∈ C. �

1.3 Proposition. Assume that M is not id-quasitrivial but that every proper subsemi-
module of M is id-quasitrivial. Then P(M) ⊆ {0m, oM}.

Proof. Let w ∈ P(M). If Aw = M then w = oM by 1.1(iv). If Bw = M then w = 0M

by 1.1(v). Henceforth, assume that C = M \ Aw � ∅ � M \ Bw. We have w ∈ Aw ∩ Bw

and, by 1.1(i),(ii), both Aw and Bw are proper subsemimodules of M. According to
our assumptions, we get Aw∪Bw ⊆ P(M). Of course, w � C and, by 1.2, C is a proper
subsemimodule of M. Again, C ⊆ P(M) and it follows that M = Aw ∪ C ⊆ P(M), a
contradiction. �

1.4 Proposition. Assume that M is not id-quasitrivial but that every proper sub-
semimodule of M is id-quasitrivial. Then just one of the following seven cases takes
place:

(1) P(M) = ∅, M is strictly minimal and M = S x for every x ∈ M;
(2) P(M) = {0M}, S M = {0M}, |M| = 2 and M is minimal;
(3) P(M) = {0M}, M is minimal and M = S v for every v ∈ M \ {0M};
(4) P(M) = {oM}, S M = {oM}, |M| = 2 and M is minimal;
(5) P(M) = {oM}, M is minimal and M = S u for every u ∈ M \ {oM};
(6) P(M) = {oM , 0M}, M = P(M) ∪ {z}, |M| = 3 and S M = P(M) = S z (then M

is congruence simple);
(7) P(M) = {oM , 0M}, M is almost minimal and M = S w for every w ∈ M \
\ {oM , 0M}.

Proof. If P(M) = ∅ then M has no proper subsemimodules at all and (1) is clear.
Assume, henceforth, that P(M) � ∅.

First, let P(M) = {w} be one-element. By 1.3, either w = oM or w = 0M . Anyway,
S w = {w} and w ∈ N = { x ∈ M | S x = {w} }. Clearly, N is a subsemimodule
of M. Assume, for a moment, that N � M. Then N ⊆ P(M), and hence N =
= {w}. Moreover, S y = M for every y ∈ M \ {w} and either (3) or (5) is true. Now,
assume that N = M. Then S M = {w}, and hence any subsemigroup K of the additive
semigroup M(+) is a subsemimodule. Since M is idempotent and w ∈ {oM , 0M}, the
set {x,w} is a subsemimodule of M for every x ∈ M. However, {w} is the only proper
subsemimodule of M. Consequently, |M| = 2 and either (2) or (4) is true.
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Next, let |P(M) ≥ 2. According to 1.3, we have P(M) = {0M , oM}. If M is
almost minimal then (7) is true. On the other hand, if M is not almost minimal then
S z ⊆ P(M) for some z ∈ M \ P(M). The set L = { x ∈ M | S x ⊆ P(M) } is a
subsemimodule of M, z ∈ L and it means that L = M. Thus S M = P(M). Besides,
the set P(M) ∪ {z} is a subsemimodule of M and it means that M = P(M) ∪ {z}. If
S z = {oM} then the set {oM , z} is a subsemimodule of M, a contradiction. Similarly, if
S z = {0M}. Thus S z = P(M) and (6) is true. �

1.5 Remark. Let M be as in 1.4. Then M is minimal, provided that any of the subcases
(1),. . . ,(5) holds, If (6) is true then M is not almost minimal. If (7) is true then M is
almost minimal. In all the cases, M contains at most four different subsemimodules.

2. A u x i l i a r y r e s u l t s ( B )

Let M be a semimodule over a semiring S .

2.1 Lemma. Assume that oS ∈ S and oM ∈ M. Then:
(i) If x ∈ M is such that oM ∈ S x then oM = oS x.
(ii) If oM ∈ S y for every y ∈ M then oS M = {oM}.

Proof. (i) We have oM = rx for some r ∈ S , and hence oS x = (r+oS )x = rx+oS x =
= oM + oS x = oM .
(ii) This follows immediately from (i). �

2.2 Lemma. Assume that oS ∈ S and oS is right multiplicatively absorbing in S . If
oM ∈ M and oM = r1x1 + . . . rnxn for some n ≥ 1, ri ∈ S and xi ∈ M then S oM = {oM}
(i.e., oM ∈ P(M)).

Proof. For r = r1 + · · · + rn, we have roM = r1oM + · · · + rnoM = r1(x1 + oM) +
+ · · · + rn(xn + oM) = r1x1 + · · · + rnxn + r1oM + · · · + rnoM = oM + roM = oM .
Now, oS oM = (r + oS )oM = roM + oS oM = oM + oS oM = oM and soM = s(oS oM) =
= (soS )oM = oS oM = oM for every s ∈ S . �

2.3 Lemma. Assume that oS ∈ S , oM ∈ M and oM ∈ S x for every x ∈ M. Then
oS M = {oM}. If, moreover, oS is right multiplicatively absorbing in S then S oM =

= {oM}.

Proof. Combine 2.1 and 2.2. �

2.4 Lemma. Assume that M is faithful and |rM| = 1 for some r ∈ S . Then r is left
multiplicatively absorbing in S .

Proof. We have (rs)x = r(sx) = rx for every s ∈ S and x ∈ M. Since M is faithful,
we get rs = r. �
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2.5 Lemma. Assume that oS ∈ S , M is faithful, oM ∈ M and oM ∈ S x for every
x ∈ M. Then oS M = {oM} and oS is left multiplicatively absorbing in S . If oS is right
multiplicatively absorbing then oS is bi-absorbing and S oM = {oM}.

Proof. Combine 2.3 and 2.4. �

2.6 Lemma. Assume that 0S ∈ S and 0M ∈ M. Then:
(i) If x ∈ M is such that 0M ∈ S x then 0M = 0S x.
(ii) If 0M ∈ S y for every y ∈ M then 0S M = {0M}.

Proof. (i) We have 0M = rx for some r ∈ S , and hence 0S x = 0M + 0S x =
= rx + 0S x = (r + 0S )x = rx = 0M .

(ii) This follows immediately from (i). �

2.7 Lemma. Assume that 0S ∈ S and 0S is right multiplicatively absorbing in S .
If 0M ∈ M and 0M = r1x1 + · · · + rnxn for some n ≥ 1, ri ∈ S and xi ∈ M then
S 0M = {0M} (i.e., 0M ∈ P(M)).

Proof. For r = r1 + · · · + rn, we have 0M = r1x1 + · · · + rnxn = r1(x1 + 0M) +
+ · · ·+ (rn(xn + 0M) = r1x1 + · · ·+ rnxn + r10M + · · ·+ rn0M = 0M + r0M = r0M . Now,
0M = r0M = (r + 0S )0M = r0M + 0S 0M = 0M + 0S 0M = 0S 0M and s0M = s(0S 0M) =
= (s0S )0M = 0S 0M = 0M for every s ∈ S . �

2.8 Lemma. Assume that 0S ∈ S , 0M ∈ M and 0M ∈ S x for every x ∈ M. Then
0S M = {0M}. If, moreover, 0S is right multiplicatively absorbing in S then S 0M =

= {0M}.

Proof. Combine 2.6 and 2.7. �

2.9 Lemma. Assume that 0S ∈ S , M is faithful, 0M ∈ M and 0M ∈ S x for every
x ∈ M. Then 0S M = {0M} and 0S is left multiplicatively absorbing in S . If 0S

is right multiplicatively absorbing in S then 0S is multiplicatively absorbing and
S 0M = {0M}.

Proof. Combine 2.8 and 2.4. �

2.10 Lemma. Let the semiring S be additively idempotent. Put Id(M) = { x ∈
∈ M | 2x = x }. Then:
(i) If M = S v for at least one v ∈ M then Id(M) = M and M is idempotent.
(ii) If M is not idempotent then S M ⊆ Id(M) and Id(M) is a proper subsemimodule
of M.

Proof. We have rx = (r + r)x = rx + rx for all r ∈ S and x ∈ M. �
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3. C r i t i c a l s e m i m o d u l e s ( A )

In this section, let S be a congruence-simple semiring.

3.1 Proposition. Assume that S is not left quasitrivial. Let M be a critical semimod-
ule. Then M is faithful, congruence-simple and not almost quasitrivial. Moreover,
R(M) = Q(M) = P(M) � M, M = S v for every v ∈ M \ P(M) and just one of the
followng four cases takes place:

(1) P(M) = ∅ and M is strictly minimal;
(2) 0M ∈ M, P(M) = {0M} and M is minimal;
(3) oM ∈ M, P(M) = {oM} and M is minimal;
(4) 0M ∈ M, oM ∈ M, P(M) = {0M , oM} and M is almost minimal.

Proof. Taking into account [4, 5.5], we have to show that (at least) one of the
four cases takes place. We know that M is not (almost) quasitrivial, and hence it is
not id-quasitrivial either. On the other hand, every proper subsemimodule of M is
quasitrivial (see [4, 5.3]), and hence every proper subsemimodule of M is contained
in Q(M) = P(M). It follows that every proper subsemimodule of M is id-quasitrivial.
The rest follows from 1.4. �

3.2 Proposition. Let M be a congruence-simple semimodule that is not quasitrivial.
If M is minimal or almost minimal then M is critical.

Proof. See [4, 5,6,5.8]. �

3.3 Corollary. Assume that S is not left quasitrivial. A semimodule M is critical if
and only if M is congruence-simple, minimal or almost minimal and not quasitrivial.

�

3.4 Proposition. Let a semimodule M be minimal or almost minimal. If M is not
quasitrivial there there is a congruence � of M such that the factrosemimodule M/�
is critical.

Proof. See [4, 5.7,5.9]. �

3.5 Proposition. The following conditions are equivalent:
(i) The semiring S is finite.

(ii) There is at least one finite critical semimodule (see [4, 5.3]).

Proof. (i) implies (ii). If the (left S -)semimodule S S is faithful then the result is
clear. Assume, henceforth, that S S is not faithful. Then S is left quasitrivial and, in
view of [4, 3.6], we have to distinguish the following four cases:
(a) S is a zero multiplication ring |S | = p is a prime number. Without loss of gener-
ality, we can assume that S (+) = Zp(+), Zp = {0, 1, . . . , p − 1}. Put M(+) = Zp2 (+),
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Zp2 = {0, 1, . . . , p2 − 1}, and define an S -scalar multiplication ∗ on M by a ∗ x = pax
for all 0 ≤ a ≤ p − 1 and 0 ≤ x ≤ p2 − 1. One checks readily that M becomes a left
S -semimodule and that M is critical.
(b) S = {0, 1}, 0 + 0 = 0, 0 + 1 = 1+ 0 = 1+ 1 = 1 and ab = b for all a, b ∈ S . By [4,
4.12], there is an idempotent critical semimodule M such that |M| ≤ 5.
(c) S = {0, 1}, 0 + 0 = 0, 0 + 1 = 1 + 0 = 1 + 1 = 1 and |S S | = 1 (either S S = {0}
or S S = {1}). Again, by [4, 4.12], there is an idempotent critical semimodule M such
that |M| ≤ 5.
(d) S = {0, 1} and S + S = {0} = S S . Take α � S , put M = S ∪ {α}, M +M = {0} and
extend the interior multiplication of S to an S -scalar multiplication on M by aα = a
for all a ∈ S . Then M becomes a critical left S -semimodule.
(ii) implies (i). S imbeds into the full endomorphism semiring End(M(+)). �

4. C r i t i c a l s e m i m o d u l e s ( B )

In this section, let S be an additively idempotent congruence-simple semiring. As-
sume, furthermore, that S is not left quasitrivial. The latter assumption is equivalent
to: Either |S | ≥ 3 or |S | = 2, the multiplication of S is not constant and ab � b for
some a, b ∈ S .

Let M be a critical semimodule (see [4, 5.3,5.4]). Then M is faithful, congruence-
simple and not almost quasitrivial. In view of 3.1, just one of the following four cases
takes place:

(α) M is strictly minimal (then R(M) = Q(M) = P(M) = ∅);
(β) R(M) = Q(M) = P(M) = {0M} and M is minimal;
(γ) R(M) = Q(M) = P(M) = {oM} and M is minimal;
(δ) R(M) = Q(M) = P(M) = {oM , 0M} and M is almost minimal.

In all the four cases, M = S v for every v ∈ M \ P(M). In particular, the mapping
s �→ sv is a projective homomorphism of the left S -semimodule S S onto S M. Thus
M is finite if and only if S is finite. Furthermore, M is idempotent. If 0S ∈ S then
0M ∈ M. If oS ∈ S then oM ∈ M.

4.1 Lemma. Let oS ∈ S . Then:
(i) oM ∈ M.
(ii) oS x = oM for every x ∈ (M \ P(M)) ∪ (M \ {0M}).

Proof. (i) S M is a homomorphic image of S S .
(ii) If x ∈ M \ P(M) then M = S x, oM = rx and oM = oS x by 2.1(i). If x ∈ M \ {0M}
then either x � P(M) and oM = oS x, or x ∈ P(M) and then x = oM and oS x = x =
= oM . �

4.2 Corollary. If oS ∈ S and 0M � P(M) then oS M = {oM}. �
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4.3 Lemma. An element r ∈ S is right multiplicatively absorbing in S if and only if
rM ⊆ P(M).

Proof. If rM ⊆ P(M) then srx = rx for all x ∈ S and x ∈ M. Since M is faithful,
we get sr = r. Conversely, if r is right multiplicatively absorbing then srx = rx for
all s ∈ S and x ∈ M. Thus rx ∈ P(M). �

4.4 Proposition. Assume that oS ∈ S (e.g., if S is finite then oS =
∑

s, s ∈ S ). Then:
(i) oM ∈ M and oS (M \ {0M}) = {oM} (possibly 0M � M).
(ii) If 0M � P(M) then oS M = {o}.
(iii) If M is of type (α) then oS M = {oM}, S oM = M, oS is left multiplicatively
absorbing in S and oS is not right multiplicatively absorbing in S .
(iv) If M is of type (β) then oS M = {oM , 0M}, S oM = M and oS is neither left nor
right multiplicatively absorbing in S .
(v) If M is of type (γ) then oS M = {oM}, S oM = {oM} and oS is bi-absorbing in S .
(vi) If M is of type (δ) then oS M = {oM , 0M}, S oM = {oM} and oS is right, but not left
multiplicatively absorbing in S .

Proof. (i) By 4.1, oM ∈ M. Since P(M) ⊆ {oM , 0M}, we have oS (M \ {0M}) = {oM}.
(ii) See 4.2.
(iii) We have P(M) = ∅, and so oS M = {oM} by (ii). Since M is strictly minimal, we
have S oM = M. Furthermore, oS rx = oM = oS x for all r ∈ S and x ∈ M. Since M is
faithful, we get oS r = oS , i.e., oS is left multiplicatively absorbing. By 4.3, oS is not
right multiplicatively absorbing.
(iv) We have P(M) = {oM}. Thus oS 0M = 0M and oS M = {oM , 0M} follows from
(i). Since oM � P(M), we have S oM = M. By 4.3, oS is not right multiplicatively
absorbing. Finally, roM = 0M for some r ∈ S and oS roM = oS 0M = 0M � oM =

= oS oM . Thus oS r � oS and oS is not left multiplicatively absorbing.
(v) We have P(M) = {oM}, and hence S oM = {oM} = oS M (see (ii)). By 4.3, oS is
right multiplicatively absorbing. Finally, oS rx = oM = oS x for all r ∈ S and x ∈ M.
Since M is faithful, we have oS r = oS and oS is left multiplicatively absorbing. Thus
oS is bi-absorbing.
(vi) We have P(M) = {oM , 0M} and oS M = P(M) follows from (i). Of course, S oM =

= {oM} and oS is right multiplicatively absorbing by 4.3. On the other hand, if x ∈
∈ M \ P(M) then 0M = rx for some r ∈ S and we have oS rx = oS 0M = 0M � oM =

= oS x. Thus oS r � oS and oS is not left multiplicatively absorbing. �

4.5 Corollary. Let oS ∈ S . Then any two critical semimodules have the same type.
�

Assume that oS ∈ S . With respect to 4.5, we can define the type of S to be the
type of M. Thus S is of type

(α) if oS is left, but not right multiplicatively absorbing;
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(β) if oS is neither left nor right multiplicatively absorbing;
(γ) if oS is bi-absorbing;
(δ) if oS is right, but not left multiplicatively absorbing.

5. C r i t i c a l s e m i m o d u l e s ( C )

The preceding section is immediately continued. We will assume here that 0S ∈ S .

5.1 Lemma. (i) 0M ∈ M.
(ii) 0S x = 0M for every x ∈ (m \ P(M)) ∪ (M \ {oM}.

Proof. (i) S M is a homomorphic image of S S .
(ii) If x ∈ M \ P(M) then M = S x, 0M = rx for some r ∈ S and 0M = 0S x by 2.6(i).
If x ∈ M \ {oM} then either x � P(M) and 0M = 0S x or x ∈ P(M) and then x = 0M and
0S x = x = 0M . �

5.2 Corollary. If oM � P(M) then 0S M = {0M}. �

5.3 Proposition. (i) 0M ∈ M and 0S (M \ {oM}) = {0M} (possibly oM � M).
(ii) If oM � P(M) then 0S M = {0M}.
(iii) If M is of type (α) then 0S M = {0M}, S 0M = M and 0S is left multiplicatively
absorbing, but not right multiplicatively absorbing.
(iv) If M is of type (β) then 0S M = {0M}, S 0M = {0M} and 0S is multiplicatively
absorbing.
(v) If M is of type (γ) then 0S M = {oM , 0M}, S 0M = M and 0S is neither left nor right
multiplicatively absorbing in S .
(vi) If M is of type (γ) then 0S M = {oM , 0M}, S 0M =}0M} and 0S is right, but not left
multiplicatively absorbing.

Proof. (i) By 5.1, 0M ∈ M. Since P(M) ⊆ {oM , 0M}, we have 0S (M \ {oM}) = {0M}.
(ii) See 5.2.
(iii) We have P(M) = ∅, and so 0S M = {0M} by (ii). Since M is strictly minimal, we
have S 0M = M. Furthermore, 0S rx = 0M = 0S x for all r ∈ S and x ∈ M. Since M is
faithful, we get 0S r = 0S , i.e., 0S is left multiplicatively absorbing. By 4.3, 0S is not
right multiplicatively absorbing.
(iv) We have P(M) = {0M}. Thus 0S M = {0M} follows from (ii). Of course, S 0M =

= {0M}. By 4.3, 0S is right multiplicatively absorbing. Finally, 0S rx = 0M = 0S x
for all r ∈ S and x ∈ M. Since M is faithful, we have 0S r = 0S , i.e., 0S is left
multiplicatively absorbing.
(v) We have P(M) = {oM}, and hence 0S M = {oM , 0M} and S 0M = M (use (i)). By
4.3, 0S is not right multiplicatively absorbing. Finally, r0M = oM for some r ∈ S and
0S r0M = 0S oM = oM � 0M = 0S 0M . Thus 0S r � 0S and 0S is not left multiplicatively
absorbing.
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(vi) We have P(M) = {oM , 0M} and 0S M = P(M) follows from (i). Of course, S 0M =

= {0M} and 0S is right multiplicatively absorbing by 4.3. On the other hand, if x ∈
∈ M \ P(M) then oM = rx for some r ∈ S and we have 0S rx = 0S oS = oM � 0M =

= 0S x. Thus 0S r � 0S and 0S is not left multiplicatively absorbing. �

5.4 Corollary. Any two critical semimodules have the same type. �

With respect to 5.4, we can define the type of S to be the type of M. Thus S is of
type

(α) if 0S is left but not right multiplicatively absorbing;
(β) if 0S is multiplicatively absorbing;
(γ) if 0S is neither left nor right multiplicatively absorbing;
(δ) if 0S is right, but not left multiplicatively absorbing.

5.5 Lemma. Assume that M is of type (γ) or (δ). Then oM ∈ P(M) and oM is
irreducible.

Proof. Left oM = u + v for some u, v ∈ M. Then oM = 0S oM = 0S (u + v) =
= 0S u + 0S v, and hence either 0S u � 0M pr 0S v � 0M . If 0S u � 0M then u = oM by
5.1(ii). Similarly, if 0S v � 0M then v = oM . Thus oM is irreducible. �

6. C r i t i c a l s e m i m o d u l e s ( D )

Let S be an additively idempotent congruence-simple semiring that is not left qu-
asitrivial. Let M be a critical semimodule.

6.1 Lemma. Let 0S � S , oM ∈ M and 0M ∈ M. Then:
(i) M is of type (γ) or (δ).
(ii) If oS ∈ S then oS is right multiplicatively absorbing.

Proof. (i) We have to show that oM ∈ P(M). Suppose, on the contrary, that oM �
� P(M). Then S oM = M and there is r ∈ S such that roM = 0M and 0M = roM =

= r(x + oM) = rx + roM = rx + 0M = rx for every x ∈ M. That is rM = {0M}. Now,
(r + s)x = rx + sx, 0M + sx = sx for all s ∈ S and x ∈ M. Since M is faithful, we get
r + s = s and r = 0S , a contradiction.
(ii) Combine (i) and 4.4(v),(vi). �

6.2 Lemma. Let 0S � S , oS � S , oM ∈ M and 0M ∈ M. Then M is of type (δ).

Proof. By 6.1, M is of type (γ) or (δ). Proceeding by contradiction, assume that
M is of type (γ). Then P(M) = {oM}, S 0M = M, oM = r0M for some r ∈ S and
rx = r(x + 0M) = rx + r0M = rx + oM = oM for every x ∈ M. That is, rM = {oM}.
Now, (r + s)x = rx + sx = oM + sx = oM = rx for all s ∈ S and x ∈ M. Since M is
faithful, we get r + s = r and r = oS , a contradiction. �
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6.3 Lemma. Let oS � S , oM ∈ M and 0M ∈ M. Then:
(i) M is of type (β) or (δ).
(ii) If 0S ∈ S then 0S is right multiplicatively absorbing.

Proof. (i) We have to show that 0M ∈ P(M). Suppose, on the contrary, that 0M �
� P(M). Then S 0M = M, r0M = oM for some r ∈ S , rx = r(x + 0M) = rx + r0M =

= rx + oM = oM for every x ∈ M, and hence rM = {oM}. Now, (r + s)x = rx + sx =
= om + sx = oM = rx for all s ∈ S and x ∈ M. Since M is faithful, we get r + s = r
and r = oS , a contradiction.
(ii) Combine (i) and 5.3(iv),(vi). �

6.4 Lemma. Let oS ∈ S be not right multiplicatively absorbing. Then:
(i) 0S ∈ S if and only if 0M ∈ M.
(ii) If 0S ∈ S then 0S is left multiplicatively absorbing.
(iii) M is of type (α) or (β) and oM ∈ M.

Proof. Since oS ∈ S is not right multiplicatively absorbing, the semimodule M is
of type (α) or (β) (use 4.4). Of course, oM ∈ M. If 0S ∈ S then 0M ∈ M and 0S left
multiplicatively absorbing by 5.3. Finally, if 0M ∈ M then 0S ∈ S by 6.1. �

6.5 Lemma. Let oS ∈ S be neither left nor right multiplicatively absorbing. Then:
(i) 0S ∈ S and 0S is multiplicatively absorbing.
(ii) M is of type (β) and oM ∈ M, 0M ∈ M.

Proof. Since oS ∈ S is neither left nor right multiplicatively absorbing, the semi-
module M is of type (β) by 4.4. Of course, oM ∈ M, 0M ∈ M and we have
P(M) = {0M}. By 6.4, 0S ∈ S and 0S is multiplicatively absorbing by 5.3(iv). �

6.6 Lemma. Let 0S ∈ S be not right multiplicatively absorbing. Then:
(i) M is of type α) or (γ) and 0M ∈ M.
(ii) oS ∈ S if and only if oM ∈ M.
(iii) If oS ∈ S then oS is left multiplicatively absorbing.

Proof. By 5.3, M is of type (α) or (γ) and 0M ∈ M. If oS ∈ S then oM ∈ M and
oS is left multiplicatively absorbing by 4.4 Conversely, if oM ∈ M then oS ∈ S by
6.3. �

6.7 Lemma. Let 0S ∈ S be neither left nor right multiplicatively absorbing. Then:
(i) M is of type (γ) and oM ∈ M, 0M ∈ M.
(ii) oS ∈ S is bi-absorbing.

Proof. By 5.3, M is of type (γ) and we have 0M ∈ M. Of course, P(M) = {oM},
and hence oS ∈ S by 6.6. By 4.4(v), oS is bi-absorbing. �
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6.8 Proposition. Assume that the semimodule M is of type (α). Then:
(i) If oS ∈ S then oS is left multiplicatively absorbing, oS is not right multiplicatively
absorbing, oM ∈ M, S oM = M and oS M = {oM}.
(ii) If 0S ∈ S then 0S is left multiplicatively absorbing, 0S is not right multiplicatively
absorbing, 0M ∈ M, 0M = M and 0S M = {0M}.
(iii) If oS ∈ S and 0M ∈ M then 0S ∈ S .
(iv) If 0S ∈ S and oM ∈ M then oS ∈ S .
(v) Assume that either oS ∈ S or 0S ∈ S . If N is a critical semimodule then N is of
type (α).

Proof. See 4.4(i),(iii), 5.3(i),(iii), 6.4(i), 6.6(ii), 4.5 and 5.4. �

6.9 Proposition. Assume that the semimodule M is of type (β). Then:
(i) If oS ∈ S then oS is neither left nor right multiplicatively absorbing, oM ∈ M,
S oM = M, 0M ∈ M and oS M = {oM , 0M}.
(ii) If 0S ∈ S then 0S is multiplicatively absorbing, 0M ∈ M and S 0M = {0M} = 0S M.
(iii) If oS ∈ S then 0S ∈ S .
(iv) If oM ∈ M then 0M ∈ M.
(v) Assume that either oS ∈ S or 0S ∈ S . If N is a critical semimodule then N is of
type (β).

Proof. See 4.4(i),(iv), 5.3(iv), 6.1, 4.5 and 5.4. �

6.10 Proposition. Assume that the semimodule M is of type (γ). Then:
(i) If oS ∈ S then oS is bi-absorbing and S oM = {oM} = oS M.
(ii) If 0S ∈ S then 0S is neither left nor right multiplicatively absorbing in S , 0M ∈ M,
S 0M = M and 0S M = {oM , 0M}.
(iii) If 0S ∈ S then oS ∈ S .
(iv) If 0M ∈ M then oS ∈ S .
(v)(Assume that either oS ∈ S or 0S ∈ S . If N is a critical semimodule then N is of
type (γ).

Proof. See 4.4(v), 5.3(i),(v), 6.3, 4.5 and 5.4. �

6.11 Proposition. Assume that the semimodule M is of type (δ). Then:
(i) If oS ∈ S then oS is right multiplicatively absorbing, oS is not left multiplicatively
absorbing and oS M = {oM , 0M}.
(ii) If 0S ∈ S then 0S is right, but not left multiplicatively absorbing and 0S M =

= {oM , 0M}.
(iii) Assume that either oS ∈ S or 0S ∈ S . If N is a critical semimodule then N is of
type (δ).

Proof. See 4.4(vi), 5.3(vi), 4.5 and 5.4. �
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6.12 Remark. Put S op = T (= T (+, ∗), a ∗ b = ba).
(i) Let M be a right S -semimodule. Put a ◦ x = xa for all a ∈ S and x ∈ M. Then
a◦(x+y) = (x+y)a = xa+ya = a◦x+a◦y, (a+b)◦x = x(a+b) = xa+xb = a◦x+b◦x
and a ◦ (b ◦ x) = a ◦ xb = (xb)a = x(ba) = x(a∗) = (a ∗ b) ◦ x. Thus M(∗, ◦) is a left
T -semimodule.
(ii) Let M(+, ◦) be a left T -semimodule. Put xa = a ◦ x for all a ∈ S . Again,
(xa)b = b ◦ (a ◦ x) = (b ∗ a) ◦ x = x(b ∗ a) = x(ab). It means that M becomes a right
S -semimodule.
(iii) Combining (i) and (ii), we get a biunique correspondence between right S -
semimodules and left T -semimodules.
(iv) T op = S , and hence there is a biunique correspondence between right T -semimo-
dules and left S -semimodules as well.
(iv) Assume that S is neither left nor right quasitrivial. Let N be a critical right S -
semimodule. Denote by N the corresponding left T -semimodule. A subset K of N
is a subsemimodule of N if and only if K is a subsemimodule of N. Clearly, N is a
faithful T -semimodule and P(N) = P(N). Consequently, N is critical and of the same
type as N.

6.13 Proposition. Assume that S is neither left nor right quasitrivial (e.g., if |S | ≥ 3)
and that either oS ∈ S or 0S ∈ S . Let M be a critical left S -semimodule and N be a
critical right S -semimodule. Then:
(i) M is of type (α) iff N is of type (δ).
(ii) M is of type (β) iff N is of type (β).
(iii) M is of type (γ) iff N is of type (γ).

Proof. (i) First, let M be of type (α). If oS ∈ S (0S ∈ S , resp.) then oS (0S , resp.)
is left, but not right multiplicatively absorbing in S (see 6.8)i),(ii)). Put T = S op. If
oS ∈ S (0S ∈ S , resp.) then oT ∈ T (0T ∈ T , resp.) and if oS (0S , resp.) is left
multiplicatively absorbing in S then oT (0T , resp.) is right multiplicatively absorbing
in T . By 6.11, the left T -semimodule N is of type (δ). By 6.12(v), the right S -
semimodule N is of type (δ) as well.
(ii) and (iii). Combine 6.9, 6.10 and 6.12. �

7. C r i t i c a l s e m i m o d u l e s ( E )

Let S be a finite additively idempotent and congruence-simple semiring such that
|S | ≥ 3. Then oS =

∑
S ∈ S and S is neither left nor right quasitrivial.

7.1 Remark. Let M be a critical left S -semimodule and N be a critical right S -
semimodule. The type of M (N, resp.) is uniquely determined and M is of type (α)
((β), (γ), (δ), resp.) if and only if N is of type (δ) ((β, (γ), (α), resp.). We will say
that S is of type (I) ((II), (III), (IV), resp.). The semiring S is of this type if and
only if the opposite semiring S op is of the type (IV) ((II), (III), (I), resp.). We have
oM =

∑
M ∈ M and oN =

∑
N ∈ N.
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(i) If S is of type (I) then oS M = {oM} and NoS = {oN , 0N} = P(N). If S is of type
(II) then oS M = {oM , 0M} and NoS = {oN , 0N}. If S is of type (III) then oS M =

= {oM} = S oM and NoS = {oN} = oNS . If S is of type (IV) then oS M = {oM , 0M} and
oS = {oN}.
(ii) S is of type (I) ((IV), resp.) if and only if oS is left (right, resp.) and not right (left,
resp.) multiplicatively absorbing. S is of type (I) if and only if oS is neither left nor
right multiplicatively absorbing. S is of type (III) if and only if oS is bi-absorbing.
(iii) If S is of type (II) then 0S ∈ S . If S is of type (I) ((IV), resp.) then 0M ∈ M
(0N ∈ N, resp.) implies 0S ∈ S .
(iv) Assume that 0S ∈ S . Then 0M ∈ M and 0N ∈ N. S is of type (I) if and only
if 0S is left but not right multiplicatively absorbing. Then 0S M = {0M}, S 0M = M,
0NS = {0N} and N0S = {oN , 0N}. S is of type (II) if and only if 0S is multiplicatively
absorbing. Then S 0M = {0M} = 0S M and 0NS = {0N} = N0S . S is of type (III) if
and only if 0S is neither left nor right multiplicatively absorbing. Then S 0M = M,
0S M = {oM , 0M}, 0NS = N and N0S = {oN , 0N}. Finally, S is of type (IV) if and
only if 0S is right but not left multiplicatively absorbing. Then S 0M = {0M}, 0S M =
= {oM , 0M} = P(M), 0NS = N and N0S = {0N}.
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