Tomáš Kepka; Petr Němec Quasitrivial semimodules. V.

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 54 (2013), No. 1, 23-35

Persistent URL: http://dml.cz/dmlcz/143709

Terms of use:

© Univerzita Karlova v Praze, 2013

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ*: *The Czech Digital Mathematics Library* http://dml.cz

QUASITRIVIAL SEMIMODULES V

TOMÁŠ KEPKA, PETR NĚMEC

Praha

Received September 19, 2012

In the paper, critical semimodules over congruence-simple semirings are studied.

This part is an immediate continuation of [4] (but see also [1], [2] and [3]). The notation introduced in the preceding parts is used. Here, critical semimodules over congruence-simple semirings are studied. All the results collected here are fairly basic and we will not attribute them to any particular source.

1. Auxiliary results (A)

In this part, let *M* be an idempotent (left *S*-)semimodule over a semiring *S*.

1.1 Lemma. Let $w \in P(M)$. Put $A_w = \{x \in M | x + w = w\}$ and $B_w = \{x | x + w = x\}$. *Then:*

(i) A_w is a subsemimodule of M and w ∈ A_w.
(ii) B_w is an ideal of M (i.e., B_w is a subsemimodule and B_w + M ⊆ B_w) and w ∈ B.
(iii) A_w ∩ B_w = {w} and A_w ∪ B_w is a subsemimodule of M.
(iv) A_w = M iff w = o_M.
(v) B_w = M iff w = 0_M.

Key words and phrases. semiring, congruence-simple semiring, semimodule, critical semimodule

E-mail address: kepka@karlin.mff.cuni.cz, nemec@tf.czu.cz

Department of Algebra, MFF UK, Sokolovská 83, 186 75 Praha 8, Czech Republic (T. Kepka) Department of Mathematics, Czech University of Life Sciences, Kamýcká 129, 165 21 Praha 6 – Suchdol, Czech Republic (P. Němec)

Supported by the Grant Agency of the Czech Republic, grant GAČR 201/09/0296.

²⁰⁰⁰ Mathematics Subject Classification. 16Y60

Proof. All the assertions are easy to check.

1.2 Lemma. Let $w \in P(M)$ be such that $w \neq o_M$ and $B_w \subseteq P(M)$. Then $M \setminus A_w$ is an ideal of M.

Proof. Since $w \neq o_M$, we have $C = M \setminus A_w \neq \emptyset$. If $x \in C$, $y \in M$ then $x+w \neq w$ and x+x+y+w = x+y+w. Consequently, $x+y+w \neq w$ and $x+y \in C$. Furthermore, if $r \in S$ then $x+w \in B_w \subseteq P(M)$ (use 1.1(ii)) implies $w \neq x+w = r(x+w) = rx+rw = rx+w$. Thus $rx \in C$.

1.3 Proposition. Assume that M is not id-quasitrivial but that every proper subsemimodule of M is id-quasitrivial. Then $P(M) \subseteq \{0_m, o_M\}$.

Proof. Let $w \in P(M)$. If $A_w = M$ then $w = o_M$ by 1.1(iv). If $B_w = M$ then $w = 0_M$ by 1.1(v). Henceforth, assume that $C = M \setminus A_w \neq \emptyset \neq M \setminus B_w$. We have $w \in A_w \cap B_w$ and, by 1.1(i),(ii), both A_w and B_w are proper subsemimodules of M. According to our assumptions, we get $A_w \cup B_w \subseteq P(M)$. Of course, $w \notin C$ and, by 1.2, C is a proper subsemimodule of M. Again, $C \subseteq P(M)$ and it follows that $M = A_w \cup C \subseteq P(M)$, a contradiction.

1.4 Proposition. Assume that M is not id-quasitrivial but that every proper subsemimodule of M is id-quasitrivial. Then just one of the following seven cases takes place:

- (1) $P(M) = \emptyset$, M is strictly minimal and M = S x for every $x \in M$;
- (2) $P(M) = \{0_M\}, SM = \{0_M\}, |M| = 2 \text{ and } M \text{ is minimal};$
- (3) $P(M) = \{0_M\}, M \text{ is minimal and } M = S v \text{ for every } v \in M \setminus \{0_M\};$
- (4) $P(M) = \{o_M\}, SM = \{o_M\}, |M| = 2 \text{ and } M \text{ is minimal};$
- (5) $P(M) = \{o_M\}, M \text{ is minimal and } M = S u \text{ for every } u \in M \setminus \{o_M\};$
- (6) $P(M) = \{o_M, 0_M\}, M = P(M) \cup \{z\}, |M| = 3 \text{ and } SM = P(M) = Sz \text{ (then } M \text{ is congruence simple});$
- (7) $P(M) = \{o_M, 0_M\}, M \text{ is almost minimal and } M = S w \text{ for every } w \in M \setminus \{o_M, 0_M\}.$

Proof. If $P(M) = \emptyset$ then *M* has no proper subsemimodules at all and (1) is clear. Assume, henceforth, that $P(M) \neq \emptyset$.

First, let $P(M) = \{w\}$ be one-element. By 1.3, either $w = o_M$ or $w = 0_M$. Anyway, $Sw = \{w\}$ and $w \in N = \{x \in M | Sx = \{w\}\}$. Clearly, N is a subsemimodule of M. Assume, for a moment, that $N \neq M$. Then $N \subseteq P(M)$, and hence N = $= \{w\}$. Moreover, Sy = M for every $y \in M \setminus \{w\}$ and either (3) or (5) is true. Now, assume that N = M. Then $SM = \{w\}$, and hence any subsemigroup K of the additive semigroup M(+) is a subsemimodule. Since M is idempotent and $w \in \{o_M, 0_M\}$, the set $\{x, w\}$ is a subsemimodule of M for every $x \in M$. However, $\{w\}$ is the only proper subsemimodule of M. Consequently, |M| = 2 and either (2) or (4) is true. Next, let $|P(M) \ge 2$. According to 1.3, we have $P(M) = \{0_M, o_M\}$. If M is almost minimal then (7) is true. On the other hand, if M is not almost minimal then $Sz \subseteq P(M)$ for some $z \in M \setminus P(M)$. The set $L = \{x \in M | Sx \subseteq P(M)\}$ is a subsemimodule of M, $z \in L$ and it means that L = M. Thus SM = P(M). Besides, the set $P(M) \cup \{z\}$ is a subsemimodule of M and it means that $M = P(M) \cup \{z\}$. If $Sz = \{o_M\}$ then the set $\{o_M, z\}$ is a subsemimodule of M, a contradiction. Similarly, if $Sz = \{0_M\}$. Thus Sz = P(M) and (6) is true. \Box

1.5 REMARK. Let M be as in 1.4. Then M is minimal, provided that any of the subcases $(1), \ldots, (5)$ holds, If (6) is true then M is not almost minimal. If (7) is true then M is almost minimal. In all the cases, M contains at most four different subsemimodules.

2. Auxiliary results (B)

Let M be a semimodule over a semiring S.

2.1 Lemma. Assume that $o_S \in S$ and $o_M \in M$. Then: (i) If $x \in M$ is such that $o_M \in S x$ then $o_M = o_S x$. (ii) If $o_M \in S y$ for every $y \in M$ then $o_S M = \{o_M\}$.

Proof. (i) We have $o_M = rx$ for some $r \in S$, and hence $o_S x = (r+o_S)x = rx+o_S x = o_M + o_S x = o_M$. (ii) This follows immediately from (i).

2.2 Lemma. Assume that $o_S \in S$ and o_S is right multiplicatively absorbing in S. If $o_M \in M$ and $o_M = r_1x_1 + \ldots r_nx_n$ for some $n \ge 1$, $r_i \in S$ and $x_i \in M$ then $So_M = \{o_M\}$ (*i.e.*, $o_M \in P(M)$).

Proof. For $r = r_1 + \dots + r_n$, we have $ro_M = r_1o_M + \dots + r_no_M = r_1(x_1 + o_M) + \dots + r_n(x_n + o_M) = r_1x_1 + \dots + r_nx_n + r_1o_M + \dots + r_no_M = o_M + ro_M = o_M$. Now, $o_S o_M = (r + o_S)o_M = ro_M + o_S o_M = o_M + o_S o_M = o_M$ and $so_M = s(o_S o_M) = (so_S)o_M = o_S o_M = o_M$ for every $s \in S$.

2.3 Lemma. Assume that $o_S \in S$, $o_M \in M$ and $o_M \in Sx$ for every $x \in M$. Then $o_S M = \{o_M\}$. If, moreover, o_S is right multiplicatively absorbing in S then $So_M = \{o_M\}$.

Proof. Combine 2.1 and 2.2.

2.4 Lemma. Assume that M is faithful and |rM| = 1 for some $r \in S$. Then r is left multiplicatively absorbing in S.

Proof. We have (rs)x = r(sx) = rx for every $s \in S$ and $x \in M$. Since M is faithful, we get rs = r.

25

2.5 Lemma. Assume that $o_S \in S$, M is faithful, $o_M \in M$ and $o_M \in Sx$ for every $x \in M$. Then $o_S M = \{o_M\}$ and o_S is left multiplicatively absorbing in S. If o_S is right multiplicatively absorbing then o_S is bi-absorbing and $So_M = \{o_M\}$.

Proof. Combine 2.3 and 2.4.

2.6 Lemma. Assume that $0_S \in S$ and $0_M \in M$. Then: (i) If $x \in M$ is such that $0_M \in S x$ then $0_M = 0_S x$. (ii) If $0_M \in S y$ for every $y \in M$ then $0_S M = \{0_M\}$.

Proof. (i) We have $0_M = rx$ for some $r \in S$, and hence $0_S x = 0_M + 0_S x =$ $= rx + 0_S x = (r + 0_S)x = rx = 0_M.$

(ii) This follows immediately from (i).

2.7 Lemma. Assume that $0_S \in S$ and 0_S is right multiplicatively absorbing in S. If $0_M \in M$ and $0_M = r_1 x_1 + \cdots + r_n x_n$ for some $n \ge 1$, $r_i \in S$ and $x_i \in M$ then $SO_M = \{O_M\} (i.e., O_M \in P(M)).$

Proof. For $r = r_1 + \cdots + r_n$, we have $0_M = r_1 x_1 + \cdots + r_n x_n = r_1 (x_1 + 0_M) + r_1 x_1 + \cdots + r_n x_n$ $+\cdots + (r_n(x_n + 0_M) = r_1x_1 + \cdots + r_nx_n + r_10_M + \cdots + r_n0_M = 0_M + r0_M = r0_M.$ Now, $0_M = r0_M = (r + 0_S)0_M = r0_M + 0_S0_M = 0_M + 0_S0_M = 0_S0_M$ and $s0_M = s(0_S0_M) = 0_S0_M$ $= (s0_S)0_M = 0_S 0_M = 0_M$ for every $s \in S$. П

2.8 Lemma. Assume that $0_S \in S$, $0_M \in M$ and $0_M \in Sx$ for every $x \in M$. Then $O_S M = \{O_M\}$. If, moreover, O_S is right multiplicatively absorbing in S then $SO_M = \{O_M\}$. $= \{0_M\}.$

Proof. Combine 2.6 and 2.7.

2.9 Lemma. Assume that $0_S \in S$, M is faithful, $0_M \in M$ and $0_M \in Sx$ for every $x \in M$. Then $0_S M = \{0_M\}$ and 0_S is left multiplicatively absorbing in S. If 0_S is right multiplicatively absorbing in S then 0_S is multiplicatively absorbing and $S 0_M = \{0_M\}.$

Proof. Combine 2.8 and 2.4.

2.10 Lemma. Let the semiring S be additively idempotent. Put $Id(M) = \{x \in M\}$ $\in M \mid 2x = x$. Then: (i) If M = Sv for at least one $v \in M$ then Id(M) = M and M is idempotent. (ii) If M is not idempotent then $SM \subseteq Id(M)$ and Id(M) is a proper subsemimodule of M.

Proof. We have rx = (r + r)x = rx + rx for all $r \in S$ and $x \in M$.

26

3. Critical semimodules (A)

In this section, let *S* be a congruence-simple semiring.

3.1 Proposition. Assume that *S* is not left quasitrivial. Let *M* be a critical semimodule. Then *M* is faithful, congruence-simple and not almost quasitrivial. Moreover, $R(M) = Q(M) = P(M) \neq M$, M = Sv for every $v \in M \setminus P(M)$ and just one of the following four cases takes place:

(1) $P(M) = \emptyset$ and M is strictly minimal;

(2) $0_M \in M$, $P(M) = \{0_M\}$ and M is minimal;

(3) $o_M \in M$, $P(M) = \{o_M\}$ and M is minimal;

(4) $0_M \in M$, $o_M \in M$, $P(M) = \{0_M, o_M\}$ and M is almost minimal.

Proof. Taking into account [4, 5.5], we have to show that (at least) one of the four cases takes place. We know that M is not (almost) quasitrivial, and hence it is not id-quasitrivial either. On the other hand, every proper subsemimodule of M is quasitrivial (see [4, 5.3]), and hence every proper subsemimodule of M is contained in Q(M) = P(M). It follows that every proper subsemimodule of M is id-quasitrivial. The rest follows from 1.4.

3.2 Proposition. *Let M be a congruence-simple semimodule that is not quasitrivial. If M is minimal or almost minimal then M is critical.*

Proof. See [4, 5,6,5.8].

3.3 Corollary. Assume that S is not left quasitrivial. A semimodule M is critical if and only if M is congruence-simple, minimal or almost minimal and not quasitrivial. \Box

3.4 Proposition. Let a semimodule M be minimal or almost minimal. If M is not quasitrivial there there is a congruence ρ of M such that the factrosemimodule M/ρ is critical.

Proof. See [4, 5.7,5.9].

3.5 Proposition. *The following conditions are equivalent:*

- (i) The semiring S is finite.
- (ii) There is at least one finite critical semimodule (see [4, 5.3]).

Proof. (i) implies (ii). If the (left *S*-)semimodule ${}_{S}S$ is faithful then the result is clear. Assume, henceforth, that ${}_{S}S$ is not faithful. Then *S* is left quasitrivial and, in view of [4, 3.6], we have to distinguish the following four cases:

(a) *S* is a zero multiplication ring |S| = p is a prime number. Without loss of generality, we can assume that $S(+) = \mathbb{Z}_p(+)$, $\mathbb{Z}_p = \{0, 1, \dots, p-1\}$. Put $M(+) = \mathbb{Z}_{p^2}(+)$,

 $\mathbb{Z}_{p^2} = \{0, 1, \dots, p^2 - 1\}$, and define an *S*-scalar multiplication * on *M* by a * x = pax for all $0 \le a \le p - 1$ and $0 \le x \le p^2 - 1$. One checks readily that *M* becomes a left *S*-semimodule and that *M* is critical.

(b) $S = \{0, 1\}, 0 + 0 = 0, 0 + 1 = 1 + 0 = 1 + 1 = 1$ and ab = b for all $a, b \in S$. By [4, 4.12], there is an idempotent critical semimodule *M* such that $|M| \le 5$.

(c) $S = \{0, 1\}, 0 + 0 = 0, 0 + 1 = 1 + 0 = 1 + 1 = 1$ and |SS| = 1 (either $SS = \{0\}$ or $SS = \{1\}$). Again, by [4, 4.12], there is an idempotent critical semimodule M such that $|M| \le 5$.

(d) $S = \{0, 1\}$ and $S + S = \{0\} = SS$. Take $\alpha \notin S$, put $M = S \cup \{\alpha\}$, $M + M = \{0\}$ and extend the interior multiplication of *S* to an *S*-scalar multiplication on *M* by $a\alpha = a$ for all $a \in S$. Then *M* becomes a critical left *S*-semimodule.

(ii) implies (i). S imbeds into the full endomorphism semiring End(M(+)).

4. Critical semimodules (B)

In this section, let *S* be an additively idempotent congruence-simple semiring. Assume, furthermore, that *S* is not left quasitrivial. The latter assumption is equivalent to: Either $|S| \ge 3$ or |S| = 2, the multiplication of *S* is not constant and $ab \ne b$ for some $a, b \in S$.

Let M be a critical semimodule (see [4, 5.3,5.4]). Then M is faithful, congruencesimple and not almost quasitrivial. In view of 3.1, just one of the following four cases takes place:

(a) *M* is strictly minimal (then $R(M) = Q(M) = P(M) = \emptyset$);

(β) $R(M) = Q(M) = P(M) = \{0_M\}$ and *M* is minimal;

(γ) $R(M) = Q(M) = P(M) = \{o_M\}$ and M is minimal;

(δ) $R(M) = Q(M) = P(M) = \{o_M, 0_M\}$ and *M* is almost minimal.

In all the four cases, M = Sv for every $v \in M \setminus P(M)$. In particular, the mapping $s \mapsto sv$ is a projective homomorphism of the left *S*-semimodule ${}_{S}S$ onto ${}_{S}M$. Thus *M* is finite if and only if *S* is finite. Furthermore, *M* is idempotent. If $0_{S} \in S$ then $0_{M} \in M$. If $o_{S} \in S$ then $o_{M} \in M$.

4.1 Lemma. Let $o_S \in S$. Then: (i) $o_M \in M$. (ii) $o_S x = o_M$ for every $x \in (M \setminus P(M)) \cup (M \setminus \{0_M\})$.

Proof. (i) ${}_{S}M$ is a homomorphic image of ${}_{S}S$. (ii) If $x \in M \setminus P(M)$ then M = Sx, $o_M = rx$ and $o_M = o_S x$ by 2.1(i). If $x \in M \setminus \{0_M\}$ then either $x \notin P(M)$ and $o_M = o_S x$, or $x \in P(M)$ and then $x = o_M$ and $o_S x = x = o_M$.

4.2 Corollary. If $o_S \in S$ and $0_M \notin P(M)$ then $o_S M = \{o_M\}$.

4.3 Lemma. An element $r \in S$ is right multiplicatively absorbing in S if and only if $rM \subseteq P(M)$.

Proof. If $rM \subseteq P(M)$ then srx = rx for all $x \in S$ and $x \in M$. Since M is faithful, we get sr = r. Conversely, if r is right multiplicatively absorbing then srx = rx for all $s \in S$ and $x \in M$. Thus $rx \in P(M)$.

4.4 Proposition. Assume that $o_S \in S$ (e.g., if S is finite then $o_S = \sum s, s \in S$). Then: (i) $o_M \in M$ and $o_S(M \setminus \{0_M\}) = \{o_M\}$ (possibly $0_M \notin M$).

(ii) If $0_M \notin P(M)$ then $o_S M = \{o\}$.

(iii) If M is of type (α) then $o_S M = \{o_M\}$, $So_M = M$, o_S is left multiplicatively absorbing in S and o_S is not right multiplicatively absorbing in S.

(iv) If M is of type (β) then $o_S M = \{o_M, 0_M\}$, $So_M = M$ and o_S is neither left nor right multiplicatively absorbing in S.

(v) If M is of type (γ) then $o_S M = \{o_M\}$, $So_M = \{o_M\}$ and o_S is bi-absorbing in S.

(vi) If *M* is of type (δ) then $o_S M = \{o_M, 0_M\}$, $So_M = \{o_M\}$ and o_S is right, but not left multiplicatively absorbing in *S*.

Proof. (i) By 4.1, $o_M \in M$. Since $P(M) \subseteq \{o_M, 0_M\}$, we have $o_S(M \setminus \{0_M\}) = \{o_M\}$. (ii) See 4.2.

(iii) We have $P(M) = \emptyset$, and so $o_S M = \{o_M\}$ by (ii). Since *M* is strictly minimal, we have $S o_M = M$. Furthermore, $o_S rx = o_M = o_S x$ for all $r \in S$ and $x \in M$. Since *M* is faithful, we get $o_S r = o_S$, i.e., o_S is left multiplicatively absorbing. By 4.3, o_S is not right multiplicatively absorbing.

(iv) We have $P(M) = \{o_M\}$. Thus $o_S 0_M = 0_M$ and $o_S M = \{o_M, 0_M\}$ follows from (i). Since $o_M \notin P(M)$, we have $S o_M = M$. By 4.3, o_S is not right multiplicatively absorbing. Finally, $ro_M = 0_M$ for some $r \in S$ and $o_S ro_M = o_S 0_M = 0_M \neq o_M =$ $= o_S o_M$. Thus $o_S r \neq o_S$ and o_S is not left multiplicatively absorbing.

(v) We have $P(M) = \{o_M\}$, and hence $So_M = \{o_M\} = o_S M$ (see (ii)). By 4.3, o_S is right multiplicatively absorbing. Finally, $o_S rx = o_M = o_S x$ for all $r \in S$ and $x \in M$. Since *M* is faithful, we have $o_S r = o_S$ and o_S is left multiplicatively absorbing. Thus o_S is bi-absorbing.

(vi) We have $P(M) = \{o_M, 0_M\}$ and $o_S M = P(M)$ follows from (i). Of course, $S o_M = \{o_M\}$ and o_S is right multiplicatively absorbing by 4.3. On the other hand, if $x \in M \setminus P(M)$ then $0_M = rx$ for some $r \in S$ and we have $o_S rx = o_S 0_M = 0_M \neq o_M = o_S x$. Thus $o_S r \neq o_S$ and o_S is not left multiplicatively absorbing.

4.5 Corollary. Let $o_S \in S$. Then any two critical semimodules have the same type.

Assume that $o_S \in S$. With respect to 4.5, we can define the type of *S* to be the type of *M*. Thus *S* is of type

(α) if o_S is left, but not right multiplicatively absorbing;

- (β) if o_S is neither left nor right multiplicatively absorbing;
- (γ) if o_S is bi-absorbing;
- (δ) if o_S is right, but not left multiplicatively absorbing.

5. Critical semimodules (C)

The preceding section is immediately continued. We will assume here that $0_S \in S$.

5.1 Lemma. (i) $0_M \in M$. (ii) $0_S x = 0_M$ for every $x \in (m \setminus P(M)) \cup (M \setminus \{o_M\}$.

Proof. (i) $_{S}M$ is a homomorphic image of $_{S}S$.

(ii) If $x \in M \setminus P(M)$ then M = Sx, $0_M = rx$ for some $r \in S$ and $0_M = 0_S x$ by 2.6(i). If $x \in M \setminus \{o_M\}$ then either $x \notin P(M)$ and $0_M = 0_S x$ or $x \in P(M)$ and then $x = 0_M$ and $0_S x = x = 0_M$.

5.2 Corollary. If $o_M \notin P(M)$ then $0_S M = \{0_M\}$.

5.3 Proposition. (i) $0_M \in M$ and $0_S(M \setminus \{o_M\}) = \{0_M\}$ (possibly $o_M \notin M$).

(ii) If $o_M \notin P(M)$ then $0_S M = \{0_M\}$.

(iii) If M is of type (α) then $0_S M = \{0_M\}$, $S 0_M = M$ and 0_S is left multiplicatively absorbing, but not right multiplicatively absorbing.

(iv) If M is of type (β) then $0_S M = \{0_M\}$, $S0_M = \{0_M\}$ and 0_S is multiplicatively absorbing.

(v) If M is of type (γ) then $0_S M = \{o_M, 0_M\}$, $S 0_M = M$ and 0_S is neither left nor right multiplicatively absorbing in S.

(vi) If M is of type (γ) then $0_S M = \{o_M, 0_M\}$, $S 0_M = \{0_M\}$ and 0_S is right, but not left multiplicatively absorbing.

Proof. (i) By 5.1, $0_M \in M$. Since $P(M) \subseteq \{o_M, 0_M\}$, we have $0_S(M \setminus \{o_M\}) = \{0_M\}$. (ii) See 5.2.

(iii) We have $P(M) = \emptyset$, and so $0_S M = \{0_M\}$ by (ii). Since *M* is strictly minimal, we have $S 0_M = M$. Furthermore, $0_S rx = 0_M = 0_S x$ for all $r \in S$ and $x \in M$. Since *M* is faithful, we get $0_S r = 0_S$, i.e., 0_S is left multiplicatively absorbing. By 4.3, 0_S is not right multiplicatively absorbing.

(iv) We have $P(M) = \{0_M\}$. Thus $0_S M = \{0_M\}$ follows from (ii). Of course, $S 0_M = \{0_M\}$. By 4.3, 0_S is right multiplicatively absorbing. Finally, $0_S rx = 0_M = 0_S x$ for all $r \in S$ and $x \in M$. Since M is faithful, we have $0_S r = 0_S$, i.e., 0_S is left multiplicatively absorbing.

(v) We have $P(M) = \{o_M\}$, and hence $0_S M = \{o_M, 0_M\}$ and $S 0_M = M$ (use (i)). By 4.3, 0_S is not right multiplicatively absorbing. Finally, $r0_M = o_M$ for some $r \in S$ and $0_S r0_M = 0_S o_M = o_M \neq 0_M = 0_S 0_M$. Thus $0_S r \neq 0_S$ and 0_S is not left multiplicatively absorbing.

(vi) We have $P(M) = \{o_M, 0_M\}$ and $0_S M = P(M)$ follows from (i). Of course, $S 0_M =$ $= \{0_M\}$ and 0_S is right multiplicatively absorbing by 4.3. On the other hand, if $x \in$ $\in M \setminus P(M)$ then $o_M = rx$ for some $r \in S$ and we have $O_S rx = O_S o_S = o_M \neq O_M =$ $= 0_S x$. Thus $0_S r \neq 0_S$ and 0_S is not left multiplicatively absorbing.

5.4 Corollary. Any two critical semimodules have the same type.

With respect to 5.4, we can define the type of S to be the type of M. Thus S is of type

- (α) if 0_S is left but not right multiplicatively absorbing;
- (β) if 0_S is multiplicatively absorbing;
- (γ) if 0_S is neither left nor right multiplicatively absorbing;
- (δ) if 0_S is right, but not left multiplicatively absorbing.

5.5 Lemma. Assume that M is of type (γ) or (δ) . Then $o_M \in P(M)$ and o_M is irreducible.

Proof. Left $o_M = u + v$ for some $u, v \in M$. Then $o_M = 0_S o_M = 0_S (u + v) =$ $= 0_S u + 0_S v$, and hence either $0_S u \neq 0_M$ pr $0_S v \neq 0_M$. If $0_S u \neq 0_M$ then $u = o_M$ by 5.1(ii). Similarly, if $0_S v \neq 0_M$ then $v = o_M$. Thus o_M is irreducible.

6. Critical semimodules (D)

Let S be an additively idempotent congruence-simple semiring that is not left quasitrivial. Let *M* be a critical semimodule.

6.1 Lemma. Let $0_S \notin S$, $o_M \in M$ and $0_M \in M$. Then: (i) *M* is of type (γ) or (δ) . (ii) If $o_S \in S$ then o_S is right multiplicatively absorbing.

Proof. (i) We have to show that $o_M \in P(M)$. Suppose, on the contrary, that $o_M \notin P(M)$. $\notin P(M)$. Then $So_M = M$ and there is $r \in S$ such that $ro_M = 0_M$ and $0_M = ro_M = 0_M$ $= r(x + o_M) = rx + ro_M = rx + 0_M = rx$ for every $x \in M$. That is $rM = \{0_M\}$. Now, (r + s)x = rx + sx, $0_M + sx = sx$ for all $s \in S$ and $x \in M$. Since M is faithful, we get r + s = s and $r = 0_S$, a contradiction.

(ii) Combine (i) and 4.4(v),(vi).

6.2 Lemma. Let $0_S \notin S$, $o_S \notin S$, $o_M \in M$ and $0_M \in M$. Then M is of type (δ).

Proof. By 6.1, M is of type (γ) or (δ) . Proceeding by contradiction, assume that M is of type (γ). Then $P(M) = \{o_M\}, SO_M = M, o_M = rO_M$ for some $r \in S$ and $rx = r(x + 0_M) = rx + r0_M = rx + o_M = o_M$ for every $x \in M$. That is, $rM = \{o_M\}$. Now, $(r + s)x = rx + sx = o_M + sx = o_M = rx$ for all $s \in S$ and $x \in M$. Since M is faithful, we get r + s = r and $r = o_S$, a contradiction.

6.3 Lemma. Let o_S ∉ S, o_M ∈ M and 0_M ∈ M. Then:
(i) M is of type (β) or (δ).
(ii) If 0_S ∈ S then 0_S is right multiplicatively absorbing.

Proof. (i) We have to show that $0_M \in P(M)$. Suppose, on the contrary, that $0_M \notin P(M)$. Then $S 0_M = M$, $r 0_M = o_M$ for some $r \in S$, $rx = r(x + 0_M) = rx + r 0_M = rx + o_M = o_M$ for every $x \in M$, and hence $rM = \{o_M\}$. Now, $(r + s)x = rx + sx = o_m + sx = o_M = rx$ for all $s \in S$ and $x \in M$. Since M is faithful, we get r + s = r and $r = o_S$, a contradiction.

(ii) Combine (i) and 5.3(iv),(vi).

6.4 Lemma. Let o_S ∈ S be not right multiplicatively absorbing. Then:
(i) 0_S ∈ S if and only if 0_M ∈ M.
(ii) If 0_S ∈ S then 0_S is left multiplicatively absorbing.
(iii) M is of type (α) or (β) and o_M ∈ M.

Proof. Since $o_S \in S$ is not right multiplicatively absorbing, the semimodule M is of type (α) or (β) (use 4.4). Of course, $o_M \in M$. If $0_S \in S$ then $0_M \in M$ and 0_S left multiplicatively absorbing by 5.3. Finally, if $0_M \in M$ then $0_S \in S$ by 6.1.

6.5 Lemma. Let $o_S \in S$ be neither left nor right multiplicatively absorbing. Then: (i) $0_S \in S$ and 0_S is multiplicatively absorbing. (ii) M is of type (β) and $o_M \in M$, $0_M \in M$.

Proof. Since $o_S \in S$ is neither left nor right multiplicatively absorbing, the semimodule M is of type (β) by 4.4. Of course, $o_M \in M$, $0_M \in M$ and we have $P(M) = \{0_M\}$. By 6.4, $0_S \in S$ and 0_S is multiplicatively absorbing by 5.3(iv).

6.6 Lemma. Let 0_S ∈ S be not right multiplicatively absorbing. Then:
(i) M is of type α) or (γ) and 0_M ∈ M.
(ii) o_S ∈ S if and only if o_M ∈ M.
(iii) If o_S ∈ S then o_S is left multiplicatively absorbing.

Proof. By 5.3, *M* is of type (α) or (γ) and $0_M \in M$. If $o_S \in S$ then $o_M \in M$ and o_S is left multiplicatively absorbing by 4.4 Conversely, if $o_M \in M$ then $o_S \in S$ by 6.3.

6.7 Lemma. Let $0_S \in S$ be neither left nor right multiplicatively absorbing. Then: (i) *M* is of type (γ) and $o_M \in M$, $0_M \in M$. (ii) $o_S \in S$ is bi-absorbing.

Proof. By 5.3, *M* is of type (γ) and we have $0_M \in M$. Of course, $P(M) = \{o_M\}$, and hence $o_S \in S$ by 6.6. By 4.4(v), o_S is bi-absorbing.

6.8 Proposition. Assume that the semimodule M is of type (α). Then:

(i) If $o_S \in S$ then o_S is left multiplicatively absorbing, o_S is not right multiplicatively absorbing, $o_M \in M$, $S o_M = M$ and $o_S M = \{o_M\}$.

(ii) If $0_S \in S$ then 0_S is left multiplicatively absorbing, 0_S is not right multiplicatively absorbing, $0_M \in M$, $0_M = M$ and $0_S M = \{0_M\}$.

(iii) If $o_S \in S$ and $0_M \in M$ then $0_S \in S$.

(iv) If $0_S \in S$ and $o_M \in M$ then $o_S \in S$.

(v) Assume that either $o_S \in S$ or $0_S \in S$. If N is a critical semimodule then N is of type (α).

Proof. See 4.4(i),(iii), 5.3(i),(iii), 6.4(i), 6.6(ii), 4.5 and 5.4.

6.9 Proposition. Assume that the semimodule M is of type (β). Then:

(i) If $o_S \in S$ then o_S is neither left nor right multiplicatively absorbing, $o_M \in M$, $So_M = M, 0_M \in M$ and $o_S M = \{o_M, 0_M\}$.

(ii) If $0_S \in S$ then 0_S is multiplicatively absorbing, $0_M \in M$ and $S 0_M = \{0_M\} = 0_S M$. (iii) If $o_S \in S$ then $0_S \in S$.

(iv) If $o_M \in M$ then $0_M \in M$.

(v) Assume that either $o_S \in S$ or $0_S \in S$. If N is a critical semimodule then N is of type (β).

Proof. See 4.4(i),(iv), 5.3(iv), 6.1, 4.5 and 5.4.

6.10 Proposition. Assume that the semimodule M is of type (γ) . Then:

(i) If $o_S \in S$ then o_S is bi-absorbing and $S o_M = \{o_M\} = o_S M$.

(ii) If $0_S \in S$ then 0_S is neither left nor right multiplicatively absorbing in S, $0_M \in M$, $S0_M = M$ and $0_S M = \{o_M, 0_M\}$.

(iii) If $0_S \in S$ then $o_S \in S$.

(iv) If $0_M \in M$ then $o_S \in S$.

(v)(Assume that either $o_S \in S$ or $0_S \in S$. If N is a critical semimodule then N is of type (γ).

Proof. See 4.4(v), 5.3(i),(v), 6.3, 4.5 and 5.4.

6.11 Proposition. *Assume that the semimodule* M *is of type* (δ)*. Then:*

(i) If $o_S \in S$ then o_S is right multiplicatively absorbing, o_S is not left multiplicatively absorbing and $o_S M = \{o_M, 0_M\}$.

(ii) If $0_S \in S$ then 0_S is right, but not left multiplicatively absorbing and $0_S M = \{o_M, 0_M\}$.

(iii) Assume that either $o_S \in S$ or $0_S \in S$. If N is a critical semimodule then N is of type (δ).

Proof. See 4.4(vi), 5.3(vi), 4.5 and 5.4. □

. .

6.12 REMARK. Put $S^{\text{op}} = T (= T(+, *), a * b = ba)$.

(i) Let *M* be a right *S*-semimodule. Put $a \circ x = xa$ for all $a \in S$ and $x \in M$. Then $a \circ (x+y) = (x+y)a = xa+ya = a \circ x+a \circ y$, $(a+b) \circ x = x(a+b) = xa+xb = a \circ x+b \circ x$ and $a \circ (b \circ x) = a \circ xb = (xb)a = x(ba) = x(a*) = (a*b) \circ x$. Thus $M(*, \circ)$ is a left *T*-semimodule.

(ii) Let $M(+, \circ)$ be a left *T*-semimodule. Put $xa = a \circ x$ for all $a \in S$. Again, $(xa)b = b \circ (a \circ x) = (b * a) \circ x = x(b * a) = x(ab)$. It means that *M* becomes a right *S*-semimodule.

(iii) Combining (i) and (ii), we get a biunique correspondence between right S-semimodules and left T-semimodules.

(iv) $T^{\text{op}} = S$, and hence there is a biunique correspondence between right *T*-semimodules and left *S*-semimodules as well.

(iv) Assume that *S* is neither left nor right quasitrivial. Let *N* be a critical right *S*-semimodule. Denote by \overline{N} the corresponding left *T*-semimodule. A subset *K* of *N* is a subsemimodule of *N* if and only if *K* is a subsemimodule of \overline{N} . Clearly, \overline{N} is a faithful *T*-semimodule and $P(\overline{N}) = P(N)$. Consequently, \overline{N} is critical and of the same type as *N*.

6.13 Proposition. Assume that *S* is neither left nor right quasitrivial (e.g., if $|S| \ge 3$) and that either $o_S \in S$ or $0_S \in S$. Let *M* be a critical left *S*-semimodule and *N* be a critical right *S*-semimodule. Then:

(i) *M* is of type (α) iff *N* is of type (δ).

(ii) *M* is of type (β) iff *N* is of type (β) .

(iii) *M* is of type (γ) iff *N* is of type (γ) .

Proof. (i) First, let M be of type (α). If $o_S \in S$ ($0_S \in S$, resp.) then o_S (0_S , resp.) is left, but not right multiplicatively absorbing in S (see 6.8)i),(ii)). Put $T = S^{\text{op}}$. If $o_S \in S$ ($0_S \in S$, resp.) then $o_T \in T$ ($0_T \in T$, resp.) and if o_S (0_S , resp.) is left multiplicatively absorbing in S then o_T (0_T , resp.) is right multiplicatively absorbing in T. By 6.11, the left T-semimodule \overline{N} is of type (δ). By 6.12(v), the right S-semimodule N is of type (δ) as well.

(ii) and (iii). Combine 6.9, 6.10 and 6.12.

7. Critical semimodules (E)

Let *S* be a finite additively idempotent and congruence-simple semiring such that $|S| \ge 3$. Then $o_S = \sum S \in S$ and *S* is neither left nor right quasitrivial.

7.1 REMARK. Let *M* be a critical left *S*-semimodule and *N* be a critical right *S*-semimodule. The type of *M* (*N*, resp.) is uniquely determined and *M* is of type (α) ((β), (γ), (δ), resp.) if and only if *N* is of type (δ) ((β , (γ), (α), resp.). We will say that *S* is of type (I) ((II), (III), (IV), resp.). The semiring *S* is of this type if and only if the opposite semiring *S*^{op} is of the type (IV) ((II), (III), (I), resp.). We have $o_M = \sum M \in M$ and $o_N = \sum N \in N$.

(i) If S is of type (I) then $o_S M = \{o_M\}$ and $No_S = \{o_N, 0_N\} = P(N)$. If S is of type (II) then $o_S M = \{o_M, 0_M\}$ and $No_S = \{o_N, 0_N\}$. If S is of type (III) then $o_S M = \{o_M\} = So_M$ and $No_S = \{o_N\} = o_NS$. If S is of type (IV) then $o_S M = \{o_M, 0_M\}$ and $o_S = \{o_N\}$.

(ii) *S* is of type (I) ((IV), resp.) if and only if o_S is left (right, resp.) and not right (left, resp.) multiplicatively absorbing. *S* is of type (I) if and only if o_S is neither left nor right multiplicatively absorbing. *S* is of type (III) if and only if o_S is bi-absorbing.

(iii) If S is of type (II) then $0_S \in S$. If S is of type (I) ((IV), resp.) then $0_M \in M$ ($0_N \in N$, resp.) implies $0_S \in S$.

(iv) Assume that $0_S \in S$. Then $0_M \in M$ and $0_N \in N$. *S* is of type (I) if and only if 0_S is left but not right multiplicatively absorbing. Then $0_S M = \{0_M\}$, $S0_M = M$, $0_N S = \{0_N\}$ and $N0_S = \{o_N, 0_N\}$. *S* is of type (II) if and only if 0_S is multiplicatively absorbing. Then $S0_M = \{0_M\} = 0_S M$ and $0_N S = \{0_N\} = N0_S$. *S* is of type (III) if and only if 0_S is neither left nor right multiplicatively absorbing. Then $S0_M = M$, $0_S M = \{o_M, 0_M\}$, $0_N S = N$ and $N0_S = \{o_N, 0_N\}$. Finally, *S* is of type (IV) if and only if 0_S is right but not left multiplicatively absorbing. Then $S0_M = \{0_M\}$, $0_S M =$ $= \{o_M, 0_M\} = P(M)$, $0_N S = N$ and $N0_S = \{0_N\}$.

References

- K. AL-ZOUBI, T. KEPKA AND P. NĚMEC: *Quasitrivial semimodules I*, Acta Univ. Carolinae Math. Phys. 49/1 (2008), 3–16.
- [2] К. AL-ZOUBI, T. КЕРКА AND P. NĚMEC: Quasitrivial semimodules II, Acta Univ. Carolinae Math. Phys. 49/1 (2008), 17–24.
- [3] K. AL-ZOUBI, T. KEPKA AND P. NĚMEC: Quasitrivial semimodules III, Acta Univ. Carolinae Math. Phys. 50/1 (2009), 3–13.
- [4] T. KEPKA AND P. NĚMEC: Quasitrivial semimodules IV, this issue, pp. 3–22.