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The paper continues the investigation of quasitrivial semimodules and related problems.
In particular, strong endomorphisms of semilattices are studied.

This part is a continuation of [1], [2], [3], [4], [5] and [6] with main emphasis on
strong endomorphisms of semilattices. The notation introduced in the preceding parts
is used. All the results collected here are fairly basic and we will not attribute them
to any particular source.

1. C o n g r u e n c e s

Let M be a non-trivial semilattice. Let a, b, c ∈ M and denote by πa,b the congru-
ence of M generated by the pair (a, b).

1.1 Proposition. (i)πa,a = idM.
(ii)) πa,b = πb,a.
(iii) πa+c,b+c ⊆ πa,b.
(iv) πa,a+b ∪ πb,a+b ⊆ πa,b.
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Proof. It is easy. �

1.2 Proposition. Let u, v ∈ M, u � v. Then (u, v) ∈ πa,b if and only if the following
two conditions are satisfied:

(1) u + a + b = v + a + b;
(2) u ∈ {u + a, u + b} and v ∈ {v + a, v + b}.

Proof. Define a relation π on M by (u, v) ∈ π iff u+a+b = v+a+b and either u = v
or u ∈ {u + a, u + b} and v ∈ {v + a, v + b}. One checks easily that π is a congruence
of M and (a, b) ∈ π. Consequently, πa,b ⊆ π.

Conversely, let (u, v) ∈ π, u � v. Then u + a + b = v + a + b and we have to
distinguish the following four cases:

Let u + a = u and v + a = v. Then u + b = u + a + b = v + a + b = v + b,
(u+b, v+b) ∈ πa,b, (u, u+b) = (u+a, u+b) ∈ πa,b and (v, v+b) = (v+a, v+b) ∈ πa,b.
Consequently, (u, v) ∈ πa,b.

Let u + b = u and v + b = v. This case is symmetric to the preceding one.
Let u + a = u and b + v = v. Then u + b = u + a + b = v + a + b = v + a,

(u+b, v+a) ∈ πa,b, (u, u+b) = (u+a, u+b) ∈ πa,b and(v+a, v) = (v+a, v+b) ∈ πa,b.
Consequently, (u, v) ∈ πa,b.

Let u + b = u and v + a = v. This case is symmetric to the preceding one.
We have proved that (u, v) ∈ πa,b, and so π ⊆ πa,b. �

1.3 Corollary. Assume that a ≤ b. Then (u, v) ∈ πa,b if and only if u + b = v + b and
either u = v or u + a = u, v + a = v. �

1.4 Lemma. Assume that a ≤ b. Then the interval { c | a ≤ c ≤ b } is a block of the
congruence πa,b.

Proof. Easy to see. �

1.5 Proposition. Let a, b, c, d ∈ M. Then πa,b = πc,d if and only if {a, b} = {c, d}.

Proof. If {a, b} = {c, d} = A and if |A| = 1 then a = b, c = d and πa,b = idM = πc,d.
If |A| = 2 then a � b, c � d and either (a, b) = (c, d) or (a, b) = (d, c). In both cases,
the equality πa,b = πc,d is clear.

Conversely, assume that πa,b = πc,d. If a = b then πa,b = idM , and hence πc,d = idM

and c = d. In the remaining part of the proof, we will asume that a � b and c � d.
By 1.2, we get the following two equalities:
(α) a + b + c = a + b + d,
(β) a + c + d = b + c + d.

Furthermore, at least one of the following four cases takes place:
(1) a + c = c, a + d = d;
(2) b + c = c, b + d = d;
(3) a + c = c, b + d = d;
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(4) b + c = c, a + d = d.
Symmetrically, at least one of the following four cases takes place:

(a) a + c = a, b + c = b;
(b) a + d = a, b + d = b;
(c) a + c = a, b + d = b;
(d) a + d = a, b + c = b.

The rest of the proof is divided into ten parts.
(i) Let (1a) be true. Then a = c, a ≤ d and a ≤ b. Using (α), we get b = a + b + c =
= a + b + d = b + d and d ≤ b. Using (β), we get d = a + c + d = b + c + d = b + d
and b ≤ d. Thus a = c and b = d.
(ii) Let (1b) be true. Then a = d, a ≤ c and a ≤ b. Using (α), we get b+c = a+b+c =
= a + b + d = b. Using (β), we get c = a + c + d = b + c + d = b + c. Thus a = d and
b = c.
(iii) Let (1c) be true. Then a = c, a ≤ d ≤ b. Using (β), we get d = a + c + d =
= b + c + d = b + d, b ≤ d. Thus a = c and b = d.
(iv) Let (1d) be true. Then a = d, a ≤ c ≤ b. Using (β), we get c = a + c + d =
= b + c + d = b + c = b. Thus a = d and b = c.
(v) The cases (2a),. . . ,(2d) are dual to the preceding four cases.
(vi) Let (3a) be true. Then a = c ≤ b ≤ d. Using (α), we get b = a + b + c =
= a + b + d = d. Thus a = c and b = d.
(vii) Let (3b) be true. Then b = d ≤ a ≤ c. Using (α), we get c = a + b + c =
= a + b + d = a. Thus a = c and b = d.
(viii) Let (3c) be true. Then a = c and b = d.
(ix) Let (3d) be true. Then b ≤ d ≤ a ≤ c ≤ b, and hence a = b = c = d (a contra-
diction, in fact).
(x) The cases (4a),. . . ,(4d) are dual to the preceding four cases. �

1.6 Remark. If M is finite, |M| = n ≥ 2, then the number of non-identical principal
congruences of M is just n(n−1)

2 .

1.7 Remark. (i) If 0M , oM ∈ M then π0,o = M × M follows from 1.2. According to
1.5, we have πa,b = M × M iff {a, b} = {0, o}.
(ii) Assume that a, b ∈ M are such that a � b, a, b are minimal in M and, for every
x ∈ M, either a ≤ x or b ≤ x. If, moreover, oM ∈ M and a+b = oM then πa,b = M×M
follows from 1.2.
(iii) Let a, b ∈ M be such that πa,b = M × M. Since πa,b � idM , we have a � b.

First, assume that a < b. Using 1.2(2), we get a = 0M . Using 1.3(1), we get
b = oM . Similarly, if b < a then b = 0M and a = oM .

Now, assume that the elements a, b are not comparable. Using 1.2(1), we get
a + b = oM . If u ∈ M, u � oM , the either a ≤ u, b �≤ u or b ≤ u, a �≤ u. Consequently,
a and b are minimal elements (see (ii)).

1.8 Lemma. Let a, b ∈ M. Then πa,b = πa,a+b (or πa,b ⊆ πa,a+b) iff a ≤ b (or a+b = b).

math_13_1.indd   65 19.3.2014   14:08:12



66

Proof. We have πa,a+b ⊆ πa,b. Thus πa,b = πa,a+b iff (a, b) ∈ πa,a+b. Our result now
follows from 1.3 (or 1.5). �

1.9 Lemma. Let a, b, c ∈ M, a ≤ c < b. Then πa.c � πa,b.

Proof. Use 1.3 (or 1.5). �

1.10 Proposition. The following conditions are equivalent for a congruence � of M:
(i) � is a minimal congruence of M.

(ii) � = πa,b, where a, b ∈ M, a < b and b ≤ c for every c ∈ M such that a < c
(equivalently, a + c = b + c for every c ∈ M such that a + c � a).

Proof. (i) implies (ii). Let (a, b) ∈ �, a � b. Assume that b �≤ a, the other case
being symmetric. Since � is minimal and idM � πa,b ⊆ �, we have � = πa,b. Moreover,
since b �≤ a, we get a < a + b, idM � πa,a+b ⊆ πa,b and πa,a+b = πa,b. By 1.8, a < b.
Let c ∈ M be such that a < c. If b �≤ c then c < b + c and πc,b+c � idM . Anyway,
(c, b+c) = (a+c, b+c) ∈ πa,b, and hence πc,b+c ⊆ � = πa,b. Since � is minimal, we have
πc,b+c = πa,b and (a, b) ∈ πc,b+c. Using 1.2(2), we get a ∈ {a+ c, a+ b+ c} = {c, b+ c},
a contradiction. Thus b ≤ c.
(ii) implies (i). Since a � b, we have � = πa,b � idM . Now, let (c, d) ∈ �, c � d. It
follows from 1.2(2) that a ≤ c and a ≤ d, and hence c + b = d + b by 1.2(1). If a � c
then b ≤ c, c = b + c = b + d. Similarly, if a � d then b ≤ d, d = b + d = b + c.
Since c � d, we have either a = c or a = d. If a = c then b = a + b = c + b = d + b,
a < d ≤ b and b ≤ d, so that b = d. Similarly, if a = d then b = c. We have proved
that {a, b} = {c, d}. The rest is clear. �

1.11 Remark. Let � be a minimal congruence of M. By 1.10 (and its proof), there
are a, b ∈ M such that � = πa,b, a < b and a + c = b + c for every c ∈ M such that
a + c � a. Then b covers a and � = idM ∪ {(a, b), (b, a)}. (In fact, if 1.10(ii) is true
then idM ∪ {(a, b), (b, a)} is a congruence and, of course, it is minimal.)

1.12 Remark. (i) If oM ∈ M and a ∈ M \ {oM} is maximal in M \ {oM} then πa, o is a
minimal congruence of M.
(ii) If 0M ∈ M and the set M \ {0M} has the smallest element, say a, then π0,a is a
minimal congruence of M.

1.13 Remark. Let a, b ∈ M, a ≤ b. Then πa,b = kerλb ∩ ξa (see [6, 2.8, 2.13].

2. T h e s e m i r i n g o f s t r o n g e n d o m o r p h i s m s ( a )

An endomorphism f ∈ E = End(M(+)) is called strong if f (�) ⊆ � for every
congruence � of M. The set of all strong endomorphisms of M will be denoted
by E(σ).
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2.1 Proposition. (i) The set E(σ) is a subsemiring of E.
(ii) E(β) ⊆ E(σ).

Proof. It is easy. �

2.2 Proposition. The semiring E(σ) is not ideal-simple.

Proof. E(1) is a proper non-trivial ideal of the semiring E(σ). �

2.3 Proposition. The following conditions are equivalent for f ∈ E:
(i) f ∈ E(σ).

(ii) f (πa,b) ⊆ πa,b for all a, b ∈ M, a < b.
(iii) If a, b, c, d ∈ M are such that a < b, a ≤ c, a ≤ d, b+c = b+d and f (c) � f (d)

then a ≤ f (c), a ≤ f (d) and b + f (c) = b + f (d).

Proof. Clearly, (i) implies (ii) and (ii) is equivalent to (iii) (see 1.3). It remains to
show that (ii) implies (i). For, let � be a congruence of M and let (a, b) ∈ �, a � b. If
a < b then ( f (a), f (b) ∈ f (πa,b) ⊆ πa,b ⊆ �. The case b < a is similar. Finally, if a �≤ b
and b �≤ a then a < c, b < c, where c = a + b, ( f (a), f (c)) ∈ � and ( f (b), f (c)) ∈ �.
Thus ( f (a), f (b)) ∈ �. �

2.4 Proposition. The following conditions are equivalent for f ∈ E:
(i) f ∈ E(σ) and a ≤ f (a) for every a ∈ M.

(ii) f (kerλa) ⊆ kerλa and a ≤ f (a) for every a ∈ M.
(iii) f (a + b) = a + f (b) (= b + f (a)) for all a, b ∈ M.

Proof. (i) implies (ii). Thus implication is trivial.
(ii) implies (iii). We have (b, a + b) ∈ λa, and hence ( f (b), f (a + b)) ∈ λa and
a + f (b) = a + f (a + b) = a + f (a) + f (b) = f (a) + f (b) = f (a + b).
(iii) implies (i). First, f (a) = f (a + a) = a + f (a) yields a ≤ f (a). Further, if
(c, d) ∈ πa,b, where c � d and a ≤ b, then a ≤ c, a ≤ d and c + b = d + b (use 1.3).
From this, a ≤ f (a) ≤ f (c), a ≤ f (a) ≤ f (d), f (c)+b = f (c+b) = f (d+b) = f (d)+b
by (iii), and hence ( f (c), f (d)) ∈ πa,b. By 2.3, we get f ∈ E(σ). �

2.5 Proposition. (i) The set E(σ1) = { f ∈ E | a ≤ f (a) for every a ∈ M } is a sub-
semiring of E(σ).
(ii) E(σ1) + E(σ) ⊆ E(σ1).
(iii) E(γ) ∪ {idM} ⊆ E(σ1) (notice that E(γ) ∪ {idM} is a subsemiring of E).

Proof. It is easy. �
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2.6 Proposition. Let f ∈ E(σ) be such that P f = { a ∈ M | a �≤ f (a) } � ∅. Then:
(i) f (Pf ) = {wf } is a one-element set and Pf = { a ∈ M | a �≤ wf } (so that P f is a
principal prime ideal of M).
(ii) wf � oM and wf ∈ Qf = { a ∈ M | a ≤ f (a) }.
(iii) Qf = { a ∈ M | a ≤ wf } is a subsemilattice of M and wf = oQ f .
(iv) f (M) ⊆ Qf .
(v) f (wf ) = wf .
(vi) f (a+ b) = a+ f (b) for all a, b ∈ Q f (and f |Qf is a strong endomorphism of Qf ).
(vii) a + f (b) = a + wf for all a ∈ Pf and b ∈ M.
(viii) f (a + b) = a + f (b) for all a ∈ Qf , b ∈ M.

Proof. First, take a ∈ Pf and put Na = M + a. Then Na is an ideal of M, �a =

= (Na × Na) ∪ idM is a congruence of M and (a, a + x) ∈ �a for every x ∈ M. Since
f ∈ E(σ), we get ( f (a), f (a) + f (x)) ∈ �a. If f (a) � f (a) + f (x) then f (a) ∈ Na,
f (a) = a + y for some y ∈ M and a ≤ f (a), a contradiction with a ∈ Pf . Thus
f (a) = f (a) + f (x) and f (x) ≤ f (a). We have proved that f (M) ≤ f (a) for every
a ∈ Pf . In particular, we have f (Pf ) = {wf }. Since a �≤ f (a) = wf , we have
a �≤ wf for every a ∈ Pf . Conversely, if a ∈ M is such that a �≤ w f then a �≤ f (a),
since f (a) ≤ wf . Consequently, Pf = { a ∈ M | a �≤ wf } is a principal prime ideal,
Qf = { a ∈ M | a ≤ wf } and wf = oQ f ∈ Qf . Since f (M) ≤ f (a) = wf for all a ∈ Pf ,
we see that f (M) ⊆ Qf . Since Pf � ∅, we see that wf � oM . Since wf ∈ Qf , we have
wf ≤ f (wf ) ∈ Qf , and therefore wf = f (wf . We have proved that (i),. . . ,(v) are true.

Let a, b ∈ M. Then (b, a + b) ∈ kerλa, and hence ( f (b), f (a) + f (b)) ∈ kerλa and
a + f (b) = a + f (a) + f (b). If a ∈ Qf then a + f (a) = f (a) and we get a + f (b) =
= f (a)+ f (b) (i.e., (vi) and (viii) are true). If a ∈ Pf then a+ f (b) = a+ f (a)+ f (b) =
= a + f (a + b) = a + w f , since a + b ∈ Pf (i.e., (vii) is true). �

2.7 Proposition. f 2 = f for every f ∈ E(σ).

Proof. If a ∈ M is such that a ≤ f (a) then f 2(a) = f ( f (a)+a) = f (a)+ f (a) = f (a)
by 2.6(vi). If a �≤ f (a) then f (a) = wf and f 2(a) = f (wf ) = wf = f (a) (use 2.6 again).
Thus f 2 = f . �

2.8 Proposition. The following conditions are equivalent for f ∈ E:
(i) f ∈ E(σ).

(ii) f (kerλa) ⊆ kerλa and f (ξa) ⊆ ξa for every a ∈ M.
(iii) The following are true:

(iii1) If a ∈ M is such that | f (M + a)| ≥ 2 then f (M + a) ⊆ M + a;
(iii2) If a, b, c ∈ M are such that a + b = a + c then a + f (b) = a + f (c).

Proof. (i) implies (ii). This is trivial.
(ii) implies (iii). If | f (M + a)| ≥ 2 then, for every b ∈ M, there is c ∈ M with
f (b + a) � f (c + a). Of course, (b + a, c + a) ∈ ξa, and so ( f (b + a) f (c + a)) ∈ ξa.
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But f (b + a) � f (c + a) implies f (b + a) ∈ M + a. This is (iii1), and (iii2) follows
immediately from the inclusion f (kerλa ⊆ λa.
(iii) impliews (ii). We can proceed conversely.
(ii) implies (i). Using 1.13, we get f (πa,b) ⊆ πa,b for all a, b ∈ M, a ≤ b. Now
f ∈ E(σ) by 2.3. �

2.9 Proposition. The following conditions are equivalent for f ∈ E:
(i) f ∈ E(σ).

(ii) The following are true:
(ii1) f (a + b) = a + f (b) for all a, b ∈ M, a ≤ f (a);
(ii2) a + f (b) = a + f (a) for all a, b ∈ M, a �≤ f (a);
(ii3) f (a) = f (a + b) for all a, b ∈ M, a �≤ f (a).

Proof. (i) implies (ii). See 2.6(viii),(vii),(i).
(ii) implies (i). We are going to check the conditions 2.8(iii1),(iii2). Let a ∈ M. If
a ≤ f (a) then f (M + a) ⊆ M + a by (ii1). If a �≤ f (a) then f (M + a) = { f (a)} by (ii3).
Now, 2.8(iii1) is clear.

Let a, b, c ∈ M be such that a + b = a + c. Then f (a + b) = f (a + c), and so
a + f (b) = a + f (c) by (ii1), provided that a ≤ f (a). On the other hand, if a �≤ f (a)
then a + f (b) = a + f (a) = a + f (c) by (ii2). Now, 2.8(iii2) is clear. �

2.10 Construction. Let w ∈ M, w � oM , P = { x ∈ M | x �≤ w } and Q = M \ P = { y ∈
∈ M | y ≤ w }. Then P is a principal prime ideal of M, w ∈ Q, Q is a subsemilattice
of M and w = oQ. Let g be an endomorphism of Q satisfying the following two
conditions:

(1) g(a + b) = a + g(b) for all a, b ∈ Q,
(2) a + g(b) = a + w for all a ∈ P and b ∈ Q.

According to 2.4, g is a strong endomorphism of Q and a ≤ g(a) for every a ∈ Q.
Now, define a transformation f of M by f (P) = {w} and f |Q = g. One checks easily
that f ∈ E, P = { a ∈ M | a �≤ f (a) } and Q = { a ∈ M | a ≤ f (a) }. Also the conditions
2.9(ii1),(ii2) and (ii3) are clear. Thus f ∈ E(σ).

2.11 Remark. If f ∈ E(σ) is such that a �≤ f (a) for at least one a ∈ M then f is
obtained just in the way described in 2.10 (see 2.6).

2.12 Construction. First, put N = M if oM ∈ M and N = M ∪ {oN} if oM � M.
Further, let A denote the set of ordered pairs (a, b) ∈ N × N such that a ∈ M, a ≤ b
and a + x = b + x for every x ∈ N, x �≤ b (and b �≤ x).
(i) Clearly, (a, a) ∈ A and (a, oN) ∈ A for every a ∈ M.
(ii) If (a, b), (c, d) ∈ A then (a + c, b + d) ∈ A.

Indeed, we have a + c ∈ M, a + c ≤ b + d and if x �≤ b + d then x �≤ b, x �≤ d,
a + x = b + x, c + x = d + x and, finally, a + c + x = a + d + x = b + d + x.
(iii) If (a, b), (c, d) ∈ A and c ≤ b, d �≤ b then (a + c, b) ∈ A.
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Indeed, a + c ∈ M, a + c ≤ b and if x �≤ b then a + x = b + x and a + c + x =
= b + c + x = b + x.
(iv) Let (a, b) ∈ A. Define a transformation κa,b of M by κa,b(x) = a + x if x ∈ M
and x ≤ b, and κa,b(x) = b if x ∈ M and x �≤ b. Using 2.10, we get κa,b ∈ E(σ).
Put E(κ) = { κa,b | (a, b) ∈ A }. Clearly, κa,a = σa for every a ∈ M and κa,o = λa.
Consequently, E(1) ⊆ E(κ) and E(γ) ⊆ E(κ).
(v) Let (a, b), (c, d) ∈ A. Then κa,b + κc,d = κa+c,b+d.

Indeed, (a + c, b + d) ∈ A by (ii). If x �≤ b + d then x �≤ b, x �≤ d and (κa,b +
+ κc,d)(x) = κa,b(x) + κc,d(x) = b + d = κa+c,b+d(x). If x ≤ b + d and x �≤ b, x �≤ d then
(κa,b+κc,d)(x) = κa,b(x)+κc,d(x) = b+d = x+b+d = x+a+c = κa+c,b+d(x). If x ≤ b+d,
x �≤ b and x ≤ d then (κa,b+κc,d)(x) = κa,b(x)+κc,d(x) = b+x+c = x+a+c = κa+c,b+d(x).
The case x ≤ b + d, x ≤ b and x �≤ d is similar. Finally, if x ≤ b and x ≤ d then
(κa,b + κc,d)(x) = κa,b(x) + κc,d(x) = x + a + c = κa+c,b+d(x).
(vi) Let (a, b), (c, d) ∈ A, d ≤ b. Then κa,bκc,d = κa+c.a+d.

Indeed, (a + c, a + d) ∈ A by (i) and (ii). If x �≤ a + d then x �≤ a, x �≤ d and
κa,bκc,d(x) = κa,b(d) = a + d = κa+c,a+d(x). If x ≤ d then κa,bκc,d(x) = κa,b(x + c) =
= x + a + c = κa+c,a+d(x). If x ≤ a + d and x �≤ d then κa,bκc,d(x) = κa,b(d) = a + d =
= a + d + x = a + c + x = κa+c,a+d(x).
(vii) Let (a, b), (c, d) ∈ A, d �≤ b, c ≤ b. Then κa,bκc,d = κa+c,b.

Indeed, (a + c, b) ∈ A by (iii). If x �≤ b then κc,d �≤ b and κa,bκc,d(x) = b = κa+c,b(x).
If x ≤ b, x ≤ d then κa,bκc,d(x) = κa,b(x + c) = x + a + c = κa+c,b(x). Finally, if x ≤ b,
x �≤ d then x + c = x + d �≤ b and x + c ≤ b, a contradiction.
(viii) Let (a, b), (c, d) ∈ A, c �≤ b. Then κa,bκc,d = κb,b = σb.

Indeed, κc,d(x) �≤ b for every x ∈ M.
(ix) Using (v),. . . ,(viii), we see that E(κ) is a subsemiring of E(σ). Notice that E(1) ∪
∪ E(γ) ⊆ E(κ) and E(1) ∪ E(γ) is a subsemiring of E(κ).
(x) idM ∈ E(κ) iff 0M ∈ M. Then idM = κ0.o.
(xi) Define an addition and a multiplication on A by (a, b) + (c, d) = (a + c, b + d),
and (a, b)(c, d) = (a + c, a + d) if d ≤ b, (a, b)(c, d) = (a + c, b) if d �≤ b, c ≤ b and
(a, b)(c, d) = (b, b) if c �≤ b. The mapping (a, b) �→ κa,b is an isomorphism of the
algebraic structure A onto the semiring E(κ). Thus A becomes a semiring isomorphic
to E(κ).
(xii) Define an addition and multiplication on M × {0, 1} by (a, 0)+ (b, 0) = (a+ b, 0),
(a, 1) + (b, 1) = (a + b, 1), (a, 0) + (b, 1) = (a + b, 1) = (a, 1) + (b, 0), (a, 0)(b, 0) =
= (a, 0) = (a, 0)(b, 1), ((a, 1)(b, 1) = (a+b, 1), (a, 1)(b, 0) = (a+b, 0). In this way, we
obtain a semiring that is an isomorphic copy of the semiring E(1)∪E(γ). This semiring
is bi-ideal-simple but neither ideal-simple nor congruence-simple.

2.13 Proposition. The following conditions are equivalent:
(i) 0M ∈ M.

(ii) E(σ) = E(κ).
(iii) E(σ1) = E(γ).
(iv) idM ∈ E(κ).
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(v) idM ∈ E(γ).
(vi) The semiring E(κ) has a left or right multiplicatively neutral element.

(vii) The semiring E(γ) has a left or right multiplicatively neutral element.
(viii) The semiring E(κ) (E(σ), resp.) has the additively neutral element.

(ix) The semiring E(γ) has the additively neutral element.
If these conditions are satisfied then κ0,0 = σ0 is additively neutral in E(κ), κ0,o = λ0 =

= idM is multiplicatively neutral both in E(κ) and E(γ) and κ0,o is additively neutral
in E(γ).

Proof. (i) implies (ii),. . . ,(ix). First, let f ∈ E(σ). If a ≤ f (a) for every a ∈ M (i.e.,
if f ∈ E(σ1)) then the equality f = λ f (0) follows from 2.9(ii1). Thus E(σ1) = E(γ).
Next, if Pf = { a ∈ M | a �≤ f (a) } � ∅ then 0 ∈ M \ Pf = Qf and f = κ f (0),wf (use
2.6(i),(vi),(vii)). It follows that E(σ) = E(κ) (of course, λ f (0) = κ f (0),o).

Clearly, idM = κ0,o = λ0 is multiplicatively neutral both in E(κ) and in E(γ). Besides,
λ0 is additively neutral in E(γ) and κ0,0 = σ0 is additively neutral in E(κ).
(ii) implies (iv) and (vi). We have idM ∈ E(σ).
(iii) implies (v) and (vii). We have idM ∈ E(σ1).
(iv) implies (ii) and (v) implies (vii) trivially.
(vi) implies (i). First, let (a, b) ∈ A be such that κa,b is left multiplicatively neutral in
E(κ). If c ∈ M is such that c �≤ b then κc,c = κa,bκc,c = κb,b (see 2.12(viii)), and hence
c = b, a contradiction. It follows that b = oN . Now, by 2.12(vi), κd,d = κa,bκd,d =
= κa+d,a+d for every d ∈ M. It follows that a = 0M ∈ M and κa,b = κ0,o = λ0 = idM .

Next, let κa,b be right multiplicatively neutral in E(κ). Then κc,o = κc,oκa,b = κa+c,b+c

for every c ∈ M (see 2.12(vi)), and hence a + c = c, b + c = oN . It follows that
a = 0M ∈ M and b = oN . Again, κa,b = κ0,o = λ0 = idM .
(vii) implies (i). We have λaλb = λa+b for all a, b ∈ M and the rest is clear.
(viii) implies (i). Let κa,b be additively neutral in E(κ). Then κc,c = κa,b + κc,c = κa+c,a+c

for every c ∈ M. Thus a + c = c = b + c and a = 0M = b.
(ix) implies (i). We have λa + λb = λa+b for all a, b ∈ M and the rest is clear. �

2.14 Proposition. The semiring E(σ) is bi-ideal-simple if and only if 0M ∈ M.

Proof. By [6, 3.1], E(σ) is bi-ideal-simple iff S ⊆ E(α). Since idM ∈ E(σ), the result
follows from [6, 3.4] �

2.15 Remark. We have σa = κa,a ≤ κa,b for all (a, b) ∈ A. It means that E(κ) ⊆ E(α).
By [6, 3.1], the semiring E(κ) is bi-ideal-simple (cf. 2.14).

2.16 Corollary. The semiring E(σ) is bi-ideal-simple if and only if E(σ) = E(κ) (and if
and only if 0M ∈ M). �

2.17 Example. (i) Let M be a chain (i.e., a + b ∈ {a, b} for all a, b ∈ M). Then
A = { (a, b) | a ∈ M, b ∈ N, a ≤ b } (see 2.12).
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(ii) Let M be an antichain (i.e., oM ∈ M and a+ b = oM for all a, b ∈ M, a � b). Then
A = { (a, a), (a, oM) | a ∈ M }. Consequently, E(κ) = E(1) ∪ E(γ) (see 2.12(vii)).

3. T h e s e m i r i n g o f s t r o n g e n d o m o r p h i s m s ( b )

3.1 Proposition. Let a, b ∈ M, a < b, and let P be a prime ideal of M. Then
�a,b,P ∈ E(σ1) if and only if b = oM, a is maximal in M \ {oM} and P = { x ∈ M | x � a }
(i.e., P is principal, b ∈ P and a ∈ M \ P = { y ∈ M | y ≤ a }).

Proof. First, let �a,b,P ∈ E(σ1). By 2.4(iii), �a,b,P(x + y) = x + �a,b,P(y) for all
x, y ∈ M. If x, y ∈ M \ P then we get a = x + a, and hence M \ P = { u | u ≤ a } and
P = { v | v �≤ a }. Consequently, b ∈ P, M \ P ≤ a < b, v ≤ �a,b,P(v) = b, P ≤ b and,
finally, M ≤ b. Thus b = oM . If a < z ≤ b then om = b = �a,b,P(z+ a) = z+ �a,b,P(a) =
= z + a = z. It means that z is maximal in M \ {oM}. Conversely, assume that b = oM ,
a is maximal in M \ {oM} and P = { x ∈ M | x �≤ a }. Due to 2.4(iii), we need to check
that �a,b,P(x + y) = x + �a,b,P(y) for all x, y ∈ M. If x, y � P then x + y � P and
�a,b,P(x + y) = a = x + a = x + �a,b,P(y), since M \ P = { u |u ≤ a }. If y ∈ P then
x+ y ∈ P and �a,b,P(x+ y) = b = oM = x+ oM = x+ b = x+ �a,b,P(y). If x ∈ P, y � P,
then x + y ∈ P and �a,b,P(x + y) = b = oM = x + a = x + �a,b,P(y), since x �≤ a and a is
maximal. �

3.2 Proposition. Let a, b ∈ M, a < b, and let P be a prime ideal of M. Then
�a,b,P ∈ E(σ) \ E(σ1 if and only if b � oM, P = { x | x �≤ a } and a + x = b + x for every
x ∈ P (i.e., P is principal, b ∈ P and a ∈ M \ P = { y | y ≤ a }).

Proof. First, let �a,b,P ∈ E(σ) \ E(σ1). We have P = { x | �a,b,P(x) = b } and b =
= �a,b,P(x) = �2

a,b,P(x) = �a,b,P(b) by 2.7. Thus b ∈ P. Similarly, M\P = { y | �a,b,P(y) =
= a } and a = �a,b,P(y) = �2

a,b,P(y) = �a,b,P(a). Thus a ∈ M \ P. Since �a,b,P � E(σ1),
the set P1 = { u | u �≤ �a,b,P(u) } is non-empty. By 2.6(i), there is w ∈ M such that
�a,b,P(P1) = {w}. That is, P1 = { u | u �≤ w }. But w ∈ {a, b}. If w = a then b ∈ P1 and
b = �a,b,P(b) = w = a, a contradiction. It follows that w = b and P1 ⊆ P. By 2.6(ii),
we have b � oM . If x ∈ P1 then x + a = x + �a,b,P(a) = x + b by 2.6(vii). If x �≤ b then
x ∈ P1. Now, let a < x ≤ b. If �a,b,P(x) = a then x ∈ P1. If �a,b,P(x) = b then x � P1
and b = �a,b,P(x) = �a,b,P(x + a) = x + �a,b,P(a) = x + a = x by 2.6(viii) and we get
x + a = x + b trivially. Finally, if x �≤ a then either x �≤ b and x + a = x + b or x ≤ b,
a < a+ x ≤ b and a+ x = a+a+ x = b+a+ x = b = b+ x again. We have proved that
x+ a = x+ b whenever x �≤ a. Moreover, �a,b,P(x)+ a = �a,b,P(x+ a) = �a,b,P(x+ b) =
= �a,b,P(x) + b, so that �a,b,P(x) = b and { x | x �≤ a } ⊆ P. On the other hand, if y ≤ a
then �a,b,P(y) ≤ �a,b,P(a) = a, �a,b,P(y) = a and y ∈ M \ P. Thus P = { x | x �≤ a }.
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Now, conversely, assume that b � oM and a + x = b + x for every x ∈ P = { u | u �≤
�≤ a }. It follows from 2.1 that �a,b,P � E(σ1. To show that �a,b,P ∈ E(σ), we check the
conditions 2.9(ii1,2,3).

Let x ∈ M be such that x ≤ �a,b,P(x) = a. If �a,b,P(y) = a then x + y ∈ M \ P
and �a,b,P(x + y) = a = x + a = x + �a,b,P(y). If �a,b,P(y) = b then x + y ∈ P and
�a,b,P(x + y) = b = x + b = x + �a,b,P(y).

Let x ∈ M be such that x ≤ �a,b,P(x) = b. Then �a,b,P(x + y) = b = x + b. If x ≤ a
then b = �a,b,P(x) ≤ �a,b,P(a) = a, a contradiction. Thus x �≤ a and x + a = x + b. The
equality b = x + �a,b,P(y) is clear and we have checked the condition 2.9(ii1).

Let x ∈ M be such that x �≤ �a,b,P(x) = a. Then x + a = x + b, and hence
x + a = �a,b,P(y) for every y ∈ M. Further, x ∈ P and �a,b,P(x) = b = �a,b,P(x + y).

Let x ∈ M be such that x �≤ �a,b,P(x) = b. Then x+a = x+b, x+�a,b,P(x) = x+b =
= x + �a,b,P(y) and �a,b,P(x) = b = �a,b,(x + y) for every y ∈ M. We have checked the
conditions 2.9(ii2,3). �

3.3 Proposition. Let a, b ∈ M, a < b, and let P be a prime ideal of M. Then
�a,b,P ∈ E(σ) if and only if P = { x | x �≤ a } and b ≤ P + a (then P is principal, b ∈ P,
a ∈ M \ P and b covers a; �a,b,P ∈ E(σ1) iff b = oM).

Proof. Combine 2.1 and 2.2. �

3.4 Remark. (i) Let N be a subsemilattice of M such that N is not upwards cofinal
in M. Then the set P of x ∈ M such that x �≤ u for every u ∈ N is non-empty. One
checks easily that P is a prime ideal of M.

Now, assume that P = { x | x �≤ a } for some a ∈ M (a � oM). If u ∈ N then u ≤ u,
u � P, u ≤ a. It means that N ≤ a and N ⊆ M \ P. Moreover, a � P and a ≤ w for at
least one w ∈ N. It is clear that a = oK , where K = { v | v ≤ u for some u ∈ N } = M\P
is a subsemilattice of M. Of course, a = w, and so a ∈ N and a = oN as well.
Conversely, if oN ∈ N then P = { x | x �≤ oN }.
(ii) If a1 < a1 < a3 < . . . is an infinite strictly increasing chain then N = {a1, a2,
a3, . . . } is a subsemilattice of M and oN � N.
(iii) Let N be a subsemilattice of M such that oN � N. Choose a1 ∈ N arbitrarily.
Then a1 � oN , and hence a1 < a2 for some a2 ∈ N, etc. We get an infinite chain
a1 < a2 < a3 < . . . of elements from N. If N is not upwards cofinal in M then the
chain is not upwards cofinal either.
(iv) Let P be a prime ideal of M. Then N = M \ P is a subsemilattice of M. If P is
principal then P = { x | x �≤ a } for some a ∈ M, N = { y | y ≤ a }, a � oM , and hence
a = oN . Conversely, if oN ∈ N then P = { x | x � N } = { x | x �≤ oN }, so that P is
principal.
(v) Let a1 < a2 < a3 < . . . be an infinite strictly increasing chain of elements from
M. Put P = { x | x �≤ ai for every i } and assume that P � ∅ (e.g., if oM ∈ M), i.e., that
the chain is not upwards cofinal. Then P is a prime ideal and P is not principal.
(vi) The following conditions are equivalent:
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(vi1) Every prime ideal of M is principal.
(vi2) If N is a subsemilattice of M such that oN � N then N is upwards cofinal

in M.
(vi3) If a1 < a2 < a3 < . . . is an infinite strictly increasing chain of elements from

M then the chain is upwards cofinal in M.
Moreover, if oM ∈ M then these conditions are equivalent to:

(vi4) There is no infinite strictly increasing chain of elements from M.

3.5 Proposition. The following conditions are equivalent:
(i) If � is a congruence of M such that |M/�| = 2 then � = ker( f ) for a strong

endomorphism f of M.
(ii) If P is a prime ideal of M then there are a, b ∈ M such that a < b and the

endomorphism �a,b,P is strong.
(iii) If P is a prime ideal of M then P is principal, P = { x | x �≤ a }, a � oM, and

there is b ∈ M such that a < b and b ≤ P + a.
(iv) The following two conditions are true:

(iv1) Every infinite strictly increasing chain of lements from M is upwards
cofinal.

(iv2) For every a ∈ M \ {oM}, the ideal { x | a < x } has the smallest element.
(v) The following two conditions are true:

(v1) No infinite strictly increasing chain of elements from M has an upper
bound.

(v2) For every a ∈ M \ {oM}, the ideal { x | a < x } has the smallest element.

Proof. (i) implies (ii). The relation σ = (P × P) ∪ (N × N), where N = M \ P, is a
congruence of M and |M/σ| = 2. Now, σ = ker( f ) for a strong endomorphism f and
it is easy to see that f = �a,b,P for some a, b ∈ M, a < b.
(ii) is equivalent to (iii). This follows from 3.3
(ii) implies (i). Since |M/�| = 2, we have � = (P × P) ∪ (N × N), where P is a prime
ideal and N = M \ P. The rest is clear.
(iii) implies (iv). Every prime ideal is principal and (iv1) follows from 3.4(vi3).
Furthermore, given a ∈ M \ {oM}, the set P = { x | x �≤ a } is a prime ideal and,
by (iii), there is b ∈ M with a < b ≤ P + a. If a < y then b ≤ z + a = y. Thus b is the
smallest element of the ideal { y | a < y }.
(iv) implies (v). Clearly, (iv1) implies (v1).
(v) implies (iv). We have to show that (iv1) is true. Using (v2), for any a ∈ M \ {oM}
we find the uniquely determined element f (a) such that a < f (a) and f (a) is the
smallest element of the set { x | a < x }. Now, suppose that a1 < a2 < a3 < . . . is
a chain that is not upwards cofinal. Put b1 = a1 and bi+1 = f i(a1) for i ≥ 1. Then
b1 < b2 < b3 < . . . and f (bi) = bi+1. Moreover, b1 ≤ a1, b2 = f (a1) ≤ a2 and
bi+1 = f (bi) ≤ f (ai) ≤ ai+1. Consequently, the chain b1 < b2 < b3 < . . . is not cofinal
either and there is c ∈ M such that c �≤ bi for every i. Let j ≥ 1 be such that bk �≤ c
for k ≥ j (use (v1)). We get c, bk < bk + c, so that bk+1 ≤ bk + c and bk + c = bk+1 + c.
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Thus b j + c = b j+1 + c = b j+2 + c = · · · = d and bi ≤ d for every i, a contradiction
with (v1).
(iv) implies (iii). By (iv1) and 3.4(vi), P is principal, so that P = { x | x �≤ a } for some
a ∈ M, a � oM . By (iv2), b ≤ P + a, where b is the smallest element of the set
{ x | a < x }. �

3.6 Remark. Let M satisfy the equivalent conditions of 3.5.
(i) If oM ∈ M then every chain of elements from M is finite.
(ii) If 0M ∈ M then (M,≤) is similar to an ordinal.
(iii) If 0M , oM ∈ M then M is a finite chain.

3.7 Remark. (i) Let a ∈ M \ {oM}, P = { x | x �≤ a }. Assume that �a,b,P is strong
for every b such that a < b. It follows from 3.3 that b is uniquely determined and
{b} = { y | a < y }. In particular, b = oM and a is maximal in M \ {oM}.
(ii) Assume that the endomorphism �a,b,P is strong whenever a, b ∈ M, a < b and
P = { x | x �≤ a }. Then oM ∈ M and every element from M \ {oM} is an atom.
(iii) �a,b,P ∈ E(σ) for all a, b ∈ M with a < b and all prime ideals P iff |M| = 2.

4. T h e s e m i r i n g o f s t r o n g e n d o m o r p h i s m s ( c )

4.1 Lemma. Let a ≤ b and f ∈ E be such that ker( f ) = πa,b. Then:
(i) f (a) = f (b).
(ii) f (c) < f (a) for c < a.
(iii) f (b) < f (d) for b < d.
(iv) f (a) = f (b) = f (e) for a ≤ e ≤ b.

Proof. By 1.3, (u, v) ∈ πa,b iff u + b = v + b and either u = v or a ≤ u, a ≤ v.
Since (a, b) ∈ πa,b = ker( f ), we have f (a) = f (b). Since (c, a) � πa,b, we have
f (c) � f (a), however f (c) ≤ f (a), and hence f (c) < f (a). Similarly, f (b) < f (d).
Finally, (a, e) ∈ πa,b and f (a) = f (b). �

4.2 Lemma. Let a ≤ b, x ∈ M be arbitrary and let f ∈ E be such that ker( f ) = πa,b

and f 2 = f . Then:
(i) x + b = f (x) + b.
(ii) x ≤ b iff f (x) ≤ b.
(iii) If b ≤ x then f (x) ≤ x.
(iv) If b ≤ f (x) then x ≤ f (x).
(v) If b ≤ x and b ≤ f (x) then x = f (x).
(vi) f (b) ≤ b.
(vii) If x � f (x) then a ≤ x and a ≤ f (x).
(viii) If a �≤ x or a �≤ f (x) then x = f (x).
(ix) a ≤ f (a).
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(x) a ≤ f (a) = f (b) ≤ b.
(xi) If b covers a then either a = f (a) = f (b) or f (a) = f (b) = b.

Proof. Since f 2(x) = f (x), we have (x, f (x)) ∈ ker( f ) = πa,b and the rest is easy
(use 4.1(i)). �

4.3 Lemma. Let c < a ≤ b and let f ∈ E be such that ker( f ) = πa,b, f (πc,a) ⊆ πc,a

and f 2 = f . Then a = f (a) = f (b).

Proof. We have ( f (c), f (a)) ∈ f (πc,a) ⊆ πc,a, and hence a+ f (c) = a+ f (a) = f (a)
(use 4.2(ix)). By 4.2(viii), c = f (c), and therefore a = a + c = a + f (c) = f (a). By
4.2(x), a = f (a) = f (b). �

4.4 Lemma. Let a ≤ b ≤ d and let f ∈ E be such that ker( f ) = πa,b, f (πb,d) ⊆ πb,d

and f 2 = f . If f (b) � f (d) then f (a) = f (b) = b.

Proof. We have ( f (b), f (d)) ∈ f (πb,d) ⊆ πb,d. If f (b) � f (d) then b ≤ f (b) and the
equality f (a) = f (b) = b follows from 4.2(x). �

4.5 Lemma. Let c < a ≤ b < d and let f ∈ E be such that ker( f ) = πa,b, ( f (c), f (a)) ∈
∈ πc,a, ( f (b), f (d)) ∈ πb,d and f 2 = f . Then a = b.

Proof. By 4.3, we have a = f (a) = f (b) and 4.1(iii) implies f (b) � f (d). Thus
f (a) = f (b) = b by 4.4, and so a = b. �

4.6 Corollary. Let c < a ≤ b < d. Then a = b, provided that there is f ∈ E(σ) such
that ker( f ) = πa,b. �

4.7 Lemma. Let c < a ≤ b, d ≤ b, a �≤ d, and let f ∈ E be such that ker( f ) = πa,b,
( f (c), f (a)) ∈ πc,a and f 2 = f . Then d < a.

Proof. By 4.3, a = f (a) = f (b). Since d ≤ b, we have f (d) ≤ f (b) = a. If a �≤ f (d)
then d = f (d) ≤ a follows from 4.2(viii) (since a �≤ d, we get d < a). On the other
hand, if a ≤ f (d) then f (a) = a = f (d) and (a, d) ∈ ker( f ) = πa,b. Consequently,
either a = d or a ≤ d. In both cases, a ≤ d, a contradiction. �

4.8 Lemma. Let c < a < b and d < b. Then d ≤ a, provided that there are f , g ∈ E(σ)

such that ker( f ) = πa,b and ker(g) = πa,d (if a ≤ d).

Proof. If a �≤ d then d < a by 4.7. If a ≤ d then a = d by 4.6. �

4.9 Proposition. Assume that for all a, b ∈ M, a < b, there is f ∈ E(σ) such that
ker( f ) = πa,b. Then just one of the following two cases holds:

(1) oM ∈ M and every element from M \ {oM} is minimal;
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(2) oM ∈ M, the set M \ {oM} has just ane maximal element, say w, and for every
a ∈ M \ {oM ,w} � ∅, a ≤ w and a is minimal.

Proof. Combine 4.6 and 4.8. �

5. T h e s e m i r i n g o f s t r o n g e n d o m o r p h i s m s ( d )

5.1 Example. Let M be an antichain (i.e., oM ∈ M and every element from M \ {oM}
is minimal).
(i) 0M ∈ M iff |M| = 2 (equivalently, M is a chain).
(ii) Let f be a transformation of M such that f (a) ∈ {a, oM} for every a ∈ M. We
claim that f ∈ E(σ1).

Indeed, f (a + a) = f (a) = f (a) + f (a). If a � b then f (a + b) = f (o) = o and
f (a) + f (b) ∈ {o, a + b} = {o}. Thus f ∈ E and a ≤ f (a) for every a ∈ M. The
condition (ii1) is clearly satisfied and f ∈ E(σ1) by 2.9.
(iii) Let f ∈ E(σ1). By 2.9(ii), we have f (a + b) = a + f (b) for all a, b ∈ M. In
particular, f (o) = a + f (o), a ≤ f (o) and f (o) = o. Furthermore, if b � f (b) then
o = f (o) = f ( f (b) + b) = f (b) + f (b) = f (b). Thus f (a) ∈ {a, oM} for every a ∈ M.
(iv) Combining (ii) and (iii), we conclude that E(σ1) is just the set of all transforma-
tions f of M such that f (a) ∈ {a, oM} for every a ∈ M (then f (o) = o).
(v) Let f ∈ E(σ) \ E(σ1). Then Pf = {a ∈ M | a �≤ f (a) } = { a ∈ M | f (a) � a, oM } � ∅.
By 2.6, f (Pf ) = {wf } and Pf = { a | a �≤ wf } = { a | a � wf } = M \ {wf }. By 2.6(v),
f (wf ) = wf . Thus f = σwf .
(vi) Combining (iv) and (v), we see that E(σ) = E(σ1) ∪ E(1) = E(1) ∪ { f : M →
→ M | f (a) = a, oM for everya ∈ M }.
(vii) Let � be a congruence of M. Then � = (N × N) ∪ idM , where N is the block of
� with oM ∈ N. If f (N) = o and f (a) = a for every a ∈ M \ N then f ∈ E(σ1) and
ker( f ) = �.

5.2 Example. Let M be a nearantichain (i.e., oM ∈ M, the set M \{oM} has the greatest
element, say zM , and a < zM for every a ∈ M \ {oM , zM}) and |M| ≥ 4. Clearly,
0M � M. Put N = M \ {oM}. Then N is a subsemilattice of M and oN = zM .
(i) Let f ∈ E(σ) be such that f (N) ⊆ N. If � is a congruence of N then � ∪ idM

is a congruence of M, f (� ∪ idM) ⊆ � ∪ idM , and hence f (�) ⊆ �. It follows that
g = f |N is a strong endomorphism of N. By 5.1(vi), either g = σu|N for some u ∈ N
or g(v) ∈ {v, zM} for every v ∈ N.
(ii) Let f be a transformation of M such that f (N) ⊆ N and g = f |N is an endo-
morphism of N. Clearly, f ∈ E iff f (N) ≤ f (o). Now, assume that f ∈ E and that
g is a strong endomorphism of N (see (i)). If a �≤ g(a) for at least one a ∈ N then
g = σu|N for some u ∈ N and u = f (a) = f (a + oM) = f (oM) by 2.9(ii3). Thus
f = σu. If a ≤ g(a) for every a ∈ N then g(a) ∈ {a, zM}. Since zM ∈ g(N), we have
zM ≤ f (oM) ≤ oM , so that f (oM) ∈ {zM , oM}.
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The endomorphism g = f |N is strong, and hence 2.9(ii1,2,3) are true for a, b ∈ N.
If a = b = oM then the conditions are true as well. If a �≤ f (a) for at least one
a ∈ N then f = σu for some u ∈ N and there is nothing to check. Consequently, let
f (a) ∈ {a, zM} for every a ∈ N. The condition 2.9(ii1) is clear for a = oM or b = oM

and the conditions 2.9(ii2,3) are clear for a = oM . We have proved that f ∈ E(σ).
Clearly, f ∈ E(σ1) iff f (oM) = oM (and f (a) ∈ {a, zM}, a ∈ N).
(iii) Let f ∈ E be such that f (N) � N. Then oM ∈ f (N) and oM = f (a) for some
a ∈ N. Consequently, f (zM) = f (zM + a) = f (zM) + f (a) = f (zM) + oM = oM .

Now, assume that f ∈ E(σ). By 2.9(ii2), zM + f (x) = zM + f (zM) = zM + oM = oM

for every x ∈ M. Consequently, f = σoM .
(iv) E(σ1) = { f : M → M | f (oM) = oM } and f (a) ∈ {a, zM} for every a ∈ N }.
(v) E(σ) = E(1) ∪ E(σ1) ∪ { f : M → M | f (oM) = zM and f (a) ∈ {a, zM} for every a ∈
∈ N \ {σzM }}.
(vi) Let � be a congruence of M. Let A and B be the blocks of � such that oM ∈ A
and zM ∈ B. If C is a block of � such that |C| ≥ 2 then C = A or C = B. If |A| ≥ 2
then A = B and � = ker( f ) for some f ∈ E(σ) (use(v)). If |A| = 1 and |B| ≥ 2 then
� = ker(g) for some g ∈ E(σ1).

5.3 Example. Let M = {0, a, o}, where 0 < a < o.
(i) Clearly, the three-element chain M has just four congruences: �1 = idM , �2 =

= {(0, a), (a, 0)} ∪ idM , �3 = {(a, o), (o, a)} ∪ idM and �4 = M × M.
(ii) E = E(1)∪{idM}∪{ f1, f2, f3, f4, f5, f6}, where f1(0) = 0 = f1(a), f1(o) = a, f2(0) =
= 0 = f2(a), f2(o) = o, f3(0) = a = f3(a), f3(o) = o, f4(0) = 0, f4(a) = f4(o),
f5(0) = 0, f5(a) = o = f5(o), f6(0) = a, f6(a) = o = f6(o).

Clearly, E(σ1) = {idM , f3, f6} and E(σ) = E(1) ∪ E(σ1) ∪ { f1, f4}. Thus E \ E(σ) =

= { f2, f5}.
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