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HOMOCLINIC ORBITS IN A TWO-PATCH PREDATOR-PREY

MODEL WITH PREISACH HYSTERESIS OPERATOR
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(Received September 27, 2013)

Abstract. Systems of operator-differential equations with hysteresis operators can
have unstable equilibrium points with an open basin of attraction. Such equilibria can have
homoclinic orbits attached to them, and these orbits are robust. In this paper a popula-
tion dynamics model with hysteretic response of the prey to variations of the predator is
introduced. In this model the prey moves between two patches, and the derivative of the
Preisach operator is used to describe the hysteretic flow between the patches. A numerical
example of a robust homoclinic loop is presented, and a mechanism creating this homoclinic
trajectory is discussed.
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1. Introduction

Hysteresis in relationships between various physical variables such as magnetic

field and magnetization or mechanical stress and deformation can be modelled by

a special class of non-smooth maps called hysteresis operators [19], [7], [28]. For

example, constitutive equations of ferromagnetic, elastoplastic, piezoelectric, mag-

netostrictive and other smart materials have been modelled by the Preisach hys-

teresis operator and the Prandtl-Ishlinskii hysteresis operator [33], [25], [10], [3], [4].

Macroscopic models where such operator constitutive equations are coupled with dif-

ferential equations of motion (or some form of Maxwell’s equations) [20], [32], [22],
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[2], [9], [21], [13], [24], [1], [23] present a class of infinite-dimensional dynamical sys-

tems whose dynamics may be substantially different from the dynamics of smooth

differential systems [6], [12], [17], [11], [5], [18]. As one example, a coupled system of

differential equations

(1) u′ = f(u, v), x′ = g(u, v)

and an operator equation

(2) x(t) = (Pv)(t)

with the Preisach hysteresis operator P can have an unstable equilibrium which

has an open basin of attraction (in the infinite-dimensional phase space of the sys-

tem). Such equilibria, which have been called partially stable [29], can be compared

to a saddle-node singular point of an ordinary differential system. Indeed, they

simultaneously attract and repel many trajectories. However, unlike the classical

saddle-node point, partially stable equilibria of system (1), (2) are robust.

The rigorous stability analysis presented in [29] for equilibria of equations (1),

(2) has been illustrated by prototype examples of a few stable systems including

an electronic circuit, a hydrological model, and a predator-prey dynamics model

with safe and risky patches. Partially stable equilibria have been found numerically

in an epidemiological model of a similar (but different) type [30]. The nature of

partial stability suggests that if there is a homoclinic orbit attached to a partially

stable equilibrium, then this homoclinic orbit is robust too. This may be interesting,

for example because a homoclinic orbit is associated with the so-called excitabil-

ity phenomenon1 when the system responds with a pulse to a small perturbation

(which is localized in time); such a pulse is a manifestation of a large excursion

in the phase space along the homoclinic orbit. Again, robust homoclinic orbits of

operator-differential systems contrast with generic homoclinic orbits of smooth dif-

ferential systems [26] and Filippov’s systems [27], [14], as the latter are removable by

arbitrarily small perturbations (a homoclinic bifurcation to a saddle or saddle node).

In this paper, we give a numerical evidence that a robust homoclinic orbit exists

in a population dynamics model where the prey switches between two modes of

behaviour, risky and safe, in response to varying abundance of predator. In the safe

state, the prey enjoys lower killing rate by the predator at the price of increased

competition rate. The Preisach operator defines how the rate of exchange between

1 The term “excitability” was originally coined in the analysis of the action potential of
the axon of the giant Atlantic squid [16]. It is now commonly used to describe any stable
dynamical system that exhibits pulses when perturbed above a certain threshold level.
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the risky and safe prey populations responds to variations of the predator number.

Effectively, it introduces memory in the switching strategy (rule) of the prey.

The homoclinic orbit results from a combination of local dynamics near a partially

stable equilibrium and global dynamics which drives those trajectories that leave

a small neighbourhood of this equilibrium back to it. The homoclinic trajectory has

two parts separated by a point where the predator population achieves its maximum.

The trajectory satisfies a different system of ordinary differential equations on each

of these two parts. The two ordinary differential systems have the same equilibrium

which is unstable for the former system and stable for the latter. Moreover, the

switching point belongs to the basin of attraction of the equilibrium of the latter

system.

A rigorous proof of existence of a stable homoclinic orbit near the observed nu-

merical solution is beyond the scope of this paper and will be the subject of future

work. We note that when stability is analysed, one has to consider not only the

perturbations of phase variables (predator and two prey populations), but also the

perturbations of the infinite-dimensional memory state of the Preisach operator [31].

The system and a brief description of the Preisach hysteresis operator are presented

in the next section, which is followed by the sections presenting numerical results,

some related analysis and discussion. The derivation of the model is contained in

the Appendix.

2. Excitable behaviour in a predator-prey system

2.1. The model. In this work, we consider a two-patch extension of the model

proposed in [15], which has nontrivial dynamical properties such as multiple stable

equilibria:

u̇R = aR(uR)− fR(uR)g(v) + hR(t)uS − hS(t)uR,(3)

u̇S = aS(uS)− fS(uS)g(v)− hR(t)uS + hS(t)uR,(4)

v̇ = σ(fR(uR) + fS(uS))g(v)− c(v).(5)

Here dot denotes differentiation with respect to time; uR is the number of prey in

the Risky patch; uS is the number of prey in the Safe patch; v is the number of

predator; the terms

aR/S(u) = ̺u− λR/Su
2

describe logistic growth of the prey inside the patches with birth rate ̺ and compe-

tition rates λR/S ;

fR/S(u) =
ωR/Su

ϕ+ u
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is the Holling type II functional response;

g(v) =
v

1 + βv

is the predator interference; σ is the efficiency of conversion of food to growth; and

the term

c(v) = γv

describes death of the predator with the death rate γ. The attack rates for Risky

and Safe patches satisfy ωR > ωS > 0, and we assume that the prey pays a price for

choosing the safe patch by higher competition, λS > λR > 0. A similar two-patch

system was considered, e.g., in [8].

There is a flow of prey from the Risky to Safe patch, hS(t)uR, and in the opposite

direction, hR(t)uS . The simplest choice of the flow rate hS(t) in one direction is

a constant, hS(t) = kS0. In terms of the differentials, duS = kS0uR dt. Another

option is to implement a flow in reaction to the change of some function p(v) of

the predator number by assuming that duS = kSuR dp(v). Combining these two

formulas results in

hS(t) =
(

kS0 + kS
dp

dv
v̇
)+

,

where we ensure that the flow is positive by applying the function x+ = max{x, 0}.

Now, equation (5) can be used to substitute for v̇. Similarly, hR(t) = (kR0−kR
dp
dv v̇)

+.

In this paper, we are interested in the situation when the reaction of prey to

variations of the predator population is hysteretic. Namely, we assume that

duS = kSuR d(P [η0]v), duR = −kRuS d(P [η0]v),

where P is the Preisach operator with the initial state η0 [6], and the total flows to

the Risky and Safe patches are defined by

(6) hS(t) =
(

kS0 + kS
d

dt
(P[η0]v)(t)

)+

, hR(t) =
(

kR0 − kR
d

dt
(P [η0]v)(t)

)+

,

respectively. The Preisach operator appears from the assumption that the prey does

not respond immediately to a change of the trend in predator dynamics (i.e., the

change of the sign of v̇). The change of the rate of flows between the patches is

delayed until the abundance of predator drops/increases from its extremum value

by a certain sufficiently large amount. More detailed derivation of the model is

presented in the Appendix.

The Preisach operator is defined by

(7) (P[η0]v)(t) =

∫ ∞

0

∫ αS

0

µ(αR, αS)(RαR,αS
[η0(αR, αS)]v)(t) dαR dαS ,
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where v(t), t > t0 is the input; µ(αR, αS) the integrable density function; RαR,αS

is the non-ideal relay operator with thresholds αR, αS satisfying 0 < αR 6 αS

(see, for example, [19]); and the function η0 = η0(αR, αS) which takes values 0

and 1 represents the initial states of the relays RαR,αS
. It is convenient to use the

standard graphical representation of the states of the relays by points of the domain

0 6 αR 6 αS of the plane (αR, αS). It suffices to consider the situation when this

domain is divided into two parts by a staircase polyline Ω = Ω(t) with the relays

in state 1 below (to the left) of this line and in state 0 above (to the right) of this

line, see Figure 1 (left). The polyline Ω, which is often referred to as the state of

the Preisach operator, can have either a finite or infinite number of horizontal and

vertical links, but in the latter case the only accumulation point of the corners is the

right end of the polyline; the right end is the point αR = αS = v(t) at any moment

t > t0 [19]. A set of simple rules maps the evolution of the input v(t) to the evolution

of the polyline Ω(t) and the output (7) of the Preisach operator; we refer the reader

to [19] and Figures 1–2 for the explanation of these rules.

αR

αS

v0

α
R

=
α
S

αR

αS

v0

α
R

=
α
S

v0 v00 0

Ω

Ω(t0)

Figure 1. The domain 0 6 αR 6 αS of the plane (αR, αS) is divided into two parts by
a staircase polyline Ω = Ω(t) with the relays in state 1 below (to the left) of this
line (grey colour) and in state 0 above (to the right) of this line (white colour).
Here v0 = v(t0). In the right figure Ω(t0) is the horizontal segment αS = v(t0),
0 6 αR 6 v(t0).

In equations (3)–(6), the derivative of the output of the Preisach operator is used.

For the evaluation of this derivative, the most right link Ωe = Ωe(t) which is attached

to the right end point αR = αS = v(t) of the staircase polyline Ω(t) is of importance,

see Figure 3, left (if Ω has infinitely many links, then Ωe = ∅). Denote by (vm, v),

(v, vM ) the end points of the segment Ωe, where vm = v if Ωe is a vertical segment

and vM = v if Ωe is horizontal. If v = v(t) increases, then the time derivative of the

output of the Preisach operator satisfies

(8)
d(P [η0]v)

dt
= v̇H(v, vm) with H(v, vm) =

∫ v

vm

µ(αR, v) dαR.
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Figure 2. Evolution of the staircase state Ω = Ω(t) from the initial state Ω(t0) shown in
Figure 1 (right) in response to an input v(t) which monotonically decreases on
an interval t ∈ [t0, t1]. For t0 < t 6 t1 the line Ω consists of two segments. Left
panel presents the state at the moment t1: the vertical link αR = v(t1), v(t1) 6
αS 6 v(t0) connects to the horizontal link, which is part of the segment Ω(t0)
shown in Figure 1 (right). After the moment t1, the input v(t) monotonically
increases for t ∈ [t1, t2]. We assume v(t1) < v(t2) < v(t0). In this case, the state
Ω has three links for t1 < t 6 t2 as shown on the right panel for the moment
t = t2. The left horizontal link and the vertical link of the line Ω(t2) are parts of
the staircase Ω(t1) presented on the left panel. The extra right horizontal link is
αS = v(t2), v(t1) 6 αR 6 v(t2). Here vi = v(ti).

αR

αS

α
R

=
α
S

αR

αS

α
R

=
α
SvM vM

v1

v0 v0 v(t)v(t)

Ωe(t1)
Ωe(t0)

Ωe(t)
Ωe(t)

0 0

Ω(t0) Ω(t1)

Figure 3. Evolution of the staircase state Ω(t) for the numerical example of a homoclinic
trajectory (see Figures 4, 5); Ωe(t) is the lower right segment of this staircase state
with the end-point αR = αS = v(t) on the bisector. The initial state Ω(t0) (solid
line on the left panel) consists of a horizontal segment and the vertical segment
Ωe(t0). During the time interval (t0, t1] when the input v(t) increases, Ω(t) has
three segments, the segment Ωe(t) is horizontal (solid dashed line). The right
panel shows the state Ω(t1) (solid line) at the moment when the input achieves
its maximum v(t1) = v1. After this moment, the input decreases, Ω(t) consists
of four segments, and the segment Ωe(t) is vertical (solid dashed line).
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If v decreases, then

(9)
d(P [η0]v)

dt
= v̇V (v, vM ) with V (v, vM ) =

∫ vM

v

µ(v, αS) dαS .

In the case of increasing v, substituting formula (8) in equations (6), we see that the

flows between the patches are equal to

(10) hS(t) = (kS0 + kS v̇H(v, vm))+, hR(t) = (kR0 − kRv̇H(v, vm))+,

where v̇ can be replaced by the right hand side of equation (5). Similarly, when v

decreases,

(11) hS(t) = (kS0 + kS v̇V (v, vM ))+, hR(t) = (kR0 − kRv̇V (v, vM ))+.

Equilibria of system (3)–(7) can be found from the algebraic system, which is

obtained by setting the derivatives of all the variables including (d/dt)(P [η0]v) in

(3)–(7) to zero. In the next section, we present a numerical example of the homoclinic

trajectory (see Figures 4, 5) which is obtained as follows. First, an equilibrium

(u∗R, u
∗
S , v

∗) of system (3)–(7) is identified, and we choose an initial state Ω(t0) of the

Preisach operator at the equilibrium with a sufficiently long vertical segment Ωe(t0)

(see Figure 3, left). Next, we consider an (arbitrarily) small perturbation of the

initial values (uR(t0), uS(t0), v(t0)) from the equilibrium with v(t0) = v∗ such that

v̇(t0) > 0. Hence, initially, v(t) increases, therefore the trajectory of (3)–(7) can be

obtained as a solution of the system of ordinary differential equations (3)–(5), (10)

with vm = v(t0). The choice of parameters ensures that the point (u
∗
R, u

∗
S , v

∗) is an

equilibrium of saddle type for this ordinary differential system, hence the solution

deviates from the equilibrium. Now, we extend the solution (with the increasing

component v(t)) to the point where it hits the surface v̇ = 0 at a moment t1 (see

Figure 3, right). After this moment, v(t) decreases, hence the next segment of

the trajectory of system (3)–(7) becomes a solution of ordinary differential system

(3)–(5), (11) with vM = v(t1). Our choice of parameters ensures that (u
∗
R, u

∗
S , v

∗)

is a stable node for this ordinary differential system and that the switching point

(uR(t1), uS(t1), v(t1)) belongs to the basin of attraction of this node. Therefore the

trajectory converges back to the equilibrium. In particular, the state Ω(t) of the

Preisach operator converges to its initial state Ω(t0) as t → ∞. Summarizing, the

homoclinic orbit of system (3)–(7) has two parts, satisfying two different ordinary

differential systems which have the same equilibrium. This equilibrium is a saddle

for the first system and a node for the other.

2.2. Numerical results. Using a criterion for existence of multiple positive equi-

libria [15], we set ̺ = 1.35, ϕ = 0.1, β = 1.2, γ = 0.5, ωR = 2, ωS = 0 (no predators
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in the safe patch), kS0 = 0.01, kR0 = 0.001, λS = 0.1, λR = 0.01 to ensure that

system (3)–(7) has three positive equilibrium points

(u∗R, u
∗
S , v

∗) = (0.206995, 13.4915, 0.2904365),(12)

(u†R, u
†
S, v

†) = (0.306704, 13.4923, 0.4235345),(13)

(u‡R, u
‡
S, v

‡) = (133.387, 14.4153, 0.8373).(14)

If kR = kS = 0 (the exchange terms (6) do not have a component with the Preisach

operator), then equilibria (12), (13), (14) of the system of ordinary differential equa-

tions (3)–(5) have the eigenvalues (−1.35, 0.084, 0.67), (−1.35,−0.062, 0.89), and

(−1.53,−1.33,−0.25), respectively. That is, the first and the second equilibria are

saddles and the third equilibrium is a stable node.

When the hysteresis terms are present, we give a numerical evidence that equilib-

rium (12) can become partially stable and can have a homoclinic orbit attached to

it. We set kR = 0.1kS and define the density function of the Preisach operator (7)

by the formula

µ(αR, αS) =
exp(−900(αR − 0.2904365)2)

0.042

in the triangle 0 6 αR 6 αS 6 1, with µ = 0 outside this triangle. The maximum

of this Gaussian density distribution corresponds to the equilibrium value v∗ of the

predator. The integral of µ over the whole half plane αS > αR is normalized to 1.

As the initial state of the Preisach operator we choose the polyline Ω(t0) which has

two links: a vertical link Ωe(t0) = {αR = v∗, v∗ 6 αS 6 vM} and a horizontal link

{αS = vM , 0 6 αR 6 v∗} with vM = 1 (see Figure 3, left). The initial populations

are v(t0) = v∗, uR(t0) ≈ u∗R + 10−5, uS(t0) = u∗S . For kS = 1, the trajectory of

system (3)–(7) starting from these initial values, which are close to equilibrium (12),

converges to equilibrium (14) (see Figure 4, dashed line). The component v(t) of this

trajectory monotonically increases, hence this trajectory is simultaneously a solution

of the ordinary differential system (3)–(5), (10) with vm = v(t0) = v∗, for which

equilibrium (12) is a saddle with eigenvalues

(15) (−1.34931, 0.0839766, 0.665618),

and equilibrium (14) is a stable node.

Increasing the parameter kS to the value kS = 5.035, we observe that the tra-

jectory Γ of system (3)–(7) with the same initial values hits the surface v̇ = 0 at

v(t1) = 0.3707. Again, on the interval [t0, t1] this trajectory is a solution of the

ordinary differential system (3)–(5), (10) (with vm = v(t0) = v∗), for which the sad-

dle equilibrium (12) has the same eigenvalues (15). However, after the moment t1
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the component v(t) of the trajectory Γ of system (3)–(7) decreases and we show

numerically that the trajectory Γ is attracted asymptotically towards the same equi-

librium (12) near which it started (see Figure 4, solid line). The part of Γ corre-

sponding to t > t1 is a solution of the ordinary differential system (3)–(5), (11) (with

vM = v(t1)), for which the equilibrium (12) is a stable node with the eigenvalues

(−2.66012,−1.34664,−0.0210543). Hence, the above results of numerical simulation

of system (3)–(7) complemented by the local stability analysis of the associated or-

dinary differential systems suggest that we have demonstrated a robust homoclinic

behaviour in system (3)–(7) with the Preisach hysteresis operator (see Figure 5) by

following the plan outlined in the previous subsection.

0 20 40 60 80 100

t

0.2

0.4

0.6

0.8

v

Figure 4. Time series of the predator for two trajectories obtained by a small perturbation
of initial data from the equilibrium (0.206995, 13.4915, 0.2904365) (equilibrium
(12)) for kS = 1 (dashed line) and kS = 5.035 (solid line).

0.3 0.32 0.34 0.36 0.38
v

0.1

0.15

0.2

0.25

uR

Figure 5. Homoclinic loop for kS = 5.035. The orbit starts from the leftmost point and
continues in the direction of the arrow.

Increasing kS further above the value kS = 5.1, we observe numerically more

complicated behaviour of trajectories of system (3)–(7) such as oscillating transients
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before convergence to an equilibrium, which for higher values of kS give rise to

a periodic regime (Hopf bifurcation scenario). However, discussion of these dynamics

is beyond the scope of the paper.

3. Conclusion

We have proposed a predator-prey model, where the prey can prefer to stay in

one of two patches: the Safe patch, where the prey enjoys lower killing rate by the

predator at the price of increased competition rate; and the Risky patch. The rate

of flow between the patches is assumed to depend on the number of predator; this

dependence is described by a hysteresis operator. A mechanism which can produce

a homoclinic orbit attached to a partially stable equilibrium of a differential system

with hysteresis nonlinearity has been discussed. Using the two-patch predator-prey

system as an example, we have demonstrated numerically for the first time a ho-

moclinic orbit that persists for a substantial range of parameter values (a robust

homocline).

4. Appendix

We consider a two-layer-type environment, where the top layer corresponds to

risky conditions, and the bottom layer corresponds to safe conditions (such as sandy

bottom of a natural water reservoir, which can serve as a refuge for some fish species).

We assume that the predator species move freely around the whole environment

and there is a flow of prey species between Safe and Risky layers. Environment

is composed of equally-sized cells such that each cell has both layers (patches) in

the same proportion, and the prey moves freely between the cells. Then a change

in the number of species in each patch can be represented symbolically in terms of

differentials as follows:

Population dynamics duR = XR(uR, v) dt;

duS = XS(uS , v) dt;

dv = Y (uR, uS , v) dt;

Constant flow from Risky to Safe patch duS = − duR = kS0uR dt;

Constant flow from Safe to Risky patch duS = − duR = −kR0uS dt;

Flow to Safe patch in reaction to v duS = − duR = kSuR d(Fr [η0]v);

Flow to Risky patch in reaction to v duS = − duR = kRuS d(Fr [η0]v).
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Here

(16) w(t) = (Fr [s0]v)(t), t > t0

is the so-called play operator [19] of width 2r > 0 with the initial state s0 ∈ [−r, r],

which is defined on the class of all piecewise monotone continuous inputs v = v(t)

by the recurrent relationships w(t0) = v(t0) − s0 and w(t) = ϕr(v(t), w(ti−1)), t ∈

[ti−1, ti], i > 1, where

ϕr(v, w) = max{v − r,min{v + r, w}}

and [ti−1, ti] are intervals of monotonicity of the input v. The play operator ad-

mits a continuous extension v(t) 7→ w(t) = (Fr[s0]v)(t) to the space of continuous

functions with the supremum norm; furthermore, the extended play operator has

a continuous restriction to the the space of absolutely continuous functions with the

W 1,1-norm [7].

According to the definition of the play operator, the intensity of exchange of

prey between the patches responds to the predator abundance v(t) as follows. If

v monotonically increases (and s0 = r) or v monotonically decreases (and s0 =

−r), then the increments of the rate (16) of flow of prey between the patches are

proportional to the increments of the predator abundance, dw = dv. If v(t) reaches

a local maximum at v(t1) = vM (or a local minimum at v(t2) = vm), then there is

a window of inactivity such that dw/dt = 0 while v remains between vM − 2r and

vM (between vm and vm +2r, respectively). After v(t) has reached either end of the

inactivity window, the increments of w and v become proportional again, dw = dv,

until v reaches another extremum value and another window of inactivity occurs.

In other words, if the trend of predator abundance reverses, the prey hesitates until

either the new trend changes the number of predator by 2r or until the old trend

resumes and the number of predator recovers. Then the prey acts according to the

trend of the predator again.

Now, we allow for heterogeneity of the cells of environment by assuming that the

width of the inactivity window 2r is specific to a cell and has a distribution ψ(r)

over all cells. Assuming that the free movement of prey between the cells is much

faster than all other processes, we arrive at the averaged formulas for flows between

the Safe and Risky patches in response to v(t):

duS = − duR = kSuR d(P [s0]v), duS = − duR = kRuS d(P [s0]v),

where

(17) (P [s0]v)(t) =

∫ ∞

0

ψ(r)(Fr [s0(r)]v)(t) ds
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is the Prandtl-Ishlinskii hysteresis operator with the initial state s0 = s0(r) [19].

Furthermore, we allow a more general form of the expression for the differentials

of the exchange flows by replacing the Prandtl-Ishlinskii operator by the Preisach

operator. According to P.Krejčí’s formula, the Preisach operator has an equivalent

representation

(P [η0]v)(t) =

∫ ∞

0

ϕ(r, (Fr [s0(r)]v)(t)) dr.

For ϕ(r, u) = ψ(r)u, this formula reduces to (17).

Combining the population terms with the hysteretic exchange terms and the con-

stant flows, we obtain the system

u̇R = XR(uR, v) + hR(t)uS − hS(t)uR,

u̇S = XS(uS , v)− hR(t)uS + hS(t)uR,

v̇ = Y (uR, uS, v)

with hS , hR defined by formulas (6). System (3)–(7) is obtained by choosing specific

population termsXR/S , Y in accordance with the assumptions presented in Section 2.
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