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Abstract. The purpose of this paper is to study the existence and multiplicity of a periodic
solution for the non-autonomous second-order system

%(m(t)w—?u(t)) — VF(tu(t)), ae. te0,T],
u(0) — w(T) = w(0) —a(T) =0,

A (ty) = a'(t) —a' () = L (W' (t;), i=1,2,...,N; j=1,2,...,m.

By using the least action principle and the saddle point theorem, some new existence
theorems are obtained for second-order p-Laplacian systems with or without impulse under
weak sublinear growth conditions, improving some existing results in the literature.

Keywords: second-order p-Laplacian Hamiltonian systems; impulsive effect; critical point
theory

MSC 2010: 34C25, 58E50

1. INTRODUCTION

Consider the second-order p-Laplacian system with impulsive effects

%(|u(t)|p—2u(t)) =VF(t,u(t)), ae. tecl0,T],

(1.1) 9§ w(0) — w(T) = @(0) — w(T) = 0,

A (ty) = a'(t]) —a'(ty) = Lij(u'(ty)), i=1,2,...,N; j=1,2,...,m,

This work is partially supported by the NSFC (No: 11301297, 11261020) of China,
Project funded by China Postdoctoral Science Foundation (No. 2014M552120), Scientific
Research Foundation for talents of China Three Gorges University (KJ2012B078) and
by Foundation of Hubei Educational Committee (Q20131308).
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where p > 1, T > 0,tg =0 < t; <ty < ... <ty < tme1 = T, ut) = (u'(t),

u?(t),...,uN (), Lij: R—= R (i=1,2,...,N; j = 1,2,...,m) are continuous and

F: [0,T] x RN — R satisfies the following assumption:

(A) F(t,z) is measurable in ¢ for every z € RY and continuously differentiable in
for a.e. t € [0,T], and there exist a € C(RT, RT) and b € L*([0,7],RT) such
that

[F(t,2)| < a(lz))b(t), |[VF(, )| < al]z])b(t)
for all z € RY and a.e. t € [0, 7.
For the sake of convenience, in the sequel we define A = {1,2,...,N}, B =
{1,2,...,m}.
When I;; = 0,p = 2, (1.1) degenerates to the second order Hamiltonian system

(1.2) VF@fQD, ae. t€0,T),

w(0) — w(T) = a(0) — a(T) = 0.

—N—
S
=
S~—
1

It has been proved that problem (1.2) has at least one solution by the least action
principle and the minimax methods (see [2], [7]-[9], [11], [12], [15]-[18], [20]-[22], [25],
[26]). Many solvability conditions are given, such as the coercive condition (see [2]),
the periodicity condition (see [20]), the convexity condition (see [7]), the subadditive
condition (see [15]), the bounded condition (see [8]).

When the nonlinearity VF(t, z) is bounded sublinearly, that is, there exist f,g €
LY([0,T], RT) and « € [0,1) such that

(1.3) IVE(t, z)] < f{)]]* +g(t)

for all x € RY and a.e. t € [0, 7], Tang [17] also proved the existence of solutions for
problem (1.2) when I;; = 0 under the condition

T
(1.4) lim |x|72a/ F(t,z)dt — oo,
|z =00 0
or
T
(1.5) lim |x|_2(’/ F(t,x)dt — —o0,
|z| =00 0

which generalizes Mawhin-Willem’s results under the boundedness condition (see [8]).
When « = 1, condition (1.2) reduces to the linearly bounded gradient condition,
in this case, Zhao and Wu [21], [22] also proved the existence of solutions for problem
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(1.1) under the condition

(1.6) / f(@) d1t<B

and (1.4) or (1.5) with a = 1.
However, there exists F' that satisfies neither (1.4) nor (1.5).
Let
F(t,z) = sm( )| 7/4 4 (0.6 — t)|z)>/2.

It is easy to see that

7 t 3 7 2mt T3
et < Jan() e Joar— 1o < () + o+

for all z € RY and t € [0,T], where e > 0. The above shows (1.2) holds with o = 3/4

and
=T +2). a0=1

However, F'(t,x) satisfies neither (1.4) nor (1.5). In fact,
T ot ;
|x|*2a/ F(t,z)dt = |x|*3/2/ [sm( — )| 7/4 4 (0.6T — t)|x|3/2} dt = 0172
0 0

The above example shows that it is valuable to further improve (1.4) and (1.5).

For I;; #0,i € A,j € B, there are a few papers which discussed the existence of
solution for (1.1) by variational method (see [28]). Hence, it is necessary to improve
(1.4) or (1.5) for problem (1.1).

Impulsive differential equations arising from the real world describe the dynamics
of processes in which sudden, discontinuous jumps occur. For the background, the-
ory and applications of impulsive differential equations, we refer the readers to the
monographs and some recent contributions as [1], [3], [4], [6], [13], [20], [24].

Some classical tools such as fixed point theorems in cones [1], [5], [19] or the
method of lower and upper solutions [3], [23] have been widely used to study impulsive
differential equations.

Recently, the Dirichlet and periodic boundary conditions problems with impulses
in the derivative have been studied by variational method. For general and recent
works on the critical point theory and variational methods we refer the readers to
[10], [14], [19], [27], [28]. It is a new approach to apply variational methods to the
impulsive boundary value problem (IBVP for short). All results of [10], [14], [19],
[27], [28] can be seen as generalizations of the corresponding ones for second order
ordinary differential equations. The results of this paper show that under appropriate
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conditions, system (1.1) possesses at least one periodic solution, which generalizes
some existing results in the literature. In particular, some results show that they
have relationship both with the nonlinear term F' and the impulsive terms I; to the
best of the authors’ knowledge, there is still no result in the literature.

Inspired by the above results [15], [19], [21], [22], [28], we study the existence of
solutions for problem (1.1) under weak sublinear growth conditions. Our results gen-
eralize the previous work, which seems not to have been considered in the literature.

Throughout this paper, we let ¢ € (1,00) such that 1/p+1/¢g = 1.

2. PRELIMINARIES AND THE VARIATIONAL SETTING

In this section, we recall some basic facts which will be used in the proofs of our
main results. In order to apply the critical point theory, we construct a variational
structure. With this variational structure, we can reduce the problem of finding
solutions of (1.1) to that of seeking the critical points of a corresponding functional.

Let W%’p be the Sobolev space

WP = {u: [0,T] — RY; wabsolutely continuous, u(0) = u(T), @ € LP([0,T], RV)},

which is a reflexive Banach space with the norm defined by
1/p

Jull = .0 = ( / P + )] dt)

for u € W%’p .
Let us recall that

T 1/p
|u|p—(/0 |u<t>|pdt) and [Juflso = max [u(t)].

te[0,T]

We have the following fact.
Take v € W%’p and multiply both sides of the equality

(21) S (aP2in) = VG ()

by v and integrate from 0 to 7"

/ (a(t) P~ 2at)) o(t)) dt = / (VE(, u(t)), o(t)) dt.
0 0
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The first term is now

g -2, ”1 -2,
/O<<|u<>| ) dt = Z/t (fa()P=2a(t))’, v(t)) dt

and
| iy v ar
= (a5, P2ty olEy) — (D P2, o))
- [ Gaopri. o) a
N J
= 3 ) P2 o E530) — DI () ()
- / a2, o) dr
Hence

Jj=11i=1 .,
~ O 2a(0)(0) = [ (a)Pa(0).o(e) de
0
m N 4 T
= —ZZIm(uz(tj))vz(tj)—/ (la(®) P~ 2 u(t), v(t)) dt

Combining it with (2.1), we get
m 4 4 T T
S S L ) )+ [ (aOP .0yt + [T o) de =0,
j=1 i=1
Now, we introduce a weak formulation of the problem (1.1).

Definition 2.1. We say that a function v € W%’p is a weak solution of prob-
lem (1.1) if the identity

T m N T
/0 (Ga(®)P2ae), 5@) dt+ 3 3 Iy i (t))0' (1)) = — / (VE(, ult)), oft)) dt

j=11i=1

holds for any v € W,*.
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The corresponding functional ¢ on W%’p is given by

1 T . . u(t)
(2.2) SD(U):2_7~/0 |a(t)] dt+/0 (t,u(t dt—i—] 2 1/0
=(u) + ¢(u),
where
1 T p B m N u(t)
w(u)zz—)/o |(|dt+/ Pt u(t)) dt and o(u _;2/0 dr.

It follows from assumption (A) that 1) € C( T’p, R). By the continuity of I;;, i € A,
Jj € B, one has that ¢ € CY(W, LP R). Thus, ¢ € Ct(Wy 1P R). For any v € W%’p,
we have

(23)  (Fw),v) = / (i =2a(), o) dt+ 3 3 Ly (1)0° (1))

j=1i=1
+ /O (VE(t,u(t)), v(t)) dt.

By Definition 2.1, the weak solutions of problem (1.1) correspond to the critical
points of ¢.

Definition 2.2 ([9]). Let X be a Banach space and ¢: X — R a C'-functional.
We say that ¢ satisfies the Palais-Smale condition, denoted (PS), if any sequence (u.,)
in X such that ¢(u,) is bounded and ¢'(u,) — 0, admits a convergent subsequence.

Lemma 2.1. Ifu € WT’p, letting i = = fo t)dt and u(t) = u(t) — u, we have
(2.4) o < T o,
and
(25) || r < Tl v-

Proof. Since a(t) = ( ) — @, it is easy to verify that fo t)dt = 0.

Let a(7) = # fo a(t)dt = 0. Using the Holder inequality, we have

o) = latr)+ [ i(s) ds] < / " Jis)] ds < TV (f ' |u<s>|pds)1/p = T i1

Thus, (2.4) holds.
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It follows from (2.4) that
()P < TP,

Then

T T
la(@)lIZy :/0 Iﬂ(lﬁ)l”’ohﬁé/O TP/l dt = TP, = TP,

Thus, (2.5) holds. The proofs are completed. O

3. MAIN RESULTS AND THEIR PROOFS

Theorem 3.1. Suppose that (A) holds and F, I;; satisfy the following conditions:
(I1) For anyi € A, j € B,

(3.1) Lj(t) =0 VteR;

(F1) there exist f,g € L'([0,T], R*) and « € [0,p — 1) such that

(3.2) IVE( )] < f()]2]" +9(t)
for allz € RY and a.e. t € [0,T);
F2
( ) T 2qa T q
(3.3) lim inf |x|*qa/ F(t,z)dt > </ f) dt) .
|z|— o0 0 q 0

Then problem (1.1) has at least one solution in the sense of Definition 2.1 which
minimizes the functional ¢ on WP .

Remark 3.1. When I;; = 0, problem (1.1) degenerates to the second-order
Hamiltonian system. The conclusion of Theorem 3.1 still holds.

Theorem 3.2. Suppose that (A) and (F1) hold, and the following conditions are
satisfied:

(I2) There exist a;; > 0 and $;; € (0,1), € [0,p — 1) such that

(3.4) |1 (t)] < aij +byj|t|*P for everyt € R, i € A, j € B;
(I3) for anyi € A, j € B,

(3.5) L)t <0 VteR;
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(F3) T T ‘
29t ym N
(3.6) lim sup |x|*qa/ F(t,z)dt < —2qa+1T</ f(t) dt> -
0 0 p

|z|— 00

where b is defined in (3.14).
Then problem (1.1) has at least one solution in W%’p in the sense of Definition 2.1.

Remark 3.2. When I;; = 0, problem (1.1) degenerates to the second-order
Hamiltonian system. The conclusion of Theorem 3.2 still holds if we replace Hy-
pothesis (F3) by

T T q

(F3") lim sup |x|_qa/ F(t,z)dt < —2q"+1T</ f(t) dt> .
|| =00 0 0

Introduce the condition

(F1') there exist f,g € L([0,T], RT) such that
(3.7) IVE(t,z)| < f(t)|z|+g(t)

for all z € RY and a.e. t € [0, 7).

Zhao and Wu [21], [25] proved the existence of solutions for problem (1.1) when
p = 2 with no impulse, that is, condition (F1) reduces to linearly bounded gradient
condition (F1’). Inspired by this case, we generalize the results.

Theorem 3.3. Suppose that (A), (I1) hold, and the following conditions are
satisfied:

(®) T 9l—p—p/q
(3.8) /0 ftyat < =——

(F4) there exist f,g € L'([0,T], RT) such that
(3.9) IVE(t,2)] < f(&)|zP~" +g(1)

for allz € RY and a.e. t € [0,7T);
(F5)

T T
(3.10) Timinf o] 7 / F(t,z)dt > 21 /< / f(t)dt)q.
e o (1= 2v1pTola (1) a0

Then problem (1.1) has at least one solution in the sense of Definition 2.1 which
minimizes the functional ¢ on W}’p .

Remark 3.3. When I;; = 0, problem (1.1) degenerates to the second-order
Hamiltonian system. The conclusion of Theorem 3.3 still holds.
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Theorem 3.4. Suppose that (A), (), (I3), (F4) hold and the following conditions
are satisfied:

(I4) There exist a;; > 0 and §;; € (0,1), v € (0,p — 1) such that

(3.11) |1 (1)| < agj + bi|t|"P5 for everyt € R, i € A, j € B;
(F6)

T T q
(3.12)  limsup |x|*p/ F(t,z)dt < — (/ f(t) dt)

|| —o0 0 0
[ 20T (1 + 2v=1/a [ f(¢) dt) 2P (L)9/P
X
(1 —2r=17T%/q fo (t)dt)(1 — 2v— 1pr/<1f f(t)dt) q

2P=1(1 4 27~ 1Tp/‘1f0 f(t)dt)gbmN
1—2v-17v/a [T f(t)dt

where b is defined in (3.14).

Then problem (1.1) has at least one solution in W%’p in the sense of Definition 2.1.

Remark 3.4. When I;; = 0, problem (1.1) degenerates to the second-order
Hamiltonian system. The conclusion of Theorem 3.4 still holds if we replace Hy-
pothesis (F6) by

T T q
(F6’) 1|19r61|1_s>1010p|a:| p/o F(t,m)dt<—</0 f(t)dt)

. { 2PT(1+ 207172/ [ f(¢) dt) 2P7(4
(1 —2v=1Tw/a [V f(£)dt)(1 — 2p=1pTP/a [ f(t)dt) q

SIS

)q/p

For the sake of convenience, we denote

T
(3.13) M, = /f dt, M2=/ g(t) dt,
0
(3.14) = max _ay, b= max by.
i€A,jEB i€A,jEB

Proof of Theorem 3.1. By (F2), we can choose an a; > T1/9 such that

T 92qc 9
(3.15) liminf |2|~ q(’/ F(t,z)dt > Tle

|z|—o00
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It follows from (2.4), (2.5) and the Young inequality that

T
(3.16)

(F(t,u(t)) - F(m))dt\

T p1
/ (VF(t,zH—sa(t)),a(t))dsdt‘

// f@)|a+ sut)|*a(t |dsdt+// (t)|dsdt

/f (lal™ + la(®)[* )IU()IdH/0 g(t)|aldt

T T
2 (faf* e + ) [ 5@+ il [ g0
0 0
= 2" Ml + 2 M [ + Mol
1 29%q1
< ol + = ALl 2 M+ Mol

21%q]

M@ + 20TV Oy |a 2 + T M|l .

< —plalf, +

Hence, we have by (I1) and (3.16)

(. T ) T )
317 p(u) = ]_)HUHLP""/O [F(t,u(t) — F(t, )] dt+/0 F(t,a)dt + ¢(u)

1 TP/q
> (2= T2 fall, - 2vrie Dl gt - TVl
P Pa1

(| | qa/p<|u| qa/ F 2q°‘a1Mq)

In the Sobolev space W7, for u € W, we have |lu|| — oo if and only if (|@|? +
il )P — oo; (F2) and (3.17) show that ¢(u) — oo as ||ul| — oc. Similarly to
the proof of Lemma 3.1 in [28], ¢ is weakly lower semi-continuous on W%’p , and by
Theorem 1.1 and Corollary 1.1 in [8], ¢ has a minimum point on W%’p , which is a
critical point of ¢. Thus we complete the proof of Theorem 3.1. O

Proof of Theorem 3.2.  Suppose that {u,} C W%’p is a (PS) sequence of ¢,
that is ¢’(u,) — 0 as n — oo and {¢(uy)} is bounded. By (F3), we can choose an
as > T4 such that

2%bmN

T
(3.18) lim sup |x|_q“/ F(t,z)dt < —29%a3M] —
0

|| —o0
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In a way similar to the proof of Theorem 3.1, we have

qo 9
29%a,

T ~ TP/a
/O (VF(t,un(t)),un(t))dt‘ < @Hunll’iz) + M{fun|*

+ golatD/apyp HunHa+J' IJ/QA4éHunHLP.

Hence, we get

(3.19) [ = (&' (un), @n)

T m N ‘ )
— il + / (TF(tun(t)), i (8) dt + 3 S L (ul (£ (2)

j=1i=1

TP/q 2qa
> (1= Y il — 2 g 57 — 227D g 55
bay q

m

N
- Tl/qMZ |u ”LP ZZ az] + bzg|u )|aﬂij)|ﬁ;(t)|
=1

TP/ 29%q
= (1 g Vil = T M 17— 20D A i 5

m N
= TV M| Lo = > (aij + biglag, () + g, (£)] )|, (1)

j=11i=1

Tp/q . 2 a’ — (e} « «
> (1= = il — =2 M| = 25T D/ 0y i 5
bag q

m N

= TV = amN [ — b3 37 2% ([l + [ |2

j=1i=1

TP/a 24
> (1= T Yl — g, e — 2o a3
— TY My |in || o — amNTY |i, || 1o — 2%2 Z Bij |y, |

NLAES

||Mz '

zabzzq /BU ||~ Hq/(q Biz) — 99y, zm:

j=11i=1

TP/q 29
> (1= TV il - - atgfa, o — 2T D i, 357
pay q
204
— TY My i || 2o — amNTY i, || 1o — —me|an|qa

20‘ ,8 Bij
_bzz 2\ i) p1/(a- ﬁu)Hu ||‘I/(q )

]111

— 9o Z Z T(a,Bij‘i’l)/QH,un”%/fij'i'l.

j=11i=1



On the other hand, by (2.5) we have
(3.20) Il < (1 +T2) Pl o
We have by (I2), (3.19), and (3.20)

qo

al TP/q

2 2¢ . a
(3:21) (=20 + b Yl > (1= o )i, = T 0 i
2
— [(1 +TP)YP 4 TYIM) | 1| L
m N
. 2(q ﬁm L= Pid) o/ (a=610) |y, | 2/ 0P
Jj=11i=1
m N 1
=203 N @B | 955 > 2|17, + Cr,
- q
j=11i=1

where

Cy = min {G(s)},

s€[0,00)
P _ Tp/q
G(S) = %71)817 _ T(aJrl)/quSaJrl i [(1 + Tp)l/p n Tl/qu]s
pagy
m N
2( ) . |

_bzz q ﬂj Tl/ q—Bij) S‘Z/(q Bij) _ QbZZT(a’B”JFI)/qSO"BHJFI.

j=11i=1 =1 i=1

The fact that as > T/ implies that —co < C; < 0. So it follows from (3.21) that

(3.22) [anll7, < (27%agM7 + 2%bmN)|a, |** — ¢Cy,
and so
(3.23) n | e < (29%a M + 2°DmN)YP @, |19 + Cy,

where Cy > 0. By the proof of Theorem 3.1, we have

T
G2 | [ () - P ) a
0
= M |tan|*[|inl| e + Mi||an |5 + Ma|in oo
L - P 2qaag 9|7 |9 ~||etl ~
< —pllanll + ——=M{|un|* + M|, ||5 + Ma|tn o
bay q
Tr/a 99qc 4
< —5 [tz + 2
basg

M{ian |9 + TN, iy |25
+ T My it || e -
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It follows from the boundedness of p(uy), (3.22), (3.23), (3.24), and (I3) that

Cs

N

N

N

<

P(un)

1 T T
1 Tp/q 2qa q

(— +— )”uanp + @2 M{|a)®™ + T((’H)/quHunH%jl
p pa2 q

T m N ooeui(ty)
+T1/‘1M2||un||Lp+/ F(t,an)dt+22/ I;(t) dt
0 0

j=1i=1
1 Trla 29%a3
(2 + TV agny + 2momafant® — g + 2 glaee
2

+ 7D/ [(29°ad ME + 2°bmN ) P [, |97 4 Oyl

T
+ TYIM[(299 LM + 2%bm N /|77 + C) + / F(t, ay) dt
0

||

20t ym N
(2 tagary + 2
+ TV (29 M + 2BmN) Y[y |1977 + Cy]

1 7TPr/e
+ TYIML[(29%ad My g? + 2°bmN) M|, |17 + Cy] — (]; + )q .

p
bay

T
+/ F(t,uy)dt
0

20‘“me)

(20 g + a7

+ T(oﬂrl)/q]\41 [2a+1(2aa(21M{1 + zame)(aJrl)/p',an|qa(a+1)/p + 2a+lcéy+1]

1 TP/a
+ TYOM[(29%al ME + 2°bmN)YP|@, 9977 + Cy) — (5 + o jre
2

T
+/ F(t,uy)dt
0

T
2a+1b N
|’U,n|(10¢[|1jn|—(104/ F(t,an) dt + (2qa+1a(21M{1+ 7"’”)
0

+ T(a+1)/qM12a(agM{1 + 2me)(a+1)/p|ﬂn|a(p7qa)/p
+ TY My [(ad MY + 2omN)YP|a, |2

1
y rletD/age 0ot 4 TV Cp — (

-+ _p)qcl'
P pag

The above inequality and (3.20) imply that {@, } is bounded. Hence, {uy} is bounded
by (3.24). Since W}’p is a reflexive Banach space, the boundedness and weak com-

555



pactness are equivalent, and passing if necessary to a subsequence, we can assume
that

(3.25) U — ug in WP
By Proposition 1.2 in [8], we have
(3.26) U, — ug in C([0, T], RN).
It follows from (2.3) and the Holder inequality that
(3:27) (¢'(un) — ¥’ (uo), un — uo)

= [ lin P @) ) - i)

_/0 o (£) [P =2 (qo (t), tn () — 110 (t)) dt
_/O (VE(t,un(t)) = VF(t, uo(t)), un (t) — uo(t)) dt

— lfunll? + lfuoll”
T T
= [ lin0) 2 (0 ()t~ [ o Ol iole). n(6)) e
0 0
= [ (9P w00 = TP 00 (0).0,(0) = wo(t)

T T
>IMMJW-+Ihme-jC |unanpfwuo@>vn——jﬁ o (£) [P~ i (£
—A(VF@wﬁD—VF@wﬁﬂwMﬂ—w@D&

T 1/p T 1/q
:>waw+mmw—(/'wotww> (/ wawww>
1/p 1/q
(/ i (¢ |pdt) (/ o (¢ |pdt>

(VF(t U (t)) = VF(t, uo(t)), un(t) — uo(t)) dt
+ lluol”

A lio(®) w+mo|pwfm(lﬂmaww+MAMHMdﬁw
ATmn W+mn|ﬂwfw(lﬂmamp+MNMwam

(VF(t Un(t)) — VF(t,uo(t)), un(t) —uo(t)) dt

>

| = |
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= l[unll? + uoll” = lluollllun P~ = [lun|l[luol "~
T
= /0 (VE(t,un(t)) — VE(t, uo(t)), un(t) — uo(t)) dt
= (lun P~ = lluo P~ ) (lunll = lluoll)

T
- / (VE(t, un(t)) — VE(t wo(t)), un(t) — wot)) dt.
It follows from (2.3) and (3.27) that
(328) (0 (un) — ¥ (o) tm — ti0) > (un [P~ = [0 ) ltn | — o]}
T
- / (VE(t, wn(t)) — VIt uo(t))s un(t) — wo(t))

m N
- Z Z(Iij (ug (t5)) = Lo (u" () (upy (£5)) — ' (t5)))-

From (3.25)—(3.28), (A) and the continuity of I;;, it follows that |lu,| — |ju|| in
WP, Thus, ¢ satisfies the (PS) condition (see Definition 2.2).

In order to use the saddle point theorem ([12], Theorem 4.6]), we only need to
verify the following conditions:
(A1) () = —o0 as || — co in RV.
(Az) @(u) = oo as |u|| = oo in WP, where WP = {u € WP | @ = 0}.

In fact, by (3.6), we get

T
(3.29) / F(t,x)dt — —oo as |z| — oo in RY.
0
From (I3), (2.2), and (3.29), we have
T
o(x) z/ F(t,z)dt + p(z) = —o0  as |z| — oo in RV,
0

Thus (A1) is easy to verify.
Next, for all u € W%’p , by (F1) and Sobolev’s inequality we have

(3.30)

/OT [F(t, u(t)) — F(t,0)] dt‘ = /OT/Ol(VF(t, su(t)), u(t)) dsdt

< / F@) )] dt + / g(®)u(t)] dt

< Mylull & + Malulloo < TV My |af 3 + TV IMy|ldl| Lo
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From (I2) we derive that

(3.31) éi/o 7(” ‘

m u'(t;)
< Z / (aij + by t|*F) i

j=1i=1"0

< amN|ufloo + bz Z ] S5

j=11i=1

.

Mz

m N
< amNTYi(t)| o + b D TP D/ a7,
j=1i=1

It follows from (2.2), (3.30), and (3.31) that

1 i T T
(332) ol =il + / [F(tu(t) - 0] dt+ [ P0)dt+ o)

0
1
> —|lalfy, — TV M |a) g - TV My il
p

m N
— amNTY )i 1 — bz Z T((NBMH)/QHu”(Lapﬁij-irl)/q
j=1i=1

T
+ / F(t,0)dt
0

forallu € W . By Lemma 2.1, [[u]| = o0 in W P if and only if ||| L»r — co. So we
obtain ¢(u) — oo as ||u| — oo in W VP from (3.32), i.e. (Ag) is verified. The proof
of Theorem 3.2 is complete. (]

Proof of Theorem 3.3. By (f) and (F5), we can choose an az € R such that

T/4a
(3.33) @ > T > 0
and
T 2Pqd
(3.34) 1‘1I‘nlnf ||~ p/ F(t,x)dt > =3 M{
xT|—00
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It follows from (F4), Lemma 2.1 and the Young inequality that

T

/ (VF(t,u+ su(t)),a(t ))dsdt‘

// f®))a+ sa(t)|P~a(t) |dsdt+// (t)|dsdt

<2P1/ FOaP+ [P <>|dt+/ g(t)]a(t)) dt

(F(t u(t)) — F(t,u) dt‘

T
<2p*1(|ﬂlp*1||ﬂlloo+Hﬂll’éo)/ f(t)dt+|\ﬂ||oo/ g(t)dt
0 0
= 2L [l il oo + 277 M [[]1E + Mol oo
1 1P ZPag q|g|P p—1 1P i
< paplllse + = =Mijal” + 277 My [Jalle + Mzl
3

v 49
2Paq

M{|af? + 27 T My |l + T 1My | il| e

< U
< Sl +

T/ I
= (S + 27T il + =Ml + T M ] o
pa3 q

Hence, we have

1 T T
(3.35) SD(U):EH’[LHIEP‘F/ [F(tvu(t))—F(t,ﬂ)]dH/ F(t,a) dt + p(u)
0 0
1 Tr/a
> (2= _ 9p—1lpp/q W2 /e il 7 p
(- 2T Ml)nuum T il

2
+lap (jal / F(t o).

As |Ju|| — oo if and only if (|@|? + ||i||r»)}/? — oo, the above inequality implies that
p(u) = o0 as |lul]| — oco. Similarly to the proof of Theorem 3.1, ¢ has a minimum
point on W%’p , which is a critical point of . The proof of Theorem 3.3 is complete.

(I

Proof of Theorem 3.4.  First we prove that ¢ satisfies the (PS) condition.
Suppose that {u,} C W;” is a (PS) sequence of ¢, that is ¢’ (u,) — 0 as n — 0o
and {p(uy)} is bounded. By (f) and (F6), we can choose an a4 € R such that

T4
(3.36) ag > (= 2 LM, To/n) 177 >0,
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and

T
(3.37) limsup|x|*p/ F(t,x)dt
|z|— o0 0
o 9T (1 + 20~ 1TP/a N, 2”T(,%)‘Z/p
(1 — 2p=1TP/a M) (1 — 2P~ 1pr/qM1) q
2P=1(1 4 20~ 1TP/9 )M ) gbm N
- 1 —2p—1TP/a), '

MY

In a way similar to the proof of Theorem 3.3, we have

/OT (VE(t,un(t)),a(t)) dt‘

TP/q
<
( paj

2°qd )
A M{|afP + TV 9 My || o

1

+ (14 2 )2t ) il +
q

By (14), we have

(3-38) lltin]l > (¢ (un), tin)

T m N
= [lnl|Z0 +/0 (VE(tun (1)), Gn(8)) dt + )Y Lo (u (1)), (¢)

j=11i=1
TP/ 1N 1) e 2Pal

> (1= = (1) 2 /0 ) il — =0 P
pay q

m N
= TV UMy [ | 2o = DD (aij + biglus, (679, (1)

j=11i=1
TP/4 1 2Pqd
> (1 S~ (1 2T i = =Rl
pay q
m N 4 )
— T UMy [t Lo — D 0> (aij + bijlas, (¢) + i, (£)*79) |, (£)]
j=11i=1
TP/q 1 P4
> (1= — (14 2) 277900, ) i1, — =0 P
bay q

— TYIMy ||| 2o — amN i || oo

m N
=332 ([P + [ |

j=11i=1
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TP/q 1 P44
> (1= = (1 )2/ )i, - = Ao,
bay q
WBij
— TY My it | o — amNTY [ty || Lo — 277022 N =N ™ B [P
p j—l i=1
_ 9p— %ZZP ’75”H~ Hp/(p vBij) _ op— 1bZZ”u |25 +1
j=11i=1 j=11i=1
TP/9 1 2Paf
> (1= = — (14 2) 27000, i}, — =20 P
bay q q

— TYIMy ||| o — amNTY 9|1y, || e

_ 9p— lbzzp 7513 Tp/q”u HP )l/p vBij)

jlll

D B SN R D

j=1i=1
On the other hand, we have
(3.39) ]l < (14 TP it o

which, together with (3.38), implies that

opad op—1 p 1
(Z2 M+ =N ) anl > (1= — — (1+ =) 227 T2/90, ) i,
q p pa q
— [+ 1)+ TYIMy + amNT )ity | Lo

m N
_ Qp—lbz Z p _};7/8” (Tp/qHunHip)l/(p—vﬁu)

j=1i=1

m N
_prlbzz TP/ 9|, HP (vBi+1)/p
j=1i=1

1
> -(1- 2p71Tp/qM1)HunH;zP + Cy,
q

where
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and

p  pay

H(s) =
" p =By
_ op—1y — P pp/q gpy1/ (p=7Bis)
>3 2 quiag)

(1 I _ 2p71Tp/qM1)Sp

j=11i=1

m N
_9or—1y Z Z(Tp/qsp)(vﬁi.ﬂrl)/p

j=1i=1

— (14T + TYIMP My + amNT 5.

The fact that
T1/4
0

aq > (1— Qp—lleTp/q)l/p >

implies that —oo < Cy < 0. So we obtain

TR T P
1 — 20—1Tw/a], " 20qi M + 2p=1gbmN’

(3.40) linllZe <

and so

2l M1+ 2p=1gbmN
</ 4-"1 q |ﬂn| +C5;

3.41 Un|lLe <
(3.41) il < S5 A

where C5 > 0. By the proof of Theorem 3.3, we have

T
| o) - Bt dt\
0
< 2 My P i o+ 27 M |2, + Mol oo

oPT q/p
(a/p) M)
q

(3.42)
1 ~1pp/ - P
< (o + 2P ) i +
q
+ TY My || || -
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It follows from the boundedness of ¢(uy), (I3), and (3.42) that
CG g @(un)

= ]_)HUTIHILJ/P +/0 [F(tvun(t)) - F(taﬂn)] de +A F(taﬂn) dt + @(un)

2P (4)a/p
< (1 2 TP i [}, + —— 2 M

T
+T1/qM2||un||Lp+/ F(t, @) dt
0

afM{ + 27" 1gbmN qC4 )

p—17p/q iy |P —
<@+27T Ml)( 1 — 2p=17p/a ), [ 2raf MY + 2p—1gbmN

P (2)\q/p aNra —
+ 72 T(p) M{lan|P + TI/QM2< /2P af My + 20~ 1gbmN
q

{/1 —2vr=1TP/ap

|| + cs>

T
+/ F(t,uy)dt
0

_ [(1 + 2p—1Tp/qM1)2paZ M QPT(%)q/p g
1 —2p=1TP/a)M, ! !

2P~ (1 4- 2P~ 1P/ My ) gbm N
1 — 2p=1Tp/a ),

¢/2val M + 2P~ 1gbmN

¥/1 — 20-1Tp/a)],

T
+T1/‘1M205+/ F(t,@y,)dt
0

[ tnl?

(1 + 2p= TP/ N )gCy
2vai M + 2p=1gbmN

+ TV M,

|| —

T —17p/q P4 D q/p
B o B (14 2P~ tTP/9M,)2Pa] 2PT(q/p)
_ p p q q
= |y, {|un| /0 F(t, ) dt + =LA M+ . M

—1 —1 ] q q —
2P=1(1 4 20~ 1TP/9 ][, ) gbm N TV, ¢/2pal M + 2¢ 1quN|ﬂn|1_p
1 —2r—1Tp/a ), ¢/1 — 2p—1Tp/a ),

4+ 2r=1TP/9 N ) qCy
2pad M} + 2P—1qbm N

+ TYaM,Cs.

The above inequality and (F6) imply that {@,} is bounded. Hence, {u,} is bounded.
Arguing then as in Proposition 4.1 in [8], we conclude that the (PS) condition is
satisfied.

Similarly to the proof of Theorem 3.2, we only need to verify (A;) and (Ag). It is
easy to verify (A1) by (3.9). In what follows, we verify that (Ag) holds as well. For
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all u € W}’p , by (3.7) and Sobolev’s inequality, we have

T p1
(3.43) / (VE(t, su(®)), u(t)) ds dt‘
0J0

1 T , T
<< [ romra [ gl

2[)—1M1
< THUH& + Ma||uflo

/OT[F(t,u(t)) — F(t,0)] dt‘ _

2r=17P/9 )1y )
7” |12, + TY My 1o

/N

Like in the proof of Theorem 3.2, we have

u' (t; )
(.40 S)3) o A
Jj=11i=1 0
m N
<amNTVillir +b3 3 TOPAD A 70,
j=1i=1

It follows from (2.3), (3.43) and (3.44) that

1 T T
(3.45) o(u) = ]_)||u|\§p +/ [F(t,u(t)) — F(t,0)] dt+/ F(t,0)dt + o(u)
0 0
1 —or-lTp/apg T
z fl\dll’ﬁp — TY 90 ||| 1o +/ F(t,0)dt
0

m N
—amNT" ]| 1 — by S~ TP/ a g 7700/
j=1i=1

forall u € W . By Wirtinger’s inequality, [[ul| = oo in W if and only if ||4||L» —
00. So we obtain ¢(u) — oo as |Ju|| — oo in WT’p, i.e. (Ag) is verified. The proof of
Theorem 3.4 is complete. ([
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4. EXAMPLES

In this section we give some examples to illustrate our results.

Example 4.1. Let T = 1.4, N = 3,t; = 1, p = 3/2, ¢ = 3, consider the
second-order Hamiltonian systems with impulsive effects

d
dt
(4.1) u(0) — u(1.4) = 4(0) — i(1.4) = 0,
Adl(1) = a'(1%) —a'(17) = (u'(1))"?, i =1,2,3,

([a(t)]'/?) = VE(t u(t), ae. te[0,T],

(4.2) Flt,z) = (% 1) a7 (§T2 )|l + (h(t), ),

I;(t) = t'/3, a = 3/7. Tt is easy to see that

10\T 92
F(t <———t‘ 3/7 —‘—TQ—tQ‘ 3/7T 4 |h(¢
IVE(t, z)| =3 |z| t-3 |z[** + [h(t)]
10 /1T 5 T6
<=(|=- My — .
<= (‘2 t‘+6)|x| + = + ()]

This shows (3.2) holds with o = 3/7 and

@3) 10 =212 -1 +2). o= T+ e,

and

If T* < 2744/1250 = 2.1952, we choose ¢ > 0 sufficiently small such that

T 3 4 3 2
T 10007* /5T T 3T
liminf |2| 2% [ F(t,z)dt = — (— —e+ —¢? 3).
|1xI|n—1n || /0 (t,x) 3 > 1039\ 32 + 1 e+ 5 € +e

This shows that (3.3) holds. By Theorem 3.1, problem (1.1) has at least one solution.
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Example 4.2. Let T = 0.3, N =5, t; = 0.2, p = 3/2, ¢ = 3, consider the
second-order Hamiltonian system with impulsive effects

d

&(I’d(t)ll/z’) = VF(t,u(t)), ae.tel0,n],
(4.4) u(0) — u(0.3) = 4(0) — @(0.3) = 0,

AG'(0.2) = 41(0.27) — 4'(0.27) = I, (w*(0.2))Y°, i=1,2,3,4,5.
Let
(4.5) F(t,z) = (% - t>|x|10/7 + GTQ 2 LLI;LTN)M:P” + (h(t), ),

In(t) = —t"7, a=3/7, i =1/3, h € Ll([O,T], RY). It is easy to see that

10T 4bmN
F ¢, < —=|= t‘ 3/7 T2 2 —‘ 2/7 h(t
VE(t,2) < Iz 7+ 2] a7 + o)
10 7%  36bmN
<= (|= - t‘ ) 37 L 2 2 2T 4 Rt
10 T 37 TC  (4bmN)3
<= (‘5 —t‘ +25)|:c| T4 5+ s eeahdL0]

for all x € RY and a.e. t € [0,T], where € > 0. This shows (1.7) holds with o = 3/7
and
10 T6  (4bmN)3

(4.6)  f(t) = —(% - t‘ + 26)|x|3/7, 90 =+

- +[h(e)]

However, F'(t,x) satisfies neither (1.8) nor (1.9). In fact,

T
|| 3 / F(t,x)dt
0

T
T 1 4bmN
— |p|9/7 L 10/7 1o o 2OMUV 9/7
2| /0 (5 = o)kl + (372~ = Vel + (h(t), )] i
4bmN T
_ _p3jpg 2mN (/ h(t) dt, |x|_9/7x>.
p 0

On the other hand, we have

</0Tf(t)dt>3—/0 (1—70(‘—_15‘”5)@@/7) &

10007 /5 5 €12
=33 (3—2T T

It is easy to check that the conditions of Theorem 3.2 hold true, By Theorem 3.2,
problem (1.1) has at least one solution.

32T + 853).
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Example 4.3. Let T = 0.6, N = 3, t; = 0.5, consider the second-order Hamil-

tonian system with impulsive effects

ii(t) = VF(t,u(t)), ae. tel0,T],
(4.7) w(0) — u(0.6) = 0(0) — 1(0.6) = 0,
AGt(1) = 4H(0.57) — 4*(0.57) = (u*(0.5))Y/3, i=1,2,3.

Let
(4.8) F(t,x) = (0.6T — t)|z|* — t|z[>/% + (h(t),z),
where h € LY([0,T],RN), I,;(t) = t'/3. Tt is easy to see that
3t 1
[VF(t,z)| < 2[0.6T —t||z] + E|a:| + |h(t)]
T2
< 20067 —t] +&)le] + 5 + [R(0)

for all x € RY and a.e. t € [0, T], where € > 0. This shows (3.9) holds with

(4.9) f(&) =2(0.6T —t|+¢), gt) = % + |h(t)].

Observe that
T T
|a:|_2/ F(t,z)dt = |x|_2/ [(0.67 — t)]a|* — tla|*> + ((t), x)] dt
0 0
T
=0.17% — 0.5T2|z| /2 + (/ h(t) dt, I:CIQ»”E)-
0

On the other hand, we have

T T
/ f)dt = 2/ (10.6T — t| + &) dt = 0.52T2 + 2¢T,
0 0
T . T 28
(/ f(t) dt) :4/ (10.6T —t| +¢)*dt = 7—5T3+2.085T2+452T,
0 0
and r
3% [y f2(t)dt  T3(1.1272% + 6.24eT + 12¢?)

2m2(12 T [, f(t)dt)  27°[12=T7(0.52T + 2)]

If T3 < 0.4808, we choose € > 0 sufficiently small such that

T
1
t)dt = 0.52T2% + 2eT < —
/Of() 0.527% 4 2¢ < T
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and
T
11m1nf|x|*2/ F(t,z)dt = 0.17?
|| —o0 0
AT2(BT5 +2.085T% +42T) _ 4T2(f f(1) dt)®
[1 —4T(0.52T2 + 2¢T)] 1 — 4T foT f(t)dt

This shows that (3.9) and (3.10) hold. By Theorem 3.3, problem (1.1) has at least
one solution.

Example 44. Let T = 0.2, N = 2, t; = 0.1, consider the second-order Hamil-
tonian system with impulsive effects

i(t) = VF(t,u(t)), ae.tel0,T),
(4.10) { u(0) — u(0.2) = @(0) — (0.2) = 0,
AGH(0.1) = @ (0.17) — @i (0.17) = I;(u(0.1)), i=1,2 j=1,2,...,m,

(4.11) F(t,z) = (04T — t)|z|* + t|z[>? + (h(t), z),
where h € L1([0,T],RYN). Tt is easy to see that
[VF(t,z)| <2(0.4T — t||z] + E|a:| + |h(t)]
T2
< 2(|0AT ~ t] +e)lar| + 5 +[A(D)]
for all z € RY and a.e. t € [0,T], where € > 0. This shows (1.12) holds with
(4.12) ft) =2(104T —t| +¢), ¢g(t) = —=—+|h(t)|.
Observe that
T T
|x|*2/ Pt 2)dt = |x|*2/ (04T — )]z + t2]*'2 + (h(t), 2)] dt
0 0
T
= —0.17? +0.572|z| 712 + (/ h(t)dt, |x|_2m>.
0

On the other hand, we have

T T
/ f)dt = 2/ (|0.4T — t| 4+ ¢) dt = 0.52T2 + 2¢T,
0 0
T . T 28
(/ @ dt) = 4/ (10.4T —t| +&)*dt = 7—5T3 + 2.08¢T? + 4°T.
0 0
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If T < 0.5, we choose € > 0 sufficiently small such that

T
1
t)dt = 0.5272 4+ 2T < —.
/Of() + 2¢e <4T

It is easy to show that all conditions of Theorem 3.4 hold. By Theorem 3.4, problem

(1.
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1) has at least one solution.
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