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INTERPRETATION AND OPTIMIZATION

OF THE k-MEANS ALGORITHM

Kristian Sabo, Rudolf Scitovski, Osijek

(Received October 9, 2012)

Abstract. The paper gives a new interpretation and a possible optimization of the well-
known k-means algorithm for searching for a locally optimal partition of the set A = {ai ∈
R
n : i = 1, . . . , m} which consists of k disjoint nonempty subsets π1, . . . , πk, 1 6 k 6 m.
For this purpose, a new divided k-means algorithm was constructed as a limit case of the
known smoothed k-means algorithm. It is shown that the algorithm constructed in this
way coincides with the k-means algorithm if during the iterative procedure no data points
appear in the Voronoi diagram. If in the partition obtained by applying the divided k-means
algorithm there are data points lying in the Voronoi diagram, it is shown that the obtained
result can be improved further.
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1. Introduction

Clustering or grouping a data set into conceptually meaningful clusters has been

a well-studied problem in recent literature, and it has practical importance in a wide

variety of applications [7], [12], [13], [14], [18], [20].

Let I = {1, . . . ,m} and J = {1, . . . , k}, 1 6 k 6 m, be sets of indices. A partition

of the set A = {ai ∈ R
n : i = 1, . . . ,m} into k disjoint subsets π1, . . . , πk, 1 6 k 6 m,

such that

(1.1)

k⋃

j=1

πj = A, πr ∩ πs = ∅, r 6= s, |πj | > 1, j = 1, . . . , k,

will be denoted by Π(A) = {π1, . . . , πk}, and the elements π1, . . . , πk of such partition

are called clusters in R
n.
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If d : R
n × R

n → R+, R+ = [0,∞〉, is a distance-like function (see e.g. [12], [14],

[23]), then with each cluster πj ∈ Π we can associate its center cj defined by

(1.2) cj = c(πj) := argmin
x∈conv(πj)

∑

ai∈πj

d(x, ai),

where conv(πj) is the convex hull of the set πj .

If we introduce an objective function F : P(A; k) → R+ on the set of all partitions

P(A; k) of the set A, we can define the quality of a partition and search for a k-

globally optimal partition by solving the following optimization problem:

(1.3) argmin
Π∈P(A;k)

F(Π), F(Π) =
k∑

j=1

∑

ai∈πj

d(cj , ai),

where cj = c(πj) is given by (1.2).

Conversely, for a given set of different assignment points z1, . . . , zk ∈ R
n, applying

the minimal distance condition, we can define the partition Π = {π1, . . . , πk} of the

set A in the following way:

(1.4) πj = {a ∈ A : d(zj , a) 6 d(zs, a), ∀ s ∈ J}, j ∈ J,

where one has to take care that every element of the set A occurs in one and only

one cluster. Therefore, the problem of finding an optimal partition of the set A can

be reduced to the optimization problem

argmin
z1,...,zk∈Rn

F (z1, . . . , zk),(1.5)

F (z1, . . . , zk) =

m∑

i=1

min
16j6k

d(zj , ai) =

m∑

i=1

k∑

j=1

w
(j)
i d(zj , ai),

where F : R
kn → R+, and

(1.6) w
(j)
i =

{
1, ai ∈ π(zj),

0, ai /∈ π(zj),

where j ∈ J , and for all i ∈ I we have

(1.7)

k∑

j=1

w
(j)
i = 1.
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The solutions of (1.3) and (1.5) coincide (see e.g. [1], [21]). A global optimization

problem (1.5) can also be found in literature as a center-based clustering problem or

k-means/k-median problem [9], [15], [19], [23].

Thereby, the objective function F is a symmetric Lipschitz continuous function

which can have a large number of independent variables (the number of clusters in

the partition multiplied by the dimension of data points (k · n)), it has to be neither

convex nor differentiable, and generally it may have at least k! local and global

minima [8]. Therefore, this becomes a complex global optimization problem [6], [18].

The paper is organized as follows. In the next section, two well-known algorithms

for searching for the locally optimal partition, i.e., the k-means algorithm and the

smoothed k-means algorithm are briefly described and a new divided k-means al-

gorithm is proposed. In Section 3, some properties of the new algorithm and its

connection with the k-means algorithm is shown. In Section 4, some numerical ex-

periments are given that point out the advantage of the proposed algorithm. Finally,

some conclusions are given in Section 5.

2. Algorithms for searching for the locally optimal partition

In the sequel, a special and well-known least square distance-like function given

by d(x, y) = ‖x− y‖22, x, y ∈ R
n will be used as a distance-like function.

2.1. k-means algorithm. There are various notation variants of this well-known

algorithm (see e.g. [12], [15], [17]). For further usage in this paper, the algorithm

will be written in the following way.

Algorithm 1 (k-means algorithm).

Step 0: Input 1 6 k 6 m; I = {1, . . . ,m}; J = {1, . . . , k}; A = {ai ∈ R
n : i ∈ I}.

Choose mutually different assignment points z1, . . . , zk ∈ conv(A).

Step 1: (Assignment step) Define clusters

π(zj) = {ai ∈ A : d(zj , ai) 6 d(zs, ai), ∀ s ∈ J}, j ∈ J,

where one has to take care that every element of the set A occurs in one and

only one cluster. Define weights w
(j)
i according to (1.6).

Calculate F0 =
k∑

j=1

( m∑
i=1

w
(j)
i d(zj , ai)

)
.

Step 2: (Update step) Determine

cj = argmin
x∈Rn

m∑

i=1

w
(j)
i d(x, ai) =

1
∑m

l=1 w
(j)
l

m∑

i=1

w
(j)
i ai, j ∈ J ;

π(cj) = {ai ∈ A : d(cj , a) 6 d(cs, a), ∀ s ∈ J}, j ∈ J.
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Define new weights

w
(j)
i =

{
1, ai ∈ π(cj),

0, ai /∈ π(cj),

where j ∈ J , such that
k∑

j=1

w
(j)
i = 1.

Calculate F1 =
k∑

j=1

( m∑
i=1

w
(j)
i d(cj , ai)

)
.

Step 3: If F1 < F0, set zj = cj for all j ∈ J and F0 = F1 and go to Step 1.

Else set c⋆j = cj for all j ∈ J and STOP.

Points z1, . . . , zk from Step 1 and points c1, . . . , ck from Step 2 are called assign-

ment points and centroids of the clusters, respectively. Centroids in Step 2 become

assignment points on the basis of which we define new clusters.

Algorithm 1 is finite and in every step it reduces the value of the objective function

[12], [21]. Centroids (c⋆1, . . . , c
⋆
k) obtained by applying Algorithm 1 are called locally

optimal centroids, and the corresponding partition {π⋆
1 , . . . , π

⋆
k} is called a locally

optimal partition.

In addition to that, it may happen that one of the clusters becomes an empty

set [12]. In relation to that, [22] gives a sufficient condition under which the functional

(1.5) attains its local minimum at the point (c⋆1, . . . , c
⋆
k). A partition determined by

this point is called a stable partition [12], [23]. Also, in accordance with [22], a stable

partition does not contain empty clusters.

If we have a good initial approximation, the k-means algorithm can provide an ac-

ceptable solution [24]. A good initial approximation can be obtained by some of the

genetic algorithms, such as the firefly heuristic algorithm [26], or by using some

of the global optimization methods, such as direct [5], [11]. The symmetry prop-

erty of the objective function F was a motive for developing a very efficient special

version of the direct algorithm for symmetric functions in [8]. In case we do not

have a good initial approximation, the k-means algorithm should be restarted with

various random initializations, as proposed by [15]. A very good approximate glob-

ally optimal partition can be obtained by using some of the incremental algorithms

as different modifications of the global k-means method [2], [3], [16].

2.2. Smoothed k-means algorithm (smoka). The smoothed k-means algo-

rithm (smoka) has appeared relatively recently in literature as a natural generaliza-

tion of the well-known Weiszfeld algorithm for the Fermat-Weber location problem
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(see e.g. [10]). In the sequel, we will briefly describe this algorithm and give its most

important properties. Consider the optimization problem

(2.1) min
z1,...,zk∈Rn

F (z1, . . . , zk), F (z1, . . . , zk) =
m∑

i=1

min
16j6k

d(zj , ai).

Since every vector r = (r1, . . . , rn) ∈ R
n satisfies (see e.g. [12])

max
16j6k

rj = lim
ε→0+

ε ln

n∑

j=1

exp
(rj
ε

)
,

and min
16j6k

rj = − max
16j6k

(−rj), the functional (2.1) can be approximated by

(2.2) Fε(z1, . . . , zk) = −ε

m∑

i=1

ln

k∑

j=1

e−d(zj ,ai)/ε,

and instead of solving the non-differentiable optimization problem (2.1), we can solve

the following differentiable optimization problem (see [12], [23])

(2.3) min
z1,...,zk∈Rn

Fε(z1, . . . , zk).

Let us note that θ̂ := (ĉ1, . . . , ĉk) ∈ R
nk is a stationary point of the functional Fε

if and only if for every j ∈ J we have

(2.4) ĉj =
1

∑m
l=1 ω

(j)
l (ε)

m∑

i=1

ω
(j)
i (ε)ai, where ω

(j)
i (ε) =

e−d(ĉj,ai)/ε

∑k
s=1 e

−d(ĉs,ai)/ε
, i ∈ I.

Therefore, the stationary point θ̂ := (ĉ1, . . . , ĉk) ∈ R
nk of the functional Fε can be

searched for by the iterative procedure for t = 0, 1, . . .

(2.5) c
(t+1)
j =

1
∑m

l=1 ω
(j)
l (ε)

m∑

i=1

ω
(j)
i (ε)ai, where ω

(j)
i (ε) =

e−d(c
(t)
j

,ai)/ε

∑k
s=1 e

−d(c
(t)
s ,ai)/ε

,

whereby θ(0) = (c
(0)
1 , . . . , c

(0)
k ) ∈ R

nk is some initial approximation—initial assign-

ment points. In every step, the iterative procedure (2.5) determines the next approx-

imation of the j-th component of the vectors of centers θ as a weighted arithmetic

mean of data ai ∈ A with weights ω
(j)
i (ε).

From the construction it can be seen that this algorithm is numerically very de-

manding and practically it cannot compete with the k-means algorithm.
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The properties of the iterative procedure (2.5) are given in [12], [23], and sufficient

conditions under which the functional Fε at the stationary point attains its local

minimum are given in [22]. Specially, in [19], this problem is considered for an

l1-metric function.

smoka also appears to be a special case of fuzzy C-means where each data point

has a degree of belonging to clusters, rather than belonging completely to just one

cluster [25].

2.3. Divided k-means algorithm (dkm). In this section, we will analyze prop-

erties of weighted functions ε 7→ ω
(j)
i (ε), i ∈ I, j ∈ J , used in the iterative procedure

(2.5) and define a new algorithm for searching for the locally optimal partition.

Suppose we are given a set of data A and a set of mutually different assignment

points z1, . . . , zk. As already mentioned in Section 2.2, the smoka algorithm is

determined by the iterative procedure (2.5), which in every step of the given assign-

ment points defines new centers as weighted arithmetical means of data ai ∈ A with

weights ω
(j)
i (ε) given by

(2.6) ω
(j)
i (ε) =

e−d(zj,ai)/ε

∑k
s=1 e

−d(zs,ai)/ε
, i ∈ I, j ∈ J.

Note that weights (2.6) satisfy the following simple conditions:

0 < ω
(j)
i (ε) < 1,(2.7)

k∑

j=1

ω
(j)
i (ε) = 1.(2.8)

Specially, if k = |J | = 1, then ω
(1)
i (ε) = 1 for every i ∈ I.

Furthermore, for every ai ∈ A define a set of indices of the nearest assignment

points

(2.9) Ui = {j ∈ J : d(zj , ai) 6 d(zs, ai), ∀ s ∈ J}.

Note that the set Ui is unempty, and that it can be a single member set (if ai /∈

V [z1, . . . , zk]) or a multi-member set (if ai ∈ V [z1, . . . , zk]). If for every ai ∈ A the set

Ui is a single member set, then the corresponding partition Π = {π(z1), . . . , π(zk)} is

said to be a well-separated partition, i.e. the partition Π is said to be a well-separated

partition if and only if the following holds:

(2.10) (∀ ai ∈ A)(∃ j ∈ J) d(zj , ai) < d(zs, ai), ∀ s ∈ J \ {j}.
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R em a r k 2.1. An element ai ∈ A occurs rarely on the Voronoi diagram, but an

element ai ∈ A may very often occur in the immediate neighborhood of the Voronoi

diagram. The following algorithm for each ai ∈ A determines the set Ui defined by

(2.9) with accuracy of up to the machine epsilon εM (see e.g. [4]).

1. Ui = ∅; dmin := min
s∈J

d(zs, ai);

2. for j = 1, . . . , k do

3. ∆j := d(zj , ai)− dmin;

4. If ∆j < ϕ(εM ), Ui = Ui ∪ {j}

5. end for

where ϕ(εM ) is a calculation error due to machine accuracy.

The following lemma gives behavior of weights (2.6) depending on sets Ui.

Lemma 2.1. Let A = {ai : i ∈ I} be a set of data points, and z1, . . . , zk, k > 1,

a set of assignment points. Let Ui, |Ui| = µi 6 k, be the set of indices associated

with the element ai ∈ A by (2.9).

(i) If µi < k, then the functions given by (2.6) for every i ∈ I satisfy

v
(j)
i := lim

ε→0+
ω
(j)
i (ε) =





1

µi
, if j ∈ Ui

0, if j ∈ J \ Ui,

(2.11)

∑

j∈Ui

v
(j)
i =

∑

j∈Ui

1

µi
= 1,(2.12)

whereby the functions ε 7→ ω
(r)
i (ε), r ∈ Ui, are strictly monotonically decreasing

on the interval 〈0,∞〉;

(ii) If µi = k, then for every j ∈ J and every ε ∈ 〈0,∞〉 the functions ε 7→ ω
(j)
i (ε) =

1/k are constants.

P r o o f. (i) Let us choose r ∈ Ui and denote the function ε 7→ ω
(j)
i (ε) given by

(2.6) as

(2.13) ω
(j)
i (ε) =





1

µi +
∑

s∈J\Ui
e−(1/ε)(d(zs,ai)−d(zr,ai))

if j ∈ Ui,

e−(1/ε)(d(zj ,ai)−d(zr,ai))

µi +
∑

s∈J\Ui
e−(1/ε)(d(zs,ai)−d(zr,ai))

if j ∈ J \ Ui.

Since 1 < k < µi, it holds that J \Ui 6= ∅. Hence, in accordance with definition (2.9)

of the set Ui, for every r ∈ Ui and every s ∈ J \Ui we have that d(zs, ai) > d(zr, ai).

Therefore, (2.11) and (2.12) follow directly from (2.13).
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Further, for r ∈ Ui, the derivative of the function ε 7→ ω
(r)
i (ε) given by (2.6) can

be written as

d

dε
(ω

(r)
i (ε)) = −

1

ε2
e−d(zr,ai)/ε

( k∑

s=1

e−d(zs,ai)/ε

)−2

(2.14)

×
k∑

s=1

e−d(zs,ai)/ε(d(zs, ai)− d(zr, ai)).

Since d(zs, ai) > d(zr, ai) holds for every s ∈ J \ Ui, from (2.14) it follows that
d
dε (ω

(r)
i (ε)) < 0. Hence, functions ε 7→ ω

(r)
i (ε) for all r ∈ Ui are strictly monotonically

decreasing on the interval 〈0,∞〉.

(ii) If µi = k, then the data ai is situated on the border of all clusters so that

ω
(r)
i (ε) = 1/k holds for every ε ∈ 〈0,∞〉, from where the assertion follows. �

Note that the weights v
(j)
i defined by (2.11) in this way retain the property (1.7),

whereas the property w
(j)
i ∈ {0, 1}, i ∈ I, j ∈ J , relaxes into a more general form

v
(j)
i ∈ {0, 1, 1/2, . . . , 1/k} ⊂ [0, 1], i ∈ I, j ∈ J .

By modifying the k-means algorithm (Algorithm 1) such that the weights w
(j)
i

are redefined according to (2.11), we obtain a new algorithm that will be called the

divided k-means algorithm (dkm). In this way, the effect will be such as if the data

ai ∈ A that appeared in the Voronoi diagram V [z1, . . . , zk] was evenly distributed to

all clusters whose borders it is located on. If in every step of the k-means algorithm

no data ai ∈ A appear in the Voronoi diagram, then the dkm algorithm becomes

a common k-means algorithm. Similarly to the k-means algorithm, such algorithm

is finite and in every step it reduces the objective function value.

Algorithm 2 (Divided k-means algorithm—dkm).

Step 0: Input 1 6 k 6 m; I = {1, . . . ,m}; J = {1, . . . , k}; A = {ai ∈ R
n : i ∈ I}.

Choose mutually different assignment points z1, . . . , zk ∈ conv(A).

Step 1: (Assignment step) For each j ∈ J define clusters π(zj) = {ai ∈ A :

d(zj , ai) 6 d(zs, ai) for all s ∈ J}.

Determine sets Ui, i ∈ I and according to (2.11) corresponding new

weights v
(j)
i .

Calculate F0 =
k∑

j=1

( m∑
i=1

v
(j)
i d(zj , ai)

)
.

Step 2: (Update step) Determine centers of clusters

cj = argmin
x∈Rn

m∑

i=1

v
(j)
i d(x, a) =

1
∑m

l=1 v
(j)
l

m∑

i=1

v
(j)
i ai, j ∈ J.

Define new clusters π(cj) = {ai ∈ A : d(cj , ai) 6 d(cs, ai) for all s ∈ J},

j ∈ J .
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Determine sets Ui, i ∈ I and according to (2.11) corresponding new

weights v
(j)
i

Calculate F1 =
k∑

j=1

( m∑
i=1

v
(j)
i d(cj , ai)

)
;

Step 3: If F1 < F0, set zj = cj for all j ∈ J and F0 = F1 and go to Step 1.

Else set c⋆j = cj for all j ∈ J and STOP.

It is obvious that
k∑

j=1

v
(j)
i = 1 holds for every i ∈ I in Step 1 and Step 2.

In contrast to the common k-means algorithm, by stopping the dkm algorithm it

is possible to get a partition such that some elements lie on the border between two

clusters, i.e. in the Voronoi diagram.

E x am p l e 2.1. Given are the data points A = {a1, . . . , a8} ⊂ R
2, where

A =
{(

57
10 ,

57
10

)
, (3, 6),

(
133
30 , 43

30

)
, (7, 3), (9, 5),

(
280
30 , 203

30

)
, (4, 8),

(
173
30 , 263

30

)}

and initial assignment points (see Figure 1a),

c
(0)
1 = (4, 4), c

(0)
2 = (8, 5), c

(0)
3 = (5, 8).

According to (2.11), we associate the weights v
(1)
i , v

(2)
i , v

(3)
i with each data point

ai ∈ A in the following way (see Figure 1a)

j i 1 2 3 4 5 6 7 8
1 1/3 1 1 0 0 0 0 0
2 1/3 0 0 1 1 1 0 0
3 1/3 0 0 0 0 0 1 1

÷

÷

÷

0

2

2

4

4

6

6

8

8

10

(a) Initial approximation

π1 π2

π3

a1

c
(0)
1

c
(0)
2

c
(0)
3

÷

÷

÷

0

2

2

4

4

6

6

8

8

10

(b) Solution

π1 π2

π3

a1

c
(0)
1

c
(0)
2

c
(0)
3

Figure 1. Divided k-means algorithm

After two iterations of the dkm algorithm we obtain locally optimal centroids (see

Figure 1b). The corresponding clusters will be denoted as pairs of elements of the
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set A with the corresponding weights

π1 =
{(

a1,
1
2

)
, (a2, 1), (a3, 1)

}
, π2 = {(a4, 1), (a5, 1), (a6, 1)},

π3 =
{(

a1,
1
2

)
, (a7, 1), (a8, 1)

}
.

Note that the element a1 takes place in the Voronoi diagram of an optimal partition.

The flow of the iterative procedure is shown in Table 1.

c
(t)
1 c

(t)
2 c

(t)
3 F (c

(t)
1 , c

(t)
2 , c

(t)
3 )

t = 0 (4,4) (8,5) (5,8) 30.630
t = 1 (4,4) (8.17,5) (5,8) 30.534
t = 2 (4.113, 4.113) (8.444, 4.922) (5.047, 7.847) 29.891

Table 1. Iterative procedure

3. Properties of the dkm algorithm and its connection with the

k-means algorithm

Suppose that by applying the dkm algorithm we obtained centroids c⋆1, . . . , c
⋆
k,

whereby there exists an element ai0 ∈ A lying in the Voronoi diagram V [c⋆1, . . . , c
⋆
k],

such as e.g. in Example 2.1. Let us show that then the objective function value can

be reduced so that by using the minimal distance principle we define a partition

Π̂ = {π̂1, . . . , π̂k} by which the element ai0 is completely associated with only one of

the clusters on whose edge that element lies.

Theorem 3.1. Let A = {ai ∈ R
n : i ∈ I} be a set of data points, and let

c⋆1, . . . , c
⋆
k ∈ R

n be the centroids obtained by the dkm algorithm. Let Ui, |Ui| = µi 6

k be the set of indices associated with the element ai ∈ A by (2.9).

If there exists i0 ∈ I, such that |Ui0 | > 1, then there exist ĉ1, . . . , ĉk ∈ R
n such

that

(3.1) F (ĉ1, . . . , ĉk) :=

m∑

i=1

min
16j6k

d(ĉj , ai) 6 F (c⋆1, . . . , c
⋆
k).

P r o o f. Let us notice that for given c⋆1, . . . , c
⋆
k ∈ R

n and v
(j)
i ∈ [0, 1] given

by (2.11), there always exists w
(j)
i ∈ {0, 1},

k∑
j=1

w
(j)
i = 1, such that

F (c⋆1, . . . , c
⋆
k) =

m∑

i=1

k∑

j=1

v
(j)
i d(c⋆j , ai) >

m∑

i=1

min
16j6k

d(c⋆j , ai) =

m∑

i=1

k∑

j=1

w
(j)
i d(c⋆j , ai)

>

k∑

j=1

(
min
x∈Rn

m∑

i=1

w
(j)
i d(x, ai)

)
=

m∑

i=1

k∑

j=1

w
(j)
i d(ĉj , ai) = F̂ (ĉ1, . . . , ĉk),
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whereby

ĉj = argmin
x∈Rn

m∑

i=1

w
(j)
i d(x, ai), j ∈ J.

�

The following example shows how a better locally optimal partition can be found

by means of an improved dkm algorithm based upon Theorem 3.1 (in the sequel

a modified dkm algorithm) in relation to a locally optimal partition obtained by the

k-means algorithm.

E x am p l e 3.1. By applying the dkm algorithm to the data from Example 2.1

we used a locally optimal partition

π1 = {(a1,
1
2 ), (a2, 1), (a3, 1)}, π2 = {(a4, 1), (a5, 1), (a6, 1)},

π3 = {(a1,
1
2 ), (a7, 1), (a8, 1)}.

The element a1 that appears in the Voronoi diagram, is divided into clusters π1 and

π3 (see Figure 1b), attaining in this way the objective function value F
⋆ = 29.8908.

If the element a1 is associated with the cluster π1 (Figure 2a), we obtain new cen-

ters ĉi and a smaller objective function value of 28.8419 (Correction 1). If the same

element a1 is associated with the cluster π3 (Figure 2b), we obtain new centroids c̃i
and the same smaller objective function value 28.8419 (Correction 2). Results ob-

tained in this way are compared with the results obtained by the k-means algorithm

(see Table 2). With the same initial assignment points c
(0)
i , the k-means algorithm

gives a weaker locally optimal partition

π1 = {a2, a3}, π2 = {a1, a4, a5, a6}, π3 = {a7, a8},

with centroids c̄i (see Figure 2c). Hence, application of the modified dkm algorithm

can give better results in comparison with the k-means algorithm.
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Figure 2. Locally optimal partitions
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Centroids Objective function value

dkm (4.113, 4.113) (8.444, 4.922) (5.047, 7.847) 29.891
Correction 1 (4.378, 4.378) (8.444, 4.922) (4.883, 8.383) 28.842
Correction 2 (3.717, 3.717) (8.444, 4.922) (5.156, 7.489) 28.842
k-means (3.717, 3.717) (7.758, 5.117) (4.883, 8.383) 29.700

Table 2. Iterative procedure

Association of the data point a1 with the cluster π1 or π3 yields lower, but mutu-

ally equal objective function values. The following sample example shows that the

objective function value can differ depending on the choice of the cluster with which

the data point from the Voronoi diagram is associated.

E x am p l e 3.2. Given are the data points A = {1, 2, 6, 11.4} ⊂ R. Partition

Π = {π1, π2}, π1 = {(1, 1), (2, 1), (6, 12 )}, π2 = {(6, 1
2 ), (11.4, 1)},

is locally optimal in terms of the dkm algorithm, whereby the corresponding locally

optimal centroids are c∗1 = 2.4 and c∗2 = 8.6, and the objective function value is

F ∗ = 18.32. If the data point 6 is associated entirely with the cluster π1, we obtain

new centroids ĉ1 = 3 and ĉ2 = 11.4 and the objective function value F̂ = 14. On the

other hand, if the data point 6 is associated entirely with the cluster π2, we obtain

new centroids c̃1 = 1.5 and c̃2 = 8.7 and a higher objective function value F̃ = 15.08.

4. Numerical experiments

The next numerical experiment shows that it is possible to construct a set of data

with which for a specially given initial approximation the k-means algorithm gives a

significantly worse partition than dkm, i.e. smoka. The example is constructed so

that part of data belongs to the Voronoi diagram of the initial assignment points.

Many numerical experiments show that by choosing some other initial approximation

all three algorithms yield the same though a higher value of the objective function.

E x am p l e 4.1. Let us choose three points c1 = (3.9, 4), c2 = (7.8, 12), c3 =

(15, 4.9) ∈ R
2. In the neighborhood of each point ci, 40 random points from

N (ci, σ
2
I) are generated, where I is the identity matrix. Also, on the Voronoi

diagram V [c1, c2, c3], 15 random points from uniform distribution are generated.

In this way, the set A = {ai ∈ R
2 : i = 1, . . . ,m} with m = 135 points is de-

fined (see Figure 3a). By applying the k-means algorithm, the dkm algorithm and

smoka with initial assignment points c1, c2, c3 we obtain locally optimal partitions,

and the corresponding objective function values. This experiment was repeated for

σ2 = 0.1, 0.5, 1, 1.5, 2.
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As expected, smoka and the dkm algorithm yield the same locally optimal parti-

tions that are better than the ones obtained by applying the k-means algorithm (see

Table 3). Figure 3b and Figure 3c show the k-means locally optimal partition and

the dkm/smoka locally optimal partition, respectively.
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(a) 135 randomly
generated points

÷

÷

÷
5

5

10

10

15

15 20

(b) locally optimal
k-means partition
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÷
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(c) locally optimal
dkm/smoka partition

Figure 3. Locally optimal partitions for randomly generated points with σ2 = 2.0

F ⋆ σ2 = 0.1 σ2 = 0.5 σ2 = 1. σ2 = 1.5 σ2 = 2.0

k-means 485.29 521.27 681.90 1027.77 1211.71
dkm 485.29 519.66 667.93 1007.74 1194.17

smoka (ε = 0.005) 485.29 519.66 667.93 1007.74 1194.17

Table 3. Objective function values

For the purpose of illustrating the efficiency of the dkm algorithm in relation to

smoka, we will carry out the following simple numerical experiment motivated by

the example from [19].

E x am p l e 4.2. In a hypercube H = [0, 1000]n we choose k points c1, . . . , ck ∈ H

at random. The data set A containing m randomly chosen points from the hyper-

cube H is generated in the following way:

(i) let i1, . . . , ik be randomly generated integers such that
k∑

s=1
is = m;

(ii) in the neighborhood of the center cs we generate a set As, which consists of is

random points from N (cs, 5I), where I is the identity matrix;

(iii) A =
k⋃

s=1
As.

We are going to split the set A into k clusters by applying smoka for ε = 0.005 and

the dkm algorithm. The experiment will be performed by taking n ∈ {2, 5, 10}, m ∈

{1000, 5000, 10000, 20000}, and k ∈ {5, 10, 20}. Applying the DIRECT algorithm [5],

403



[11] for solving global optimization problem (1.5) with a relatively low accuracy, we

obtain a solution that will be used as an initial approximation for both algorithms.

Figure 4 shows the movement of the CPU times in seconds for each running de-

pending on the number of data points for smoka and dkm on a Pentium M proces-

sor with 1.4GHz, respectively. We can notice that the CPU execution time of the

dkm algorithm is significantly shorter than the corresponding CPU time required by

smoka. Let us also mention that in all the experiments the values of the objective

function in the centers obtained by dkm and smoka differed in less than 10−14.
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Figure 4. CPU time (in seconds) necessary for the execution of smoka and dkm algorithm

Hence, the dkm algorithm gives the same locally optimal partition as smoka. If

there are no data points on the Voronoi diagram V [c⋆1, . . . , c
⋆
k], this partition coincides

with the k-means locally optimal partition. Otherwise this partition can be improved

according to Theorem 3.1. The efficiency measured by the necessary CPU-time is

significantly higher by the dkm algorithm than by smoka.
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5. Conclusions

In this paper, our aim was to point out the mathematical background of the well-

known k-means algorithm for searching for the locally optimal partition of the set

A = {ai ∈ R
n : i = 1, . . . ,m}. It has been shown that the k-means algorithm is

directly connected with the limit case of another known algorithm for searching for

the locally optimal partition, i.e. smoka. In this sense, a new dkm algorithm is

constructed as a limit case of smoka, which differs from the k-means algorithm only

in case that during the iterative process some data points appear in the Voronoi

diagram. It has been shown that in this case the results can still be improved. In

this way, the dkm algorithm gives an improvement of the k-means algorithm. We

should thereby stress its efficiency measured by the necessary CPU-time.

Taking into account that the smoka algorithm came into existence as a natural

generalization of the well-known Weiszfeld algorithm for solving the Fermat-Weber

location problem [10] for the case of applying least squares distance-like functions,

cases when some other distance-like functions are applied could be treated in a similar

way [14].
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