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Abstract. Markov chain usage models were successfully used to model systems and soft-
ware. The most prominent approaches are the so-called failure state models Whittaker
and Thomason (1994) and the arc-based Bayesian models Sayre and Poore (2000). In this
paper we propose arc-based semi-Markov usage models to test systems. We extend previ-
ous studies that rely on the Markov chain assumption to the more general semi-Markovian
setting. Among the obtained results we give a closed form representation of the first and
second moments of the single-use reliability. The model and the validity of the results are
illustrated through a numerical example.
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1. Introduction

The themes of performance and dependability analysis of a general system have

acquired high relevance and they have been extensively studied in the past. Markov

chains provide a useful approach to the modeling of general systems. Indeed, Markov

chain usage models provide statistical techniques for testing general systems and

software, see [14] and [15].

Many variants of Markov chain usage models have been suggested in reliability

literature. The most common approach is the one known as the arc-based Bayesian

model (see [13]). These models estimate the mean and variance of the single-use

reliability of a system. Usually, simulation techniques are applied with the incon-

venience of requiring the generation of many test cases which may cause large time

consumption. For this reason, [11] proposed the use of analytical solutions for the

mean and variance of the single-use reliability.
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The increasing complexity of real systems cannot be represented adequately

through Markov chain models because they impose undesirable constraints. The

most important inadequacies are represented by the memoryless property of Markov

processes and by the rather unrealistic hypothesis of constant transition intensities

between the states of the system.

Semi-Markov processes are a wide class of stochastic processes that generalize

both Markov chains and renewal processes [10]. Their main advantage is that they

allow to use any type of waiting time distribution function for modeling the time of

switching the system from one state to another.

The semi-Markov models offer a solution to some of the drawbacks of the Marko-

vian models and for this reason they were extensively explored in reliability studies,

see e.g. [1], [3], [2], [5], [6], [9], [7].

In this work we advance a semi-Markov chain usage model in discrete time and

we provide analytical solutions for the mean and variance of the single-use reliability

of the system. Thus we generalize substantially the paper [11] by allowing effective

application of a semi-Markov model for statistical testing of systems. The major

advantage of our semi-Markov model lies in the possibility to use any type of waiting

time distribution function and arc transition reliabilities depending not only on the

states linked by the arc but also on the length of the sojourn time before a transition

is executed. The price to pay for this model’s increased flexibility is the additional

complexity in the derivation of analytical representation of the mean and variance

of the single-use reliability which requires now the use of the theory of geometric

transform.

The paper is organized as follows: first, in Section 2 we present a short description

of the semi-Markov chains and we introduce basic notation adopted in the analysis.

Next, in Section 3 the single-use semi-Markov model is presented. In this section

we derive the main results concerning the representation of the single-use reliability,

its mean and variance. Subsequently, Section 4 demonstrates the model applied to

a numerical example. Finally, Section 5 presents some concluding remarks.

2. Semi-Markov chains

In this part, the semi-Markov chain is described, following the notation given in [8].

Let us consider a finite set of states E = {1, 2, . . . , S} in which the system can be

and a complete probability space (Ω, F,P) on which we define the following random

variables:

(2.1) Jn : Ω → E, Tn : Ω → N.
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They denote the state occupied at the nth transition and the time of the nth

transition, respectively.

The process (J, T ) = (Jn, Tn)n∈N is a discrete time homogeneous Markov Re-

newal Process if for all i, j ∈ E for all t ∈ N, it satisfies the following conditional

independence assumption:

(2.2) P[Jn+1 = j, Tn+1 − Tn = t | σ(Js, Ts), Jn = i, 0 6 s 6 n]

= P[Jn+1 = j, Tn+1 − Tn = t | Jn = i] := qij(t).

The conditional probabilities qij(t) for all i, j ∈ E and t ∈ N, are stored in a

matrix of functions q = (qij(t)) called the kernel of the (J, T ) process, see [1]. The

element qij(t) represents the probability that the next visited state will be j with a

sojourn time t, given that at present the process entered the state i.

The process {Jn} is a Markov chain with state space E and transition probability

matrix P = lim
t→∞

t
∑

τ=1
q(τ). We shall refer to it as the embedded Markov chain.

Now it is possible to define the conditional cumulative distribution functions of

the waiting time in each state i, given the subsequently occupied state j is known:

(2.3) Gij(t) := P[Tn+1 − Tn 6 t | Jn = i, Jn+1 = j]

=
1

pij

t
∑

s=1

qij(s) · 1{pij 6=0} + 1{pij=0}.

For a fixed N(t) = sup{n ∈ N | Tn 6 t} for all t ∈ N, the discrete time semi-

Markov chain Z = (Z(t), t ∈ N) can be defined as Z(t) = JN(t). It represents, for

each waiting time, the state occupied by the process Jn or, equivalently, the visited

state at the calendar time t.

Let us assume that T0 = 0, then we define for all i, j ∈ E, and t ∈ N, the semi-

Markov transition probabilities in the following way:

(2.4) ϕij(t) := P[JN(t) = j | J0 = i].

They are obtained by solving the following system of evolution equations:

(2.5) ϕij(t) = δij

(

1−
∑

j∈E

t
∑

τ=1

qij(τ)

)

+
∑

k∈E

t
∑

s=1

qik(s)ϕkj(t− s).

Algorithms to solve equations (2.5) are well known, see for example [8].
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3. The single use semi-Markov model

In this section, we make an extension of the Markov chain usage model proposed

in [11]. We advance a semi-Markov usage model for computing system reliability.

Semi-Markov processes have been extensively used in reliability studies, see e.g. [4],

[1], [3], [5], [6], [7]. The interested reader can refer also to the books [10], [8], [2].

Let us assume that the system can be in one of the mutually exclusive states of

E = {1, 2, . . . , S}. As usual, we assume that the state S corresponds to the model

sink, which is the sole absorbing state. The system changes state according to the

semi-Markov kernel (2.2), and a transition from the state i to the state j with sojourn

time equal to s is executed with probability qij(s).

The transition from one state to another coincides with an action in the system,

for example, in software reliability estimates, the loading of a document. This action

can be executed successfully or can result in a failure.

Let Rij(s) be the random variable called transition reliability at s that represents

the fraction of successful transitions from the state i to the state j with sojourn time

of length s. We assume that the random variables Rij(s) and Rhk(t) are independent

for (i, j, s) 6= (h, k, t).

As we can see, the semi-Markov model may require the specification of transition

reliabilities for each pair of states i, j and for each time s, because the transitions

occur after a random sojourn time. In the Markov chain usage model the transition

reliabilities depend only on the states i, j and not on the time because there is no

randomness in the time of the next transition, see e.g. [11].

Let Fij(s) := 1−Rij(s) be the random variable called transition failure rate that

represents the fraction of unsuccessful transitions from the state i to the state j with

the next transition having sojourn time length s.

The single-use reliability model is completely described by the tuple {E,q,R}.

We are interested in the computation of expectation and variance of the single-use

reliability. The single-use reliability F ∗
i is the random variable that represents the

fraction of times one experiences a failure prior to reaching the sink given that one

starts in the state i.

Theorem 1. For the semi-Markov usage model {E,q,R}, the single-use reliabil-

ity satisfies the following system of equations

(3.1) F ∗
i =

∑

k∈E

∑

γ>0

qik(γ)Fik(γ) +
∑

k∈E

∑

γ>0

qik(γ)Rik(γ)F
∗
k ,

where F ∗
S := 0.
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P r o o f. Let us now assume that the arc failure rate parameters Fij(s) = fij(s) are

known and deterministic quantities. Denote by f∗
i the probability of encountering

at least one failure in a random sequence of infinite length originating from the

state i. Let t(n)(i, j) be the random variable which denotes the number of failures

in a sequence of length n+ 1 originating from the state i and ending in the state j.

Denote by f
(6n)
i = P[t(n)(i, S) > 0]. Then

(3.2) f
(6n)
i = P[t(1)(i, J1) = 1] + P[t(1)(i, J1) = 0]

× P[t(n−1)(J1, S) > 0 | t(1)(i, J1) = 0].

Observe that

(3.3) P[t(1)(i, J1) = 1] =
∑

j∈E

∑

γ>0

P[J1 = j, T1 = γ, FiJ1
(γ) = 1 | J0 = i]

=
∑

j∈E

∑

γ>0

P[J1 = j, T1 = γ | J0 = i] · P[FiJ1
(γ) = 1 | J1 = j, T1 = γ, J0 = i]

=
∑

j∈E

∑

γ>0

qij(γ)fij(γ).

Moreover,

(3.4) P[t(1)(i, J1) = 0]P[t(n−1)(J1, S) > 0 | t(1)(i, J1) = 0]

=
∑

j∈E

∑

γ>0

P[FiJ1
(T1) = 0 | J1 = j, T1 = γ, J0 = i]

× P[J1 = j, T1 = γ | J0 = i] · P[t(n−1)(J1, S) > 0 | J1 = j, Fi,j(γ) = 0]

=
∑

j∈E

∑

γ>0

qij(γ)(1 − fij(γ))f
(6n−1)
j .

By substitution of (3.3) and (3.4) into formula (3.2) we obtain

(3.5) f
(6n)
i =

∑

j∈E

∑

γ>0

qij(γ)fij(γ) +
∑

j∈E

∑

γ>0

qij(γ)(1 − fij(γ))f
(6n−1)
j .

Next, consider that for all i ∈ E and for all n ∈ N, f
(6n)
i > f

(6n−1)
i and f

(6n)
i 6 1.

Therefore, {f
(6n)
i }n∈N is an increasing and bounded sequence, so it admits a limit.

Let us set

(3.6) f∗
i := lim

n→∞
f
(6n)
i = lim

n→∞
P[t(n)(i, S) > 0].

By taking the limit in (3.5), we get

(3.7) f∗
i =

∑

j∈E

∑

γ>0

qij(γ)fij(γ) +
∑

j∈E

∑

γ>0

qij(γ)(1− fij(γ))f
∗
j .
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Finally, observe that the actual failure rates Fij(s) are unknown and consequently

must be represented as random variables. Replacing the arc failure rates parameters

fij(s) with the corresponding random variables produces

(3.8) F ∗
i =

∑

k∈E

∑

γ>0

qik(γ)Fik(γ) +
∑

k∈E

∑

γ>0

qik(γ)Rik(γ)F
∗
k .

�

R em a r k 1. If the semi-Markov kernel has the special form with waiting time

distributions Gij(t) = 1{t=1}, then it is simple to verify that qij(t) = pij1{t=1}.

In this particular case the semi-Markov chain specializes to a Markov chain and

Theorem 1 coincides with the result proved in [12] and [11], i.e.:

(3.9) F ∗
i =

∑

k∈E

pikFik +
∑

k∈E

pikRikF
∗
k .

R em a r k 2. The semi-Markov environment allows us to consider a more in-

depth description of the system behavior, because transitions occur at random times

governed by whatever type of distribution function Gij(·). Moreover, the arc failure

rates Fij(s) may be considered to be dependent on the sojourn time length too.

It is in our best interest to compute expectation and variance of the single-use

random variable F ∗
i . As pointed out in [12] and reported in [11], in a Markov chain

based model it is not possible to take directly the expectation of equation (3.1)

because the F ∗
i are not independent. To overcome this problem they suggested to

use the integral forms of expectation and variance. Here, we extend this approach

to the more general semi-Markovian framework.

Proposition 1. For the semi-Markov usage model {E,q,R}, the single-use reli-

ability admits the following representation:

(3.10) F ∗
i =

∑

γ>0

∑

m>0

Fi(γ;m),

where for all γ ∈ N, m ∈ N ∪ {0} and i 6= S

(3.11) Fi(γ;m) =



























∑

k 6=S

γ
∑

s=1

qik(s)Rik(s)Fk(γ − s;m− 1), if m = 2, . . . , γ,

∑

k 6=S

qik(γ)Fik(γ), if m = 1,

0, if m > γ or m = 0.
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P r o o f. Theorem 1 supplies a recursive representation of the single-use reliability,

see equation (3.1). If we substitute into equation (3.1) the definition (3.11) form = 1,

we have that

F ∗
i =

∑

γ>0

Fi(γ; 1) +
∑

k∈E

∑

γ>0

qik(γ)Rik(γ)F
∗
k ,

which can be rewritten, by applying again equation (3.11) to F ∗
k , as

(3.12) F ∗
i =

∑

γ>0

Fi(γ; 1) +
∑

k∈E

∑

γ>0

qik(γ)Rik(γ)

×

(

∑

k1∈E

∑

γ1>0

qkk1
(γ1)Fkk1

(γ1) +
∑

k1∈E

∑

γ1>0

qkk1
(γ1)Rkk1

(γ1)F
∗
k1

)

=
∑

γ>0

Fi(γ; 1) +
∑

γ>0

∑

k∈E

∑

k1∈E

∑

γ1>0

qik(γ)Rik(γ)qkk1
(γ1)Fkk1

(γ1)

+
∑

k∈E

∑

γ>0

qik(γ)Rik(γ)
∑

k1∈E

∑

γ1>0

qkk1
(γ1)Rkk1

(γ1)F
∗
k1
.

Now consider the second addend on the r.h.s. of (3.12),

(3.13)
∑

γ>0

∑

k∈E

∑

k1∈E

∑

γ1>0

qik(γ)Rik(γ)qkk1
(γ1)Fkk1

(γ1)

=
∑

γ>0

∑

k∈E

∑

γ1>0

qik(γ)Rik(γ)Fk(γ1; 1)

=
∑

t>1

∑

k 6=S

t
∑

γ=1

qik(γ)Rik(γ)Fk(t− γ; 1) =
∑

t>0

Fi(t; 2),

where the last equality is obtained by considering the change of variable t = γ + γ1

and the fact that Fi(1; 2) = 0, because 1 = γ < m = 2.

By substitution in (3.12) we get

(3.14) F ∗
i =

∑

γ>0

Fi(γ; 1) +
∑

γ>0

Fi(γ; 2)

+
∑

k∈E

∑

γ>0

∑

k1∈E

∑

γ1>0

qik(γ)Rik(γ)qkk1
(γ1)Rkk1

(γ1)F
∗
k1
,

and by iteration we get the claimed result. �

Let us set F
(1)
i (γ,m) := E[Fi(γ,m)] and F

(1,1)
i (a,m, b, n) := E[Fi(a,m)Fi(b, n)].
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Proposition 2. For a, b, γ, n,m ∈ N with b > a and n > m > 1 it holds that

F
(1)
i (γ;m) =



















∑

k 6=S

qik(γ)E[Fik(γ)], if m = 1,

∑

k 6=S

γ
∑

s=1

qik(s)E[Rik(s)]F
(1)
k (γ − s;m− 1), if m > 1.

(3.15)

F
(1,1)
i (a,m, b, n) =











































∑

k 6=S

a
∑

s=1

qik(s)(E[Rik(s)]− E[(Rik(s))
2])

×F
(1)
k (b− s;n− 1), if m = 1, n > m,

∑

k 6=S

a
∑

s=1

E[R2
ik(s)]F

(1,1)
k (a− s,m− 1, b− s;n− 1),

if n > m > 1.

(3.16)

P r o o f. Due to similarity we prove only (3.15). Let us consider a trajectory

making provision for m − 1 successful transitions and the last unsuccessful. The

trajectory is composed by a sequence of states {ki}
m
i=1 and transition times {γi}

m
i=0

with γm = γ. Consequently, the expectation of Fi(γ;m) can be computed by using

the integral form of expectation as follows:

F
(1)
i (γ;m) =

∑

k1,...,km

∑

γ1,...,γm−1

qik1
(γ1)qk1k2

(γ2) . . . qkm−1km

(

γ −

m−1
∑

h=1

γh

)

(3.17)

×

∫ 1

0

. . .

∫ 1

0

P

[

Rik1
(γ1) = r1, Rk1k2

(γ2) = r2, . . . , Rkm−2,km−1
(γm−1) = rm−1,

Rkm−1,km

(

γ −

m−1
∑

h=1

γh

)

= rm

]

r1r2 . . . rm−1(1− rm) dr1 . . . drm.

Now, since we assumed the random variables Rij(s) and Rhk(t) to be independent

we can rewrite (3.17) as follows:

F
(1)
i (γ;m) =

∑

s1

∑

γ1

qik1
(γ1)

∫ 1

0

P[Rik1
(γ1) = r1]r1 dr1

×
∑

k2,...,km

∑

γ2,...,γm−1

qk1k2
(γ2) . . . qkm−1km

(

γ −

m−1
∑

h=1

γh

)
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×

∫ 1

0

. . .

∫ 1

0

P

[

Rk1k2
(γ2) = r2, . . . , Rkm−2km−1

(γm−1) = rm−1,

Rkm−1km

(

γ −

m−1
∑

h=1

γh

)

= rm

]

r2 . . . rm−1(1− rm) dr2 . . . drm

=
∑

k1 6=S

γ
∑

γ1=1

qik1
(γ1)E[Rik1

(γ1)]F
(1)
s1 (γ − γ1;m− 1).

�

Let A be a square matrix of order m. By Ȧ we denote the corresponding sub-

matrix of dimension m× (m− 1) obtained by deleting the last column of A.

Denote by Ṙ(1)(γ) = (E[Rij(γ)])i=1,...,S;j=1,...,S−1 and consequently denote by

Ṙ
(1)
q (γ) = q̇(γ) � Ṙ(1)(γ), where � is the Hadamard (element by element) matrix

product.

Definition 1. Given a matrix of functions w = (wij(t)), i, j ∈ E, t ∈ N ∪ {0}

and a vector of functions y = (yi(t,m)), m, t ∈ N ∪ {0}, we define the following

convolution product:

(w ∗ y)(n,m) :=

n
∑

t=0

w(t) · y(n− t,m− 1).

Proposition 3. Let F∗ = (F ∗
i )i=1,2,...,S−1. Then the expectation of the single-use

reliability is given by:

(3.18) E[F∗] = (I− ˙gR(1))−1 · gH(1),

where ˙gR(1) and gH(1) are the matrices of geometric transforms of Ṙ1
q
(γ) and

H(γ) := q̇(γ) � E[F(γ)] · 1S , respectively, evaluated at z = 1 and 1S is the unitary

vector.

P r o o f. From Proposition (2), for m > 1, we know that:

(3.19) F(1)(γ;m) =

γ
∑

s=1

Ṙ(1)
q (γ) ·F(1)(γ − s;m− 1)

= (Ṙ(1)
q ∗ F(1))(γ,m).

For m = 1 we have

(3.20) F(1)(γ; 1) = q̇(γ) � E[F(γ)] · 1S = H(γ).
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Denote by

(3.21) gF(1)(z,m) =

∞
∑

γ=0

F(1)(γ;m)zγ

the geometric transform of the vector of functions F(1)(γ;m).

Since the geometric transform of a convolution corresponds to transform multipli-

cation, we have from (3.19) that

gF(1)(z;m) = gṘq(z) ·
gF(1)(z;m− 1)

and
gF(1)(z; 1) = gH(z).

Then
gF(1)(z; 2) = gṘq(z) ·

gF(1)(z; 1) = gṘq(z) ·
gH(z),

and inductively we get

gF(1)(z;m) = (gṘq(z))
m−1 · gH(z).

Now since the geometric transform evaluated at z = 1 is just the infinite sum of

the discrete function, we have that

gF(1)(1;m) =
∞
∑

γ=0

F(1)(γ;m),

and consequently

∞
∑

m>0

gF(1)(1;m) =

∞
∑

m>0

∞
∑

γ=0

F(1)(γ;m)] = E[F∗],

where the last equality follows from Proposition 1 and the fact that F(1)(0,m) = 0.

This leads to the following representation:

E[F∗] =

∞
∑

m=1

gF(1)(1;m) =

∞
∑

m=1

(gṘq(1))
m−1 · gH(1)

= (I− gṘq(1))
−1 · gH(1).

�

It should be pointed out that if m = 0 we know from (3.11) that F
(1)
i (γ; 0) = 0

and consequently E[F∗] = 0.
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Proposition 4. The variance of the single-use reliability is given by:

(3.22) V [F∗] = (I− gṘ(2)
q (1))−1 · gH(2)(1)

+ 2(I− gṘ(2)
q (1))−1 · g(Ṙ(1)

q − Ṙ(2)
q )(1) · (I− gṘ(1)

q (1))−1 · gH(1)

− ((I− gṘq(1))
−1 · gH(1))2.

P r o o f. To compute the variance we need to evaluate only the second order

moment of the single-use reliability because the first order moment has been already

determined in Proposition 3.

From Proposition 1 we know that F ∗
i =

∑

γ>0

∑

m>0
Fi(γ;m). Then the second order

moment is given by

E[(F ∗
i )

2] = E

[(

∑

m>0

∑

γ>m

Fi(γ;m)

)2]

.

For simplicity of notation, set Am =
∑

γ>m

Fi(γ;m). Then we have

(3.23) E[(F ∗
i )

2] = E

[( ∞
∑

m=1

Am

)2]

= E

[ ∞
∑

m=1

(Am)2 + 2

∞
∑

m=1

∞
∑

n=m+1

AmAn

]

=

∞
∑

m=1

E[(Am)2] + 2

∞
∑

m=1

∞
∑

n=m+1

E[AmAn].

Let’s start to compute the first addend of (3.23). Denote by F(2)(γ,m) =

(E[(Fi(γ,m))2])i=1,...,S−1. Similar computations as those executed in Proposition 2

give

(3.24) F(2)(γ,m) :=

{

H(2)(γ) := q̇(γ) � E[F(2)(γ)] · 1S−1, if m = 1,

(Ṙ
(2)
q ∗ F(2))(γ,m− 1), if m > 1.

If we denote by Ḟ (2)(γ) = q̇(γ) � E[F(2)(γ)], then F(2)(γ, 1) = Ḟ (2)(γ) · 1S−1 and
gF(2)(z, 1) = gH(2)(z), consequently

gF(2)(z, 2) = gṘ(2)
q (z) · gF(2)(z, 1) = gṘ(2)

q (z) · gH(2)(z),

and by induction
gF(2)(z,m) = (gṘ(2)

q (z))m−1 · gH(2)(z).
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Then, if we evaluate the sum of this geometric transform at z = 1, we obtain

(3.25)

∞
∑

m=1

gF(2)(1,m) =

∞
∑

m=1

(gṘ(2)
q (1))m−1 · gH(2)(1)

= (I− gṘ(2)
q (1))−1 · gH(2)(1).

Next step consists in computing the term

(3.26)
∞
∑

m=1

∞
∑

n=m+1

E[AmAn] =
∞
∑

m=1

∞
∑

n=m+1

∑

a>m

∑

b>n

E[Fi(a,m)Fi(b, n)].

To this end it is worth noting that the quantity F
(1,1)
i (a,m, b, n) = E[Fi(a,m)×

Fi(b, n)] was evaluated in formula (3.16). This formula can be expressed in matrix

form as follows:

F(1,1)(a,m, b, n) := E[F(1)(a,m)F(1)(b, n)],

where

(3.27) F(1,1)(a,m, b, n) :=

{

((Ṙ
(1)
q − Ṙ

(2)
q ) ∗ F(1))(b, n− 1), if m = 1, n > m,

(Ṙ
(2)
q ∗ F(1,1))(a,m− 1, b, n− 1), if m > 1, n > m.

Now let us consider the double geometric transform

gF(1,1)(z1,m, z2, n) =
∑

a>0

∑

b>0

F(1,1)(a,m, b, n)za1z
b
2

=
∑

a>0

∑

b>0

a
∑

γ=1

Ṙ(2)
q (γ)F(1,1)(a− γ,m− 1, b− γ, n− 1)za−γ

1 z
b−γ
2

=
∑

a>0

∑

b>0

a
∑

γ=1

Ṙ(2)
q (γ)zγ1 z

γ
2F

(1,1)(a− γ,m− 1, b− γ, n− 1)za−γ
1 z

b−γ
2

=

∞
∑

γ=1

Ṙ(2)
q (γ)zγ1 z

γ
2

∞
∑

a=γ

∞
∑

b=γ

F(1,1)(a− γ,m− 1, b− γ, n− 1)za−γ
1 z

b−γ
2

= gR(2)
q (z1, z2) ·

gF(1,1)(z1,m− 1, z2, n− 1),

where we defined gR
(2)
q (z1, z2) =

∞
∑

γ=1
Ṙ

(2)
q (γ)zγ1 z

γ
2 .

Now let us fix n > m > 1. Then

gF(1,1)(z1,m, z2, n) =
gR(2)

q (z1, z2) ·
gF(1,1)(z1,m− 1, z2, n− 1)

= gR(2)
q (z1, z2) ·

gR(2)
q (z1, z2) ·

gF(1,1)(z1,m− 2, z2, n− 2),
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and by induction we obtain

(3.28) gF(1,1)(z1,m, z2, n)

= (gR(2)
q (z1, z2))

m−1 · gF(1,1)(z1, 1, z2, n−m+ 1)

= (gR(2)
q (z1, z2))

m−1 · (g(R(1)
q −R(2)

q )(z1, z2)) ·
gF(1,1)(z1, 0, z2, n−m).

Finally, by noting that

gF(1,1)(z1, 0, z2, n−m) = (gR(1)
q (z2))

n−m−1 · gH(z2),

we get

(3.29) gF(1,1)(z1,m, z2, n)

= (gR(2)
q (z1, z2))

m−1 · g(R(1)
q −R(2)

q )(z1, z2) · (
gR(1)

q (z2))
n−m−1 · gH(z2).

Evaluating (3.29) at z1 = z2 = 1, we have

gF(1,1)(1,m, 1, n) =
∑

a>m

∑

b>n

F(1,1)(a,m, b, n) =
∑

a>m

∑

b>n

E[Fi(a,m)Fi(b, n)],

and therefore by (3.27) and (3.28) we come to

∞
∑

m=1

∞
∑

n=m+1

∑

a>m

∑

b>n

E[Fi(a,m)Fi(b, n)] =

∞
∑

m=1

∞
∑

n=m+1

gF(1,1)(1,m, 1, n)

=

∞
∑

m=1

∞
∑

n=m+1

(gR(2)
q (1, 1))m−1 · g(R(1)

q −R(2)
q )(1, 1) · (gR(1)

q (1))n−m−1 · gH(1)

=

∞
∑

m=1

(gR(2)
q (1, 1))m−1 · g(R(1)

q −R(2)
q )(1, 1)

∞
∑

n=m+1

(gR(1)
q (1))n−m−1 · gH(1)

=

∞
∑

m=1

(gR(2)
q (1, 1))m−1 · g(R(1)

q −R(2)
q )(1, 1) · (I − gR(1)

q (1))−1 · gH(1),

and considering that gR
(2)
q (1, 1) = gR

(2)
q (1) and gR

(1)
q (1, 1) = gR

(1)
q (1) we obtain

(3.30)

∞
∑

m=1

∞
∑

n=m+1

gF(1,1)(1,m, 1, n)

= (I − gR(2)
q (1))−1 · g(R(1)

q −R(2)
q )(1) · (I − gR(1)

q (1))−1 · gH(1).

A substitution of (3.25) and (3.30) in (3.23) completes the proof. �
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4. Numerical example

In this section, a numerical example which illustrates the previous results is pre-

sented. We consider a system composed of three states, i.e., E = {A,B,C}, where

state C corresponds to the model sink which is the sole absorbing state of the system.

The evolution among the states is described by the following graph:

A B C
(qAB(γ), RAB(γ)) (qBC(γ), RBC(γ))

(qAA(γ), RAA(γ))

(qBB(γ), RBB(γ))

To describe the probabilistic behavior of the system we have to specify a semi-

Markov kernel. To this end, first we assume that the transition probability matrix

of the embedded Markov chain is described by the matrix P below:

(4.1) P =







A B C

A 0.60 0.40 0.00

B 0.00 0.20 0.80

C 0.00 0.00 1.00







and second, we choose the matrix G of the conditional waiting time distribution

functions as follows:

(4.2) G11(·) = cdf(Weibul)(2, 2), G12(·) = cdf(Weibul)(2, 3),

G22(·) = cdf(Weibul)(1, 3), G23(·) = cdf(Weibul)(2, 3),

G13(·) = G21(·) = G31(·) = G32(·) = G33(·) = cdf(Unit distribution)

The symbol cdf(Weibul)(x, y) means the cumulative distribution function of a

discrete Weibull distribution with parameters x and y and cdf(Unit distribution)

denotes the cumulative distribution function of the unit distribution.

The r.v. X has a unit distribution if Pr[X 6 k] = 1 for all k ∈ N.

The r.v. X has a discrete Weibul(x, y) distribution if for all k ∈ N

(4.3) P[X 6 k] = 1− e−(k/x)y.

The unit distribution describes the waiting time in state i before making a transi-

tion into j when pij = 0 and when state i coincides with the sink. Notice that when

pij = 0, the corresponding conditional waiting time distribution can be defined as

arbitrary. Consequently, this choice does not affect the results.
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When pij > 0, we consider discrete Weibull distributions. The reason for this

choice is that Weibull distributions are flexible and frequently used in the modeling

of waiting times.

For simplicity we assume that the transition reliabilities are constant in time, that

is, Rij(s) = Rij for all s ∈ N and they are fixed as follows:

(4.4) R =







A B C

A 0.30 0.40 0.00

B 0.00 0.20 0.30

C 0.00 0.00 1.00






.

We computed the expectation of the single-use reliability function E[F∗] which

results in 0.9512 and 0.7500 for a system starting from state A and B, respectively.

We executed a scenario-sensitivity analysis by changing some of the input pa-

rameters. First of all we computed the values of the expectation of the single-use

reliability in response to changes in the values of the transition probabilities of the

embedded Markov chain (4.1). More precisely, we considered a new transition matrix

(4.5) P =







A B C

A x 1− x 0.00

B 0.00 y 1− y

C 0.00 0.00 1.00






,

where x and y are allowed to change values between 0.10 to 1.00. The other param-

eters stay unchanged as in (4.2) and (4.4).

The results of the expected single-use reliability with initial state A and initial

state B are summarized in Figure 1.
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Figure 1. Single-use reliability depending on P for the initial state A (left panel) and state B
(right panel).

The left panel of Figure 1 reveals that E[F∗
A] increase monotonically in x and y.

This means that the expected fraction of times one experiences a failure prior to

reaching the sink (state C) increases with respect to variables x and y. Indeed,

higher values of x (y) increase the probability of traversing the loop of the state
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A (B) repeatedly and, hence, increase the possibility of having a failure during the

execution of one of these loops. It should be noted that the increase of E[F∗
A] is

not linear in both x and y. The right panel shows that E[F∗
B ] does not depend on x

because it is not possible to transit from the state B to the state A. The monotonicity

with respect to y is confirmed in this case too.

We executed the sensitivity analysis by computing the expected values of the

single-use reliability in response to changes in the values of the transition reliability

matrix R. More precisely, we considered the transition reliability matrix

(4.6) R =







A B C

A z 1− z 0.00

B 0.00 w 1− w

C 0.00 0.00 1.00







where z and w are allowed to change values between 0.10 to 1.00. The other param-

eters stay unchanged as in (4.1) and (4.2).

The results of the expected single-use reliability with initial state A and initial

state B are summarized in Figure 2.
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Figure 2. Single-use reliability depending on R for the initial state A (left panel) and state
B (right panel).

The left panel of Figure 2 illustrates the dependence of the single-use reliability

on the transition reliability matrix. The E[F∗
A] increases monotonically in z and w.

The right panel shows that E[F∗
B ] does not depend on z, because it is not possible

to transit from the state B to the state A. The monotonicity with respect to w is

confirmed in this case, too.

Figure 1 and Figure 2 show that the results are sensitive to the choice of the initial

state. This is true because the system has different probabilities of reaching the model

sink without failures depending on the starting state of the system. Indeed, in our

example, the probabilities depend on the semi-Markov kernel and on the transition

reliability matrix which are both markedly sensitive to the states of the system.

Finally, it should be noticed that the application could be also done in the case that

the transition probabilities are time-inhomogeneous. In this case the results would
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be sensitive also to the initial time because the kernel and the transition reliability

matrix are time-varying.

5. Conclusion

The primary goal of this analysis is the study of general semi-Markovian usage

model and the proposition of analytical computations of the expectation and variance

of the system’s single-use reliability. The analysis requires the use of the theory of

the geometric trasform and extends previous contribution that relies on the Markov

chain approach. The increased model complexity is rewarded by an increased model

flexibility which allows the possibility of considering transition reliabilities that de-

pend on the states of the system and on the length of stay in the initial state. From

a more practical point of view, this means that the transition reliability depends not

only on the specific arc (system instruction) to be executed but also on the time of

execution that is in general random.

The determination of analytical solutions concerning moments of the single-use

reliability avoid the use of simulation-based techniques which may be very long and

time consuming even for small models.
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anonymous referee are gratefully acknowledged.

References

[1] V.Barbu, M.Boussemart, N. Limnios: Discrete-time semi-Markov model for reliability
and survival analysis. Commun. Stat., Theory Methods 33 (2004), 2833–2868.

[2] V.Barbu, N. Limnios: Semi-Markov Chains and Hidden Semi-Markov Models toward
Applications. Their Use in Reliability and DNA Analysis. Lecture Notes in Statistics
191, Springer, New York, 2008.

[3] A.Blasi, J. Janssen, R.Manca: Numerical treatment of homogeneous and non-homoge-
neous semi-Markov reliability models. Commun. Stat., Theory Methods 33 (2004),
697–714.

[4] G.Ciardo, R.A.Marie, B. Sericola, K. S.Trivedi: Performability analysis using
semi-Markov reward processes. IEEE Trans. Comput. C-39 (1990), 1251–1264.

[5] G. D’Amico: The crossing barrier of a non-homogeneous semi-Markov chain. Stochastics
81 (2009), 589–600.

[6] G.D’Amico: Age-usage semi-Markov models. Appl. Math. Modelling 35 (2011),
4354–4366.

[7] G.D’Amico, F. Petroni, F. Prattico: Reliability measures of second-order semi-Markov
chain applied to wind energy production. Journal of Renewable Energy 2013 (2013),
Article ID 368940, 6 pp.

[8] J. Janssen, R.Manca: Semi-Markov Risk Models for Finance, Insurance and Reliability.
Springer, New York, 2007.

587



[9] N.Limnios: Reliability measures of semi-Markov systems with general state space.
Methodol. Comput. Appl. Probab. 14 (2012), 895–917.
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