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Abstract. Karátson and Korotov developed a sharp upper global a posteriori error estima-
tor for a large class of nonlinear problems of elliptic type, see J.Karátson, S.Korotov (2009).
The goal of this paper is to check its numerical performance, and to demonstrate the effi-
ciency and accuracy of this estimator on the base of quasilinear elliptic equations of the sec-
ond order. The focus will be on the technical and numerical aspects and on the components
of the error estimation, especially on the adequate solution of the involved auxiliary problem.
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1. Introduction

There is a huge number of numerical methods which are developed to solve math-

ematical models describing various physical, chemical, biological and other phenom-

ena. A very important issue is to quantify the accuracy of the numerical approx-

imations, i.e., the error estimation of the numerical methods is a crucial point of

modeling.

In [12], Karátson and Korotov have developed a sharp upper global a posteriori

error estimator for nonlinear elliptic problems, which is perfectly applicable in a finite

element framework. Both second and fourth order equations, and also systems of

nonlinear elliptic equations are fitting into the theory. These ideas were generalized

from a preceding paper covering the same type of error estimation but for linear ellip-

tic problems, see [18]. The estimator is independent of the iterative method which is

used to solve the problem, and it is sharp in the sense that by the investment of “com-
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putation time” we can get as close to the true error as we want. This technique also

allows to develop an adaptive method where the errors over some subdomains (e.g. el-

ements of the mesh) are estimated similarly defining elements to refine or coarse. A

general reference to error estimation in finite element methods is [3], references on

a posteriori estimates for nonlinear problems are [18], [17], duality theory based

estimates can be found in [7], [8] deals with functional type error estimation for el-

liptic problems, on global posteriori error estimation for convection-reaction-diffusion

problems the reader is referred to [14], while detailed monographs are [1], [19].

This paper is devoted to the demonstration of the efficiency and accuracy of this es-

timator with the aid of quasilinear second order elliptic problems. Besides the numer-

ical solution of the nonlinear problem, the estimator involves a smoothing operator,

solution of an auxiliary problem on a refined mesh, and calculation of various norms.

We are focusing on the technical and numerical aspects of the error estimation: the

smoothing itself, the assembly and solution of the refined auxiliary problem (some

nested finite element spaces are also involved), fast and accurate norm calculation,

and we also briefly discuss the solution of the test problem: the used iterative meth-

ods and matrix assemblies. The whole text is written in a finite element framework.

This paper is organized as follows. In Section 2 we introduce the class of elliptic

problems which we later use in the numerical tests. We give its weak form, and also

briefly discuss its solvability in Sobolev spaces. The corresponding error functional is

also introduced, just as some other notation. Section 3 gives a short introduction to

the error estimator which is in the center of our investigation. The section ends with

a very important remark about the property which gives the estimator its strength,

namely how sharpness can be achieved. One of the main parts of this paper is

Section 4, which covers the nonlinear solver, the components of the estimator, and

also related issues are discussed. Section 5 is devoted to the numerical results, i.e.,

we consider a given elliptic test problem, we numerically solve the problem, the

constants from the estimator are also calculated, and the results of our numerical

experiments are displayed in figures and tables.

2. The model problem and notation

In the original paper of Karátson and Korotov [12], the upper error estimator is

developed for a very large class of nonlinear problems. Here we focus on the class

of second order quasilinear elliptic partial differential equations (PDEs), namely the

problems of the form:

(2.1)

{
− div(g(|∇u|2)∇u) = b in Ω,

u|∂Ω = 0,
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where Ω ⊂ R
d is a bounded domain with sufficiently smooth boundary, the r.h.s. b is

a real-valued function over Ω. We introduce the notation f(ξ) := g(|ξ|2)ξ for every

ξ ∈ R
d, i.e., our equation reads − div f(∇u) = b.

This problem will be weakly solved by means of a finite element based iterative

method over the space H1
0 (Ω), hence we introduce the weak form of (2.1) including

a nonlinear operator F :

(2.2) 〈F (u), v〉 :=

∫

Ω

g(|∇u|2)∇u · ∇v =

∫

Ω

bv, v ∈ H1
0 (Ω),

where 〈u, v〉 :=
∫
Ω
∇u · ∇v denotes the usual inner product (inducing the norm ‖·‖)

on H1
0 (Ω). An easy computation shows that the Gâteaux derivative of this operator

exists for arbitrary u ∈ H1
0 (Ω) and it is

(2.3) 〈F ′(u)p, v〉 =

∫

Ω

(g(|∇u|2)∇p · ∇v + 2g′(|∇u|2)(∇u · ∇p)(∇u · ∇v)),

p, v ∈ H1
0 (Ω).

The weak solution of this problem is denoted by u∗, the existence and uniqueness

of u∗ is guaranteed by the following theorem under suitable assumptions on the

problem.

Let the following conditions hold:

(i) The domain Ω ⊂ R
d is bounded, and it is C2-diffeomorphic to some convex set.

(ii) The function f is C1(Rd,Rd) and the Jacobian ∂f(η)/∂η is symmetric, uni-

formly bounded and positive, i.e., its eigenvalues can be bounded by some

0 < m 6 M for arbitrary η ∈ R
d.

(iii) b ∈ L2(Ω).

Then the operator F ′ is uniformly elliptic, i.e., it can be spectrally bounded by

constants 0 < m 6 M and this implies that the problem has a unique weak solution

u∗ ∈ H1
0 (Ω).

For more details see [5].

The error functional of this problem is non-quadratic, namely, the error corre-

sponding to arbitrary function u from H1
0 (Ω) is measured by

(2.4) E(u) := 〈F (u)− F (u∗), u− u∗〉 =

∫

Ω

(f(∇u)− f(∇u∗)) · (∇u −∇u∗),

and hence we have

m‖u− u∗‖2 6 E(u) ∀u ∈ H1
0 (Ω).

Since the unknown solution u∗ is involved in the computation of this functional, we

would like to somehow estimate E. Our goal is to numerically illustrate the sharpness
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of a particular estimator of the error functional (which is detailed, besides [12], later

in Section 3), and also to show its efficiency, with the aid of problems having the

form (2.1) (for the numerical experiments see Section 5).

R em a r k 2.1. We point out here that the test problem could be more general,

e.g., other types of boundary conditions (Neumann, mixed, etc.), general nonlinear

problems, i.e., − div(f(x,∇u)) could be allowed, as long as it fits into the framework

of [12], see the assumptions above. Nevertheless, if we considered more general

problems it would not give more insight into the behaviour of the estimator, but it

would cause many technical problems elsewhere.

3. The a posteriori error estimator

In this section we briefly recall the estimator itself, the theoretical and practical

background of it, but we do not go into details, for a full description the reader is

referred to [12].

Let us assume that the nonlinear problem F (u) = b is given and has a unique weak

solution u∗, with the corresponding error functional E(u) = 〈F (u)− F (u∗), u− u∗〉,

where the operator F satisfies the conditions (i)–(iii) from the previous section and

it also satisfies the following:

(iv) f ′ : R
d → R

d×d (i.e. F ′ : W 1,∞(Ω) → B(H1
0 (Ω))) is Lipschitz continuous with

constant L.

(The original abstract assumptions are the ones listed in ([12], Assumptions 3.2

and 3.3)).

Then the following theorem holds:

Theorem 3.1 ([12]). Let uh ∈ W 1,∞(Ω) be an approximate solution of F (u) = b.

Then for arbitrary z ∈ L∞(Ω)d such that z ∈ H(div) := {z ∈ L2(Ω)d : div z ∈

L2(Ω)} and arbitrary w ∈ H1
0 (Ω),

(3.1) E(uh) 6 EST(uh; z, w)

:=
(
m−1/2cΩ‖div f(z) + b‖L2(Ω) +

L

2
m−3/2D(uh; z, w)

+
(
〈f(∇uh)− f(z), ∇uh − z〉L2(Ω)d

+
L

2m
D(uh; z, w)‖∇uh − z‖L2(Ω)d

)1/2)2
,

where

(3.2) D(uh; z, w) := (M‖z−∇w‖L2(Ω)d + cΩ‖ div f(z) + b‖L2(Ω))‖∇uh − z‖L∞(Ω)d ,
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where M > m > 0 are the spectral bounds of F ′(u), L is its Lipschitz constant,

and cΩ > 0 is the constant appearing in the Poincaré-Friedrichs inequality (it only

depends on the domain Ω).

The subscript in uh only means that this is an approximate solution, which came

from an arbitrary solution technique. We point out here that clearly the estimate

(3.1) is sharp for uh = u∗, z∗ = ∇u∗, and the corresponding w is u∗, due to ([12],

Prop. 4.1).

We now turn to the practical aspects of this a posteriori estimator.

Let Vh be a finite element subspace of H
1
0 (Ω) and let uh ∈ Vh be the corresponding

FEM approximation of u∗, the exact solution of our problem (2.2). In the usual

finite element framework, uh is a continuous piecewise polynomial function, hence

uh ∈ W 1,∞(Ω). If we choose z to be any continuous piecewise polynomial function,

e.g. a function from Vh, and arbitrary w ∈ H1
0 (Ω), then z ∈ L∞(Ω)d ∩H(div), and

all of the assumptions of the above theorem are fulfilled.

R em a r k 3.1. The optimal parameters in EST(uh; ·, ·), corresponding to the

given numerical solution uh, will be denoted by a superscript ∗, i.e., z
∗, w∗. Using

this notation, we would like to compute EST(uh; z
∗, w∗).

The next paragraph is devoted to the determination of the optimal z∗ and w∗

in EST(uh; z, w): By the above properties, the optimal value of the parameter z
∗

should be a sufficiently accurate approximation of the gradient of u∗. By the sugges-

tions made in [12] we use an averaging operator Gh, introduced in ([9], pp. 146–150).

Namely we replace the unknown function ∇u∗ by the averaged gradient of the ap-

proximate solution Gh(∇uh), since in the case of linear elements Gh(∇uh) is closer

to ∇u∗ than ∇uh, precisely we have

(3.3) ‖∇u∗ −∇uh‖ = o(h), while ‖∇u∗ −Gh(∇uh)‖ = o(h2),

see [9].

Then we define

z∗ := Gh(∇uh).

Finally, the last missing parameter w∗ ∈ H1
0 (Ω) is defined as the weak solution of

the linear auxiliary equation:

(3.4)

{
−∆w = − div z∗ in Ω,

w|∂Ω = 0.

By a solution of this problem we always mean a weak solution.

If pure Dirichlet boundary conditions are posed, then cΩ 6 diam(Ω)d, both for

this special case and for a more general case we refer to [20] or [16].

493



R em a r k 3.2. The following property of the estimator is crucial. For piecewise

linear finite elements the numerical integration of the right-hand side is very easy,

therefore the solution of the auxiliary problem is also very easy, to be precise it

requires considerably less computation than the solution of the nonlinear problem.

Hence, if we solve it on a much finer mesh, we can increase the efficiency of the

estimator easily and quickly. This property is one of the strengths of this estimator,

it will play a very important role later on.

4. Numerical aspects of the estimator and the tests

This section is devoted to the description of the numerical aspects of both the

nonlinear solver and the estimator from Section 3 in detail. We also discuss some

particular parts of them, concentrating on the numerical aspects and on the efficiency

of the applied techniques.

4.1. Solving the nonlinear problem. We numerically solve the problem (2.2)

by finite element based iterative methods: a quasi-Newton method with a piecewise

constant but stepwise variable preconditioner in one dimension, and a Newton’s

method in two dimensions. The idea behind using not just one nonlinear solver is to

show that the estimator works well with various nonlinear solvers.

First we define a triangulation of our domain Ω, and the corresponding finite

element subspace Vh ⊂ H1
0 (Ω), consisting of the piecewise linear functions vanishing

on the boundary ∂Ω.

The first of our two iterative solvers is a quasi-Newton method:





(a) u0 ≡ 0;

(b) for a fixed n ∈ N, if un ∈ Vh is known then

pn ∈ Vh is the solution of the problem:∫

Ω

ωn(x)∇pn · ∇v = −

∫

Ω

g(∇|un|
2)∇un · ∇v +

∫

Ω

bv ∀ v ∈ Vh;

(c) un+1 := un + τn pn,

where τn is a damping parameter and the function ωn piecewise constantly approxi-

mates the nonlinear term in the derivative F ′. In our case the domain Ω is usually

decomposed into several (usually less than five) parts, where the function ωn is con-

stant.
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The second solver is a damped inexact Newton method:





(a) u0 ≡ 0;

(b) for a fixed n ∈ N, if un ∈ Vh is known then

pn ∈ Vh is the solution of the problem:∫
Ω(g(|∇un|

2)∇pn · ∇v + 2g′(|∇un|
2)(∇un · ∇pn)(∇un · ∇v))

= −
∫
Ω g(∇|un|

2)∇un · ∇v +
∫
Ω bv ∀ v ∈ Vh;

(c) un+1 := un + τn pn,

where τn is again a damping parameter.

The first method was developed by Karátson and Faragó in [11], and both of

these methods have been intensively investigated, see e.g. [5], [15], [13], or generally

on nonlinear methods and Newton-type methods see [21] and [4], respectively.

Throughout the paper, all of the finite element related objects, i.e., solving the

nonlinear and the auxiliary equations, the computation of norms, are in accordance

with the well known element-by-element assembly techniques combined with the use

of a reference element.

R em a r k 4.1. During these algorithms we have to compute the gradient of a

piecewise polynomial function from Vh, which can be done by a little modification

of the general matrix assembly idea. To be precise, going over the nodes and using

sufficient order of finite differences yields an exact derivative of v ∈ Vh.

4.2. Fast and accurate assembly of the stiffness matrix S. The crucial step

in the assembly of the linear auxiliary equations is the computation of the integrals

(or matrix elements):
∫

Ω

g(|∇un|
2)∇pn · ∇φk +

∫

Ω

2g′(|∇un|
2)(∇un · ∇pn)(∇un · ∇φk),

where un ∈ Vh is obtained as before, and the unknown function is pn =
n(h)∑
j=1

cjφj , for

every basis function φk, k = 1, 2, . . . , n(h) (here n(h) denotes the number of basis

functions spanning the FEM subspace Vh, this notation will be used later as well).

We have to compute the matrix in each iterative step, hence the assembly needs to

be very fast. The elements of the matrix S are the following:

Skj =

∫

Ω

g(|∇un|
2)∇φj · ∇φk(4.1)

+

∫

Ω

2g′(|∇un|
2)(∇un · ∇φj)(∇un · ∇φk)(4.2)

for j, k = 1, 2, . . . , n(h).

495



We formulate our approach and result in the following proposition.

Proposition 4.1. For a given uh ∈ Vh the matrix S can be assembled as follows:

Skj =
∑

T∈Th

(g(|∇un|
2))|T

∫

T

(∂xφj∂xφk + ∂yφj∂yφk)

+
∑

T∈Th

(2g′(|∇un|
2)(∂xun)

2)|T

∫

T

∂xφj∂xφk

+
∑

T∈Th

(2g′(|∇un|
2)(∂xun∂yun))|T

∫

T

(∂xφj∂yφk + ∂yφj∂xφk)

+
∑

T∈Th

(2g′(|∇un|
2)(∂yun)

2)|T

∫

T

∂yφj∂yφk,

where Th is a triangulation of the domain. Furthermore, the integrals over the

triangles T ∈ Th can be expressed by integrals over the reference triangle T0 and the

basis functions ϕ over it, e.g.,

∫

T

∂xφj∂xφk = c211

∫

T0

∂xϕj∂xϕk + c11c21

∫

T0

(∂xϕj∂yϕk + ∂yϕj∂xϕk)

+ c221

∫

T0

∂yϕj∂yϕk.

The other three integrals have an analogous form. Finally, the integrals over the

reference element T0 can be exactly calculated in advance.

P r o o f. As un ∈ Vh is a continuous piecewise linear function, its gradient is a

piecewise constant function. To achieve the goal posed in the title of this subsection,

we will highly exploit this fact. We will detail our approach just for the second term

(4.2), the same works for the other one too.

At first let us just concentrate on the multiplication:

(( ∂xun

∂yun

)
·
( ∂xφj

∂yφj

))(( ∂xun

∂yun

)
·
( ∂xφk

∂yφk

))

= (∂xun∂xφj + ∂yun∂yφj)(∂xun∂xφk + ∂yun∂yφk)

= (∂xun)
2∂xφj∂xφk + (∂xun∂yun)(∂xφj∂yφk + ∂yφj∂xφk)

+ (∂yun)
2∂yφj∂yφk.

The other term (4.1) has a similar, but a bit simpler structure, therefore the above

idea can be easily adapted.
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Returning back to the original integral form of the stiffness matrix and using the

above formulae, we end up at

Skj =

∫

Ω

g(|∇un|
2)∇φj · ∇φk +

∫

Ω

2g′(|∇un|
2)(∇un · ∇φj)(∇un · ∇φk)

=

∫

Ω

(g(|∇un|
2))(∂xφj∂xφk + ∂yφj∂yφk) +

∫

Ω

(2g′(|∇un|
2)(∂xun)

2)∂xφj∂xφk

+

∫

Ω

(2g′(|∇un|
2)(∂xun∂yun))(∂xφj∂yφk + ∂yφj∂xφk)

+

∫

Ω

(2g′(|∇un|
2)(∂yun)

2)∂yφj∂yφk,

where the collected terms (in brackets) are constant over each triangle T of our

mesh Th.

This allows us to compute our matrix S as follows.

Skj =

∫

Ω

g(|∇un|
2)∇φj · ∇φk +

∫

Ω

2g′(|∇un|
2)(∇un · ∇φj)(∇un · ∇φk)

=
∑

T∈Th

(g(|∇un|
2))|T

∫

T

(∂xφj∂xφk + ∂yφj∂yφk)

+
∑

T∈Th

(2g′(|∇un|
2)(∂xun)

2)|T

∫

T

∂xφj∂xφk

+
∑

T∈Th

(2g′(|∇un|
2)(∂xun∂yun))|T

∫

T

(∂xφj∂yφk + ∂yφj∂xφk)

+
∑

T∈Th

(2g′(|∇un|
2)(∂yun)

2)|T

∫

T

∂yφj∂yφk,

where we denote by f |T the value of an arbitrary piecewise constant function f over

the element T ∈ Th. Here, as usual, the integrals of partial derivatives of the basis

functions over the elements T can be exactly calculated with the aid of the reference

triangle T0, and the basis functions ϕk.

Since this is well known, we only show this computation in the case of
∫
T
∂xφj∂xφk.

∫

T

∂xφj∂xφk =

∫

T0

∂x

(
ϕj

(
C
( x

y

)
+ b

))
∂x

(
ϕk

(
C
(x

y

)
+ b

))

=

∫

T0

(c11∂xϕj + c21∂yϕj)(c11∂xϕk + c21∂yϕk)

= c211

∫

T0

∂xϕj∂xϕk + c11c21

∫

T0

(∂xϕj∂yϕk + ∂yϕj∂xϕk)

+ c221

∫

T0

∂yϕj∂yϕk,
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where the functions ϕk are the basis functions defined on the reference element, and

C, b define the affine linear map between T and T0. These values can clearly be

calculated analytically in advance. �

The assembly of the matrices corresponding to the first method can be done in

the same way.

R em a r k 4.2. The idea of using a reference element is also very useful during

the calculation of the right-hand side integrals. We only need to transform the nodes

of a chosen quadrature rule to the triangle we are currently working on.

We also note here that in our case the integrals over the reference element were

exactly calculated with the aid of Maple.

4.3. The smoothing operator Gh. We would like to define a smoothing oper-

ator to achieve better approximation of ∇u∗. Namely, as we mentioned before in

(3.3), there exists a smoothing operator which satisfies

‖∇u∗ −Gh(∇uh)‖ = o(h2), uh ∈ Vh, u∗ ∈ H1
0 (Ω) is the solution,

instead of the usual first order estimate.

Before defining the operator Gh, we recall that Th := {Tk} are triangulations of

the domain Ω ⊂ R
d. Now we introduce the space of piecewise constant functions:

V const
h := {u : Ω → R ; u|Tk

= const, ∀Tk ∈ Th}.

This space is important in the sequel, since if we compute the gradient of a piecewise

linear function u ∈ Vh, then it will lie in the space (V
const
h )d, i.e., ∇ maps Vh into

(V const
h )d.

Later we would like to compare smoothed and original gradients and also apply

differential operators to them, see (3.2), therefore the smoothing operator has to map

from (V const
h )d to (Vh)

d to achieve the above goals.

In [9] an appropriate smoothing operator was introduced, defined for v ∈ (V const
h )d

as follows (and here we immediately drop the components subscript). In the nodes

of the mesh we have

(Gh(∇v))(x) :=

mt∑

j=1

wx
j∇v|Tx

j

,

where t := t(x) ∈ {1, 2, . . . , 6} is the number of triangles which contain the node

x ∈ Ω, and mt is the number of triangles T
x
j sketched in Figure 1 (we only displayed

the cases which we will need later), just as the real valued weights wx
j . Otherwise

the function is a piecewise linear interpolation over the nodes.
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x

∂Ω
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3
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−
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(A) Vertex node type 1

x

∂Ω

3

2

1

2

−

1

2

−

1

2

(B) Vertex node type 2

x

∂Ω

1

2

1

2
1

2

−

1

2

(C) Boundary node

x

1

6

1

6

1

6

1

6

1

6

1

6

(D) Inner node

Figure 1. Elements and coefficients of the smoothing operator [9].

This smoothing operator is sharp for arbitrary quadratic polynomial v. This and

the proof of estimate (3.3) can also be found in [9].

R em a r k 4.3. We mention here that in this case the operator Gh can be repre-

sented by a matrix, but we do not need it exactly, just its action over a vector. This

can be done by following the ideas of the assembly, but for the nodes. (The same

idea was mentioned in Remark 4.1, but for the gradient.)

4.4. The auxiliary problem and its solution, mesh refinement and pro-

longation. We would like to weakly solve our linear auxiliary problem

{
−∆w = − div z∗,

w|∂Ω = 0,

on a finer mesh exploiting the property of EST(·; ·, ·) from Remark 3.2, namely

(4.3)

∫

Ω

∇w · ∇v =

∫

Ω

z∗ · ∇v, v ∈ Vhf
⊂ H1

0 (Ω),

where, instead of our original triangulation Th := {Tk; k = 1, 2, . . . , n(h)} of Ω ⊂ R
N ,

we define a finer mesh Thf
:= {Tk; k = 1, 2, . . . , n(hf )}, where the ratio ̺ = h/hf
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is given, and every triangle of Th is divided into ̺2 similar triangles, these latter

ones form Thf
. The unique weak solution of (4.3), denoted by w∗, is the optimal

parameter w corresponding to uh.

Again, because of the involved norms and the easier computation of the right-hand

side of (4.3), it is convenient to use prolongation operators from multigrid theory,

especially the theory of nested finite element subspaces plays an important role here.

We briefly recall these ideas here. On the coarser mesh we still use the space Vh,

and on the finer one we use the subspace Vhf
, namely we have

Vh := span{v1, v2, . . . , vn(h)}, Vhf
:= span{vf1 , v

f
2 , . . . , v

f
n(hf )

}

of the usual linear Lagrangian basis functions. Hence, the important relation

Vh ⊂ Vhf

holds. This yields the following form of the basis functions vk ∈ Vh:

vk(x) =

n(hf )∑

j=1

βjkv
f
j (x), k = 1, 2, . . . , n(h),

which in matrix form is v(x) = β vf (x).

Now let u :=
n(h)∑
j=1

yjvj ∈ Vh, then by the above equation, we have

u(x) = yT v(x) = yT (βvf (x)) = (yf )T vf , if yf = βT y.

Hence, by βT we defined the prolongation operator P : Vh → Vhf
.

With the aid of this operator the assembly of matrices and vectors to solve (4.3) is

faster, since the standard techniques (from Proposition 4.1 and the following remark)

are applicable.

R em a r k 4.4. (i) The advantage of this approach is not just its convenience, but

mainly it is the fact that if we avoid this technique, then during the computation of

the values ∫

Ω

z∗ · ∇vfk , k = 1, 2, . . . , n(h),

we have to calculate the values of z∗ ∈ Vh in the nodes of the quadrature rule on

the finer triangles. The creation of a finer mesh (i.e., nodes and elements) is also

inevitable, but if we compute them the calculation of the prolongation operator is

nearly at no cost.

(ii) Its advantage is more significant if we use higher order finite element basis

functions, or we apply any but the standard refinement, e.g., in some adaptive hp-

FEM solvers.
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4.5. The norms in the estimator EST(·; ·, ·). The three involved norms of the

estimator from (3.1) and (3.2), namely ‖ · ‖L2(Ω), ‖ · ‖L2(Ω)d and ‖ · ‖L∞(Ω)d , and the

scalar product in L2(Ω)d can be computed by an assembly-based idea.

Suppose that we have a quadrature rule defined over the reference triangle, then

it is easy to compute the values of the basis functions in the given quadrature nodes.

By going over the triangles of our mesh one can easily compute the values of the

functions in the norm (or in the inner product).

Since one has to compute many integrals numerically, it is crucial to use a quadra-

ture rule that requires as few function evaluations as posible for both the basis

functions and others (g, b or f). This can be achieved by rules where a node and

the corresponding value can be used multiple times, e.g., points over the element’s

boundary. In our case we used a simple three-point rule using the vertices of the

triangles with weights 1/3.

5. Numerical performance of the estimator

5.1. Test problem. We consider (2.1), where Ω = (0, 1)2, and our model problem

has the source of nonlinearity g given by

(5.1) g(η) :=





1.02

1 +
√
1− η/3

, if 0 6 η 6 η0 := 2.6;

g(η0) ≈ 0.7951, if η > η0.

The reason to cut the function g is to ensure that the nonlinear operator above

is defined on H2(Ω) ∩ H1
0 (Ω). Finally, the right-hand side b is chosen so that the

exact classical solution u∗ is known precisely. For more details of this problem the

interested reader is referred to [6]. This kind of quasilinear problems is also considered

in [2].

We also need the constants appearing in the estimator, namely M , m, L and cΩ
from Theorem 3.1.

Theorem 5.1. Let Ω be the domain given above. If in addition the function g is

given as in (5.1), then the following statements are true for the operator F :

(i) There exist constants M > m > 0, independent of u and p, such that the

derivative of F satisfies

m‖p‖2 6 〈F ′(u)p, p〉 6 M‖p‖2,

where

m = g(0) = 0.51 and M = g(η0) + 2g′(η0)η0 ≈ 2.046213.
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(ii) The derivative F ′ : W 1,∞(Ω) → B(H1
0 (Ω)) is also Lipschitz continuous with

constant

L ≈ 11.935094.

(iii) The Poincaré-Friedrichs constant is cΩ = 2/π.

P r o o f. (i) Since the function g and its derivative g′ are monotonically increasing

functions on [0, η0], constants elsewhere, and both nonnegative, the lower bound

〈F ′(u)p, p〉 >

∫

Ω

(g(|∇u|2)|∇p|2 + 2g′(|∇u|2)(∇u · ∇p)2)

> g(0)‖p‖2H1

0
(Ω), u, p ∈ H1

0 (Ω)

is straightforward, i.e., m = g(0) = 0.51. The upper bound comes from the estimate

〈F ′(u)p, p〉 6

∫

Ω

(g(|∇u|2) + 2g′(|∇u|2)|∇u|2)|∇p|2 6

6 (g(η0) + M̃)‖p‖2H1

0
(Ω), u, p ∈ H1

0 (Ω),

where M̃ := max
η∈[0,η0]

|2g′(η)η|, since g′ vanishes outside the interval [0, η0]. The value

of M̃ is 2g′(η0)η0, and therefore M = g(η0) + M̃ ≈ 2.046213.

(ii) According to ([10], Section 3) the derivative of g(r2)r is Lipschitz continuous

if the following conditions hold:

0 < m 6 g(r) 6 M, 0 < m 6 (g(r2)r)′ 6 M ∀ r > 0,(5.2)

|(g(r2)r)′′| 6 L1 ∀ r > 0,(5.3)

and the Lipschitz constant is L := max{L1, 3L2}, where L2 := sup
r>0

(g(r2))′. This

shows that under the above conditions the weak operator F ′ is also Lipschitz con-

tinuous with the same constant L.

The estimates in (5.2) easily follow from (i) above, with the same bounds. To com-

pute L1 and L2 we again use the facts that g, g
′ and g′′ are monotonically increasing

non negative functions on [0, η0], hence we have

|(a(r2)r)′′| = 6a′(r2)r + 4a′′(r2)r3 6 6a′(η0)η
1/2
0 + 4a′′(η0)η

3/2
0 =: L1.

and

(a(r2))′ = 2a′(r2)r 6 2a′(η0)η
1/2
0 =: L2.
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The computed constants are

L1 ≈ 11.935094 and L2 ≈ 0.805631.

Hence, L = L1 ≈ 11.935094.

(iii) This follows from the sharp constant of Steklov’s inequality over the interval

[0, 1]. �

5.2. Numerical results. Our experiments were carried out in the following way:

⊲ The FEM discretization was done by using linear Courant elements over a (not

necessarily) uniform mesh (of squares divided into two equal triangles, as in

Figure 1).

⊲ We carried out element-by-element assembly, with the aid of a reference ele-

ment. The numerical integrations were done with a sufficient order, just as the

numerical differentiation.

⊲ The Newton-type methods were damped. We used different piecewise constant

coefficient variable preconditioners: the domain was decomposed into at most

d = 4 pieces.

⊲ The stopping criterion for the nonlinear solvers was

‖Fh(un)− bh‖H1

0
(Ω)

‖Fh(u0)− bh‖H1

0
(Ω)

< 10−10.

⊲ The code was written in Matlab and the auxiliary linear algebraic systems

were solved using the built-in solver \mldivide.

The following tables and their corresponding plots show the error functional com-

pared to the estimator, also the effectivity index is displayed, while the log-log plots

only show the values of E(.) and EST(·; ·, ·) (the true error E is marked by ∗).

The CPU times were reasonable but they are not displayed here, since our numer-

ical tests were carried out on a standard desktop computer.

5.2.1. One-dimensional case. Here we set the right-hand side function such

that our exact solution u∗ is the bubble function x(1 − x).

In Table 1 we can see the basic results, where the auxiliary problem (the one which

yields w∗) is solved on the original mesh, i.e., ̺ = 1.

According to Remark 3.2, in Tables 2 and 3 we refine our mesh by a ratio ̺ to

solve the auxiliary problem. The improving effect of this step can be nicely seen in

the tables and even better in the plots.
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h = 1/2k, k = E(uh) EST(uh, y
∗, w∗) effectivity index

1 0.055037791312483 371.914078575348410 6757.4310
2 0.013856122697177 19.345738838764426 1396.1870
3 0.003470203009080 1.329380121949488 383.0843
4 0.000867929813010 0.098033794168086 112.9513
5 0.000217006037276 0.007817070596375 36.0224

6 0.000054252981611 0.000699770435089 12.8983
7 0.000013563337394 0.000073833802861 5.4436
8 0.000003390840098 0.000009569410155 2.8221
9 0.000000847710384 0.000001531570408 1.8067
10 0.000000211927618 0.000000291727910 1.3765

Table 1. Comparison of E(uh) and EST(uh; z
∗, w∗) for the refined mesh by a ratio ̺ = 20

(1-dimensional case)

h = 1/2k, k = E(uh) EST(uh, y
∗, w∗) effectivity index

1 0.055037791312483 114.652692531208420 2083.1630
2 0.013856122697177 5.684624286593208 410.2608
3 0.003470203009080 0.405274348836577 116.7869
4 0.000867929813010 0.031888528183674 36.7409
5 0.000217006037276 0.002830004525359 13.0411
6 0.000054252981611 0.000297136298263 5.4769
7 0.000013563337394 0.000038405295416 2.8316
8 0.000003390840098 0.000006137233652 1.8099
9 0.000000847710384 0.000001168004210 1.3778
10 0.000000211927618 0.000000250505246 1.1820

Table 2. Comparison of E(uh) and EST(uh; z
∗, w∗) for the refined mesh by a ratio ̺ = 21

(1-dimensional case)

h = 1/2k, k = E(uh) EST(uh, y
∗, w∗) effectivity index

1 0.055037791312483 8.678976984913346 157.6912
2 0.013856122697177 0.277163428649300 20.0030
3 0.003470203009080 0.023957199535661 6.9037
4 0.000867929813010 0.002739424227838 3.1563
5 0.000217006037276 0.000411223495871 1.8950
6 0.000054252981611 0.000076207701695 1.4047
7 0.000013563337394 0.000016168017295 1.1920
8 0.000003390840098 0.000003707872800 1.0935
9 0.000000847710384 0.000000886810389 1.0461
10 0.000000211927618 0.000000216782162 1.0229

Table 3. Comparison of E(uh) and EST(uh; z
∗, w∗) for the refined mesh by a ratio ̺ = 24

(1-dimensional case)
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Figure 2. Log-log plot of E(uh) and EST(uh; z
∗, w∗) for different values of the mesh refine-

ment parameter ̺ (one-dimensional case)

h = 1/2k, k = E(uh) EST(uh, y
∗, w∗) effectivity index

1 0.006666023505318 0.451035483031462 67.6619
2 0.002102844038482 0.487467362953306 231.8134
3 0.000553382662118 0.071086894070267 128.4588
4 0.000140081092830 0.007876048605962 56.2249
5 0.000035128827031 0.000943996768005 26.8724
6 0.000008788992755 0.000135996305551 15.4735
7 0.000002197672335 0.000023652672057 10.7626

Table 4. Comparison of E(uh) and EST(uh; z
∗, w∗) for the refined mesh by a ratio ̺ = 20

(2-dimensional case)

5.2.2. Two-dimensional case. Switching to the two-dimensional case, our so-

lution is now u∗(x, y) = 16x(1−x)y(1− y). This time the efficiency of the estimator

can be better seen on the effectivity index in the tables. The idea of refining the

mesh of the auxiliary problem, see Remark 3.2, is more important now.

The best effectivity index in the two-dimensional case is not as good as in the

one-dimensional case, which is due to the lack of computational capacity, but we

expect the same good results for finer meshes (k = 8, 9, 10, . . .). The coarse mesh

(k 6 4) accuracy could be improved by applying a rule with more nodes, or some

composite quadrature rule over the reference triangle.
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h = 1/2k, k = E(uh) EST(uh, y
∗, w∗) effectivity index

1 0.006666023505318 0.375125295146493 56.2742
2 0.002102844038482 0.351096532462108 166.9627
3 0.000553382662118 0.048700998105800 88.0060
4 0.000140081092830 0.005456781742943 38.9544
5 0.000035128827031 0.000700434137849 19.9390

6 0.000008788992755 0.000110502057647 12.5728
7 0.000002197672335 0.000020819161520 9.4733

Table 5. Comparison of E(uh) and EST(uh; z
∗, w∗) for the refined mesh by a ratio ̺ = 21

(2-dimensional case)

h = 1/2k, k = E(uh) EST(uh, y
∗, w∗) effectivity index

1 0.006666023505318 0.337032061419479 50.5597
2 0.002102844038482 0.292017331281910 138.8678
3 0.000553382662118 0.039548543368707 71.4669
4 0.000140081092830 0.004430256762882 31.6264
5 0.000035128827031 0.000591643020265 16.8421
6 0.000008788992755 0.000098619829525 11.2208
7 0.000002197672335 0.000015934911938 7.2508

Table 6. Comparison of E(uh) and EST(uh; z
∗, w∗) for the refined mesh by a ratio ̺ = 22

(2-dimensional case)
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Figure 3. Comparison of E(uh) and EST(uh; z
∗, w∗) for different values of the mesh refine-

ment parameter ̺ (2 dimensional case)
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The first and second values in the tables are very close, since for k = 1 the mesh

has only boundary nodes, hence the FEM approximation is “very good” in this

irrelevant case due to the Dirichlet boundary conditions.

6. Conclusions

Our experiments show that this estimator cooperates well with different nonlinear

iterative solvers, and that it is indeed efficient and highly applicable for a posteriori

error estimation.

The sharpness of the estimation is in a close connection with the accuracy of the

numerical solution of the auxiliary problem (which yields the parameter w∗), to be

precise its accuracy highly depends on the applied mesh refinement.

Our experiments suggest that the sharpness of the estimator in higher dimensions

can be increased in two ways. One can raise the computational capacity or parallelize

the method, or apply a better smoothing operator, e.g., one that is sharp for higher

order polynomials, therefore decreasing the error coming from the numerical solution

of the auxiliary problem (4.3).

Another strength of the estimator, which was numerically observed, is that both

in EST and D (i.e., (3.1) and (3.2)) the dominant terms are multiplied by a factor

which can be easily decreased by refining the mesh of the auxiliary problem.

Altogether we can see that this a posteriori error estimator is both efficient and

sharp, it cooperates well with different iterative methods, and that it requires just a

few parameters to compute (the constants m, M , L and cΩ). We were also able to

demonstrate the importance of the auxiliary problem.
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