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We give a brief survey of recent results of order limited operators related to some properties
on Banach lattices.

1. I n t r o d u c t i o n

In [10], we have defined a new class of operators that we are called order limited
operators. This class of operators is essentially based on the concept of limited sets
introduced in [7]. It is bigger than the class of AM-compact operators, but smaller
than the class of order Dunford-Pettis operators introduced in [4].

In this paper, we continue on this path by characterizing, in the first time, Banach
lattice on which each order interval is limited (Proposition 3.1). As an important
consequence, we obtain the same result of Witold Wnuk [14, Proposition 1.1]. After-
wards, we study the class of order limited operators. Also, we derive the following
consequences: a characterization of this class of operators (Theorem 3.3, Corollary
3.4), the coincidence of this class of operators and the class of AM-compact operators
(Corollary 3.5), the equivalence between a discrete Banach lattice with order continu-
ous norm and a Banach lattice which admits the Gelfand-Phillips property and whose
the lattice operations of its topological dual are weak� sequentially.
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2. P r e l i m i n a r i e s

A norm bounded subset A of a Banach space X is said limited set if every weak�

null sequence ( fn) of X′ converges uniformly on A, that is, lim
n→∞

supx∈A |〈 fn, x〉| = 0. It
is easy to check that every relatively norm compact set is limited but the converse is
not true in general. In fact, the set {en : n ∈ N} of unit coordinate vectors is a limited
set in �∞ which is not relatively compact. The space X is said to have the Gelfand-
Phillips property if this may be reversed, i.e. if every limited subset of X is relatively
norm compact (abb. GP-property). Alternatively, the Banach space X has the GP-
property if, and only if, every limited and weakly null sequence (xn) in X is norm null
[8]. As example, the classical Banach spaces c0 and �1 have the GP-property but the
Banach space �∞ does not have the GP-property.

Let us recall a Banach space X has the Dunford-Pettis� property if every relatively
weakly compact subset of X is limited. It turns out that a Banach space X has the DP�

property if and only if lim fn(xn) = 0 for every weakly null sequence (xn) in X and
every weak� convergent sequence ( fn) in X′. But if X is a Grothendieck space (i.e.,
weak and weak� convergence of sequences in X are coincide), then these properties
are the same on X. As an example the Banach lattice �1 has the Dunford-Pettis�

property.
Recall from [9] that a operator T from a Banach lattice E into a Banach space X

is said to be order limited if carries each order bounded subset of E into a limited
set of X. i.e. For each x ∈ E+, the subset T ([−x; x]) is limited in X. Let us recall
that an operator T from a Banach lattice E into a Banach space X is said to be AM-
compact if it carries each order-bounded subset of E onto a relatively compact set of
X. An operator T from a Banach lattice E into a Banach space X is said to be order
Dunford-Pettis if carries each order bounded subset of E into a Dunford-Pettis set of
X. i.e. for each x ∈ E+, the subset T ([−x; x]) is Dunford-Pettis in X.

To state our results, we need to fix some notations and recall some definitions.
A Banach lattice is a Banach space (E, ‖.‖) such that E is a vector lattice and its
norm satisfies the following property: for each x, y ∈ E such that |x| ≤ |y|, we have
‖x‖ ≤ ‖y‖. A norm ‖·‖ of a Banach lattice E is order continuous if for each generalized
sequence (xα) such that xα ↓ 0 in E, (xα) converges to 0 for the norm ‖ · ‖ where the
notation xα ↓ 0 means that (xα) is decreasing, its infimum exists and inf(xα) = 0.

The lattice operations in E′ are called weak� sequentially continuous if the se-
quence (| fn|) converges to 0 in the weak� topology, whenever the sequence ( fn) con-
verges weak� to 0 in E. Note that if E is a Banach lattice, its topological dual E′,
endowed with the dual norm and the dual order, is also a Banach lattice. A nonzero
element x of a vector lattice E is discrete if the order ideal generated by x equals
the lattice subspace generated by x. The vector lattice E is discrete, if it admits a
complete disjoint system of discrete elements. Also, a vector lattice E is Dedekind
σ-complete if every majorized countable nonempty subset of E has a supremum. A
subset A of a vector lattice E is called order bounded, if it includes in an order interval
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in E. A linear mapping T from a vector lattice E into another F is order bounded if
it carries order bounded set of E into order bounded set of F. We will use the term
operator T : E −→ F between two Banach lattices to mean a bounded linear map-
ping. It is positive if T (x) ≥ 0 in F whenever x ≥ 0 in E. The operator T is regular
if T = T1 − T2 where T1 and T2 are positive operators from E into F. Note that each
positive linear mapping on a Banach lattice is continuous. If an operator T : E −→ F
between two Banach lattices is positive, then its adjoint T ′ : F′ −→ E′ is likewise
positive, where T ′ is defined by T ′( f )(x) = f (T (x)) for each f ∈ F′ and for each
x ∈ E. For terminologies concerning Banach lattice theory and positive operators we
refer the reader to the excellent book of Aliprantis-Burkinshaw [2].

3. M a i n s r e s u l t s

In the following result, we give a characterization of Banach lattice whose its topo-
logical dual has weak� sequentially continuous lattice operations,

Proposition 3.1 Let E be a Banach lattice. Then the following assertions are
equivalent

(1) E′ has weak� sequentially continuous lattice operations,
(2) for each x ∈ E+, [−x, x] is limited,
(3) each operator S : E → c0 is AM-compact.

Proof. (2) ⇐⇒ (1) [−x, x] is limited if, and only if, sup{| fn(z)|; z ∈ [−x, x]} −→ 0.
As | fn|(x) = sup{| fn(z)|; z ∈ [−x, x]}, we conclude that | fn| converge weak� to 0. i.e.,
E′ has weak� sequentially continuous lattice operations.

(2)⇐⇒ (3) Follows from Theorem 2.3 [12]. �

As an immediate consequence of Proposition 3.1, we obtain the Proposition 1.1 of
[14],

Corollary 3.2 Let E be a Banach lattice. If E is discrete with order continuous
norm then E′ has weak� sequentially continuous lattice operations.

Proof. Let x ∈ E+. Since E is discrete with order continuous norm then, it follows
from Corollary 21.13 [1] that the order interval [−x, x] is norm relatively compact and
hence it is a limited subset of E.

Now it follows from Proposition 3.1 that E′ has weak� sequentially continuous
lattice operations. �

Our first major result gives necessary and sufficient conditions for which each
operator is order limited.

Theorem 3.3 Let T be an operator from a Banach lattice E into a Banach space
X. Then the following assertions are equivalent:

(1) T is order limited operator,
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(2) for each lcc operator S from X into an arbitrary Banach space Z, the com-
posed operator S ◦ T is AM-compact,

(3) for every weak� null sequence ( fn) of X′, we have |T ′( fn)| → 0 for σ(E′, E).

Proof. (1) =⇒ (2) Let S be an order limited operator from X into an arbitrary
Banach space Z and let x ∈ E+. Then T ([−x, x]) is a limited subset of X and since S
is lcc, it follows from Theorem 2.1 [12] that S ◦T ([−x, x]) is relatively compact of Z.
This show that S ◦ T is AM-compact.

(2) =⇒ (3) Let ( fn) be a weak� null sequence of X′, we consider the operator
S : X → c0 defined by S (x) = ( fn(x))∞n=1 for all x ∈ X.

It is clear that S is well defined and it is a lcc operator (because c0 has the GP-
property). Now, it follows from the assumption that S (T ([−x, x])) is a relatively com-
pact subset of c0 for all x ∈ E+. Then

|T ′( fn)|(y) = sup{|T ′( fn)(y)|; y ∈ [−x, x]}
= sup{| fn(z)|; z ∈ T ([−x, x])} → 0

(see Exercise 14 of Section 3.2 [2])
(3) =⇒ (1) For each x ∈ E+, we have

sup{| fn(y)|; y ∈ [−x, x]} = |T ′( fn)|(y) = sup{| fn(z)|; z ∈ T ([−x, x])} → 0

for each weak� null sequence of X′, which prove that T ([−x, x]) is a limited set of X
for each x ∈ E+ and hence T is an order limited operator. �

As consequence of Theorem 3.3 and Proposition 3.1, we obtain the following char-
acterizations.

Corollary 3.4 Let E be a Banach lattice. Then the following statements are equiv-
alent

(1) each positive operator from E into E is order limited,
(2) the identity operator of E is order limited,
(3) E′ has weak� sequentially continuous lattice operations.

Proof. (1) =⇒ (2) Obvious.
(2) =⇒ (3) Let x ∈ E+. Since the identity operator of E is order limited then

[−x, x] is a limited set in E and hence, it follows from Proposition 3.1 that E′ has
weak� sequentially continuous lattice operations.

(3) =⇒ (1) Let T : E → E be a positive operator and S : E → c0 an lcc operator.
Since E′ has weak� sequentially continuous lattice operations, it follows from

Proposition 3.1 that S is AM-compact and hence S ◦ T is AM-compact. Finally, it
follows from Theorem 3.3 that T is order limited. �

Another consequence of Theorem 3.3, is giving by the following result:

Corollary 3.5 Let X and Y be two Banach spaces such that Y has the GP-property.
Then each order limited operator T : X → Y is AM-compact.
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Proof. Let T : X → Y be an lcc operator. Since Y has the GP-property then
its identity operator IdY : Y → Y is lcc. Now, it follows from Theorem 3.3 that
IdY ◦ T = T is AM-compact. �

There exist operators that are not order limited. In fact, the identity operator of the
Banach lattice L2[0; 1] is not order limited (because the lattice operations of L2[0; 1]
are not weak� sequentially continuous).

Proposition 3.6 Let E be a Banach lattice and X a Banach space. If the norm of
E is order continuous and either X has the DP� property or E has the DP� property
then, each operator T from E into X is order limited.

Proof. Let T : E → X be an operator. Since the norm of E is order continuous,
then it follows from Theorem 2.4.3 of [11] that for each x ∈ E+, the order interval
[−x; x] is weakly compact then T ([−x; x]) is weakly compact in X.

• Since X has the DP� property, then T ([−x; x]) is a limited set in X and hence
T is order limited.
• Since E has the DP� property, then the order interval [−x; x] is limited and

hence it follows from [5] that T ([−x; x]) is limited. So, T is order limited.
�

Lemma 3.7 Let E be a Dedekind σ-complete Banach lattice. Then, for every
order bounded disjoint sequence (xn) in E, the subset {xn, n ∈ N} is limited.

Proof. Let (xn) be an order bounded disjoint sequence in E and pick some x ≥ 0
such that |xn| ≤ x for all n. Let ( fn) be a weak� null sequence of E′ and let ε > 0. By
Theorem 4.42 [2] there exists f ∈ (E′)+ such that (| fn| − f )+(x) ≤ ε2 for each n.

As (|xn|) is an order bounded disjoint sequence in E then |xn| → 0 weakly. So there
exists some m such that f (|xn|) ≤ ε2 for each n ≥ m.

Then for every n ≥ m we have

| fn(xn)| ≤ | fn|(|xn|)
≤ (| fn| − f )+(|xn|) + f (|xn|)
≤ (| fn| − f )+(x) +

ε

2
≤ ε

This implies that fn(xn) → 0. Thus the set {xn, n ∈ N} is limited by Corollary 3.2
[10]. �

Proposition 3.8 Let E be a Dedekind σ-complete Banach lattice and X be a Ba-
nach space. Then each lcc operator T : E → X is order weakly compact.

Proof. Let (xn) be an order bounded disjoint sequence of E. It follows from a
Remark of ([3], page 185) and Lemma 3.7 that (xn) is a limited weakly null sequence.
Since T is lcc then, ‖T ((xn)‖ → 0. Hence Dodds’s Theorem ([2], Theorem 5.57)
implies that T is order weakly compact. �
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As an immediate consequence of Proposition 3.8, we have the following result,

Corollary 3.9 Let E be a Dedekind σ-complete Banach lattice. If E has the GP-
property then the norm of E is order continuous.

Proposition 3.10 Let E be a Banach lattice and X be a Banach space. If E′ has
weak� sequentially continuous lattice operations and E has the GP-property then,
each operator T : E → X is AM-compact.

Proof. Let x ∈ E+, it follows from Theorem 2.4.3 of [11] that the order interval
[−x, x] is relatively weakly compact. Since E′ has weak� sequentially continuous
lattice operations then, it follows from proposition 3.1 that [−x, x] is a limited set
of X and since E has the GP-property then [−x, x] is relatively compact and hence
T ([−x, x]) is relatively compact. This show that T is AM-compact. �

As a consequence of Proposition 3.10, we obtain the following result,

Corollary 3.11 Let E be a Banach lattice. If E′ has weak� sequentially contin-
uous lattice operations and E has the GP-property then, E is discrete with an order
continuous norm.

As consequence of Theorem 4.5 [13] and Corollary 3.11, we obtain the following
result,

Corollary 3.12 Let E be a Dedekind σ-complete Banach lattice. Then, the fol-
lowing assertions are equivalent:

(1) E is discrete with order continuous norm,
(2) E′ has weak� sequentially continuous lattice operations and E has the GP-

property.
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