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Abstract. In this paper, we establish the complete convergence and complete moment
convergence of weighted sums for arrays of rowwise ϕ-mixing random variables, and the
Baum-Katz-type result for arrays of rowwise ϕ-mixing random variables. As an application,
the Marcinkiewicz-Zygmund type strong law of large numbers for sequences of ϕ-mixing
random variables is obtained. We extend and complement the corresponding results of
X. J.Wang, S.H.Hu (2012).
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1. Introduction

Assume that {Xn, n > 1} is a sequence of random variables defined on a fixed

probability space (Ω,F , P ).

First, we recall the definition of ϕ-mixing random variables introduced by Do-

brushinin [6].

Letm and n be positive integers. Write Fm
n = σ(Xi, n 6 i 6 m). Given σ-algebras

A,B in F , let

ϕ(A,B) = sup
A∈A,B∈B,P (A)>0

|P (B|A)− P (B)|.

Define the ϕ-mixing coefficients by

ϕ(n) = sup
k>1

ϕ(Fk
1 ,F

∞
k+n), n > 0.
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Definition 1.1. A sequence {Xn, n > 1} of random variables is said to be a

ϕ-mixing sequence if ϕ(n) ↓ 0 as n→ ∞.

An array {Xni, i > 1, n > 1} of random variables is called an array of rowwise

ϕ-mixing random variables if for every n > 1, {Xni, i > 1} is a sequence of ϕ-mixing

random variables.

Hsu and Robbins [9] introduced the concept of complete convergence as follows. A

sequence {Un, n > 1} of random variables is said to converge completely to a constant

C if
∞
∑

n=1
P (|Un − C| > ε) < ∞ for all ε > 0. In view of the Borel-Cantelli lemma,

this implies that Un → C almost surely (a.s.). The converse is true if the {Un, n >

1} is independent. Hsu and Robbins [9] proved that the sequence of arithmetic

means of independent and identically distributed (i.i.d.) random variables converges

completely to the expected value if the variance of the summands is finite. Erdös [7]

proved the converse. The result of Hsu-Robbins-Erdös is a fundamental theorem in

probability theory and has been generalized in several directions by many authors.

One of the most important generalizations is that of Baum and Katz [3] for the

strong law of large numbers as follows.

Theorem 1.1. Let α > 1/2 and αp > 1. Let {Xn, n > 1} be a sequence of i.i.d.

random variables. Assume further EX1 = 0 if α 6 1. Then the following statements

are equivalent:

(i) E|X1|
p <∞;

(ii)
∞
∑

n=1
nαp−2P

(

max
16j6n

∣

∣

∣

j
∑

i=1

Xi

∣

∣

∣
> εnα

)

<∞ for all ε > 0.

Motivated by the result of Baum and Katz [3] for i.i.d. random variables, many

authors further studied the Baum-Katz-type theorem for dependent random vari-

ables. One can refer to Jun and Demei [11], Peligrad [15], Peligrad and Gut [16], Qiu

et al. [17], Shao [18], Shen et al. [19], Stoica [20], [21], Sung [23], Wang and Hu [26],

Wang et al. [29], etc.

Next, we will give the definition of stochastic domination which is used frequently

in the paper.

Definition 1.2. A sequence {Xn, n > 1} of random variables is said to be

stochastically dominated by a random variable X if there exists a positive constant

C such that

sup
n>1

P (|Xn| > x) 6 CP (|X | > x)

for all x > 0.

An array {Xni, i > 1, n > 1} of rowwise random variables is said to be stochasti-

cally dominated by a random variable X if there exists a positive constant C such
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that

sup
i>1

P (|Xni| > x) 6 CP (|X | > x)

for all x > 0 and n > 1.

The complete convergence for arrays of rowwise random variables was studied by

many authors. For example, the complete convergence for arrays of rowwise inde-

pendent random variables was studied by Hu et al. [10], Sung et al. [25], Kruglov

et al. [12] and others. Recently, many authors extended the complete convergence

for arrays of rowwise independent random variables to the cases of the dependent

random variables. Kuczmaszewska [13] obtained the complete convergence for ar-

rays of rowwise ̺-mixing and ˜̺-mixing random variables, Chen et al. [4] and Kucz-

maszewska [14] established the complete convergence for arrays of rowwise negatively

associated random variables, Zhou and Lin [33] obtained the complete convergence

for arrays of rowwise ̺-mixing random variables under some suitable conditions,

Sung [24] discussed the complete convergence for arrays of rowwise negatively asso-

ciated, negatively dependent, ϕ-mixing and ˜̺-mixing random variables, and so on.

Meanwhile, many authors established the complete convergence of weighted sums

for arrays of rowwise dependent random variables. For example, Baek et al. [1] dis-

cussed the complete convergence of weighted sums for arrays of rowwise negatively

associated random variables, Baek and Park [2] and Wu [31] discussed the conver-

gence of weighted sums for arrays of negatively dependent random variables, Wang

et al. [28] discussed the complete convergence for weighted sums of arrays of rowwise

asymptotically almost negatively associated random variables, Guo [8] investigated

the complete moment convergence of weighted sums of rowwise ϕ-mixing random

variables.

Wang and Hu [26] discussed the complete convergence for ϕ-mixing random vari-

ables and obtained the following results.

Theorem 1.2. Let αp > 1 and 1/2 < α 6 1. Assume that {Xn, n > 1} is

a sequence of ϕ-mixing random variables which is stochastically dominated by a

random variable X with E|X |p < ∞. Assume further that
∞
∑

n=1
ϕ1/2(n) < ∞ and

EXk = 0 for each k > 1. Then for all ε > 0,

∞
∑

n=1

nαp−2P

(

max
16j6n

∣

∣

∣

∣

j
∑

i=1

Xi

∣

∣

∣

∣

> εnα

)

<∞.
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Theorem 1.3. Let {Xn, n > 1} be a sequence of ϕ-mixing random variables

which is stochastically dominated by a random variable X with E|X |p < ∞ for

some 0 < p < 2. Assume that
∞
∑

n=1
ϕ1/2(n) < ∞ and EXk = 0 for each k > 1 if

1 6 p < 2. Then for all ε > 0,

∞
∑

n=1

n−1P

(

max
16j6n

∣

∣

∣

∣

j
∑

i=1

Xi

∣

∣

∣

∣

> εn1/p

)

<∞.

The main purpose of the paper is to further study the complete convergence and

complete moment convergence of weighted sums for arrays of rowwise ϕ-mixing ran-

dom variables and the Baum-Katz-type theorem of ϕ-mixing random variables. As

an application, we get the Marcinkiewicz-Zygmund type strong law of large numbers

and the necessary and sufficient condition of the complete moment convergence for

ϕ-mixing random variables. We relax the conditions 1/2 < α 6 1 and p > 1 of The-

orem 1.2 to the conditions α > 1/2 and p > 0. Hence, we extend and complement

the corresponding results of Wang and Hu [26].

Throughout this paper, the symbols C,C1, . . . denote positive constants which

may be different at various places. Assume that I(A) is the indicator function of the

set A. Let x+ = max(0, x) and log x = lnmax(x, e), where ln x denotes the natural

logarithm. an = O(bn) stands for |an| 6 C|bn|.

2. Some lemmas

In this section, we will give some lemmas which are useful to proving our main

results.

Lemma 2.1 (cf. [30]). Let {Xn, n > 1} be a sequence of random variables, which

is stochastically dominated by a random variable X . Then for any a > 0 and b > 0,

the following two statements hold:

E|Xn|
aI(|Xn| 6 b) 6 C1{E|X |aI(|X | 6 b) + baP (|X | > b)}

and

E|Xn|
aI(|Xn| > b) 6 C2E|X |aI(|X | > b),

where C1 and C2 are positive constants.
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Lemma 2.2 (cf. [27]). Let {Xn, n > 1} be a sequence of ϕ-mixing random vari-

ables with
∞
∑

n=1
ϕ1/2(n) <∞. Assume that EXn = 0 and E|Xn|

q <∞ for some q > 2

and each n > 1. Then there exists a positive constant C depending only on q such

that

E

(

max
16j6n

∣

∣

∣

∣

a+j
∑

i=a+1

Xi

∣

∣

∣

∣

q)

6 C

{ a+n
∑

i=a+1

E|Xi|
q +

( a+n
∑

i=a+1

EX2
i

)q/2}

for every a > 0 and n > 1. In particular, for every n > 1 we have

E

(

max
16j6n

∣

∣

∣

∣

j
∑

i=1

Xi

∣

∣

∣

∣

q)

6 C

{ n
∑

i=1

E|Xi|
q +

( n
∑

i=1

EX2
i

)q/2}

.

Lemma 2.3 (cf. [22]). Let {Yn, n > 1} and {Zn, n > 1} be sequences of random

variables. Then for any q > 1, ε > 0 and a > 0,

E

(

max
16j6n

∣

∣

∣

∣

j
∑

i=1

(Yi + Zi)

∣

∣

∣

∣

− εa

)+

6

( 1

εq
+

1

q − 1

) 1

aq−1
E max

16j6n

∣

∣

∣

∣

j
∑

i=1

Yi

∣

∣

∣

∣

q

+ E max
16j6n

∣

∣

∣

∣

j
∑

i=1

Zi

∣

∣

∣

∣

.

Lemma 2.4 (cf. [32]). Assume that events A1, A2, . . ., An satisfy

Var

( n
∑

i=1

I(Ai)

)

6 C
n
∑

i=1

P (Ai),

then
(

1− P

( n
⋃

i=1

Ai

))2 n
∑

i=1

P (Ai) 6 CP

( n
⋃

i=1

Ai

)

.

3. Main results and their proofs

In this section, let {Xni, i > 1, n > 1} be an array of rowwise ϕ-mixing ran-

dom variables, precisely, {Xni, i > 1} is a sequence of ϕ-mixing random variables
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with the common mixing coefficients {ϕ(i), i > 1} for every n > 1. Assume that

{ani, i > 1, n > 1} is an array of real numbers. Let {Xn, n > 1} be a sequence of

ϕ-mixing random variables with the mixing coefficients {ϕ(n), n > 1}.

In the following, let ψ(x) = 1 or ψ(x) = log x. Note that the function ψ(x) has

the following properties (see Chen and Volodin [5]):

(a) for all m > k > 1,

(3.1)
m
∑

n=k

nr−1ψ(n) 6 Cmrψ(m) if r > 0

and

(3.2)
∞
∑

n=m

nr−1ψ(n) 6 Cmrψ(m) if r < 0;

(b) for all p > 0, x ∈ R,

(3.3) ψ(|x|p) 6 C(p)ψ(|x|) 6 C(p)ψ(1 + |x|),

where C(p) is a constant depending only on p.

Theorem 3.1. Let α > 1/2 and αp > 1. Assume that {Xni, i > 1, n > 1} is an

array of rowwise ϕ-mixing random variables which is stochastically dominated by a

random variable X . Assume that {ani, i > 1, n > 1} is an array of real numbers with

(3.4)
n
∑

i=1

|ani|
q = O(n)

for some q > max{(pα− 1)/(α− 1/2), 2}. Assume further that
∞
∑

n=1
ϕ1/2(n) <∞ and

EXni = 0 for i > 1 and n > 1 if p > 1. If

(3.5) E|X |pψ(|X |) <∞,

then

(3.6)

∞
∑

n=1

nαp−2ψ(n)P

(

max
16j6n

∣

∣

∣

∣

j
∑

i=1

aniXni

∣

∣

∣

∣

> εnα

)

<∞ for all ε > 0.
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P r o o f. i) Let p > 1. For fixed n > 1, let X ′
ni = XniI(|Xni| 6 nα) and X ′′

ni =

Xni −X ′
ni, i > 1. Then it is easy to check that

∞
∑

n=1

nαp−2ψ(n)P

(

max
16j6n

∣

∣

∣

∣

j
∑

i=1

aniXni

∣

∣

∣
> εnα

)

6

∞
∑

n=1

nαp−2ψ(n)P

(

max
16j6n

∣

∣

∣

∣

j
∑

i=1

ani(X
′
ni − EX ′

ni)

∣

∣

∣

∣

> εnα/2

)

+

∞
∑

n=1

nαp−2ψ(n)P

(

max
16j6n

∣

∣

∣

∣

j
∑

i=1

ani(X
′′
ni − EX ′′

ni)

∣

∣

∣

∣

> εnα/2

)

:= I∗ + J∗.

By Cr’s inequality and
n
∑

i=1

|ani|
q = O(n), it is easy to check that for all 0 < γ 6 q,

(3.7)
1

n

n
∑

i=1

|ani|
γ 6

(

1

n

n
∑

i=1

|ani|
q

)γ/q

= O(1).

For J∗, we have by Markov’s inequality, Lemma 2.1, (3.7), and (3.3) that

(3.8) J∗ 6 C

∞
∑

n=1

nαp−2−αψ(n)

n
∑

i=1

|ani|E|X ′′
ni|

6 C
∞
∑

n=1

nαp−1−αψ(n)E|X |I(|X | > nα)

= C

∞
∑

n=1

nαp−1−αψ(n)

∞
∑

j=n

E|X |I(j < |X |1/α 6 j + 1)

= C

∞
∑

j=1

E|X |I(j < |X |1/α 6 j + 1)

j
∑

n=1

nαp−1−αψ(n)

6 C

∞
∑

j=1

jαp−αψ(j)E|X |I(j < |X |1/α 6 j + 1)

6 CE|X |pψ(|X |1/α)

6 CE|X |pψ(|X |) <∞.

For I∗, by Markov’s inequality, Lemma 2.2 and Jensen’s inequality we have that for

any r > 2,

I∗ 6 Cr

∞
∑

n=1

nαp−2−αrψ(n)E

(

max
16j6n

∣

∣

∣

∣

j
∑

i=1

(aniX
′
ni − EaniX

′
ni)

∣

∣

∣

∣

r)

(3.9)
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6 Cr

∞
∑

n=1

nαp−2−αrψ(n)

n
∑

i=1

|ani|
rE|X ′

ni|
r

+ Cr

∞
∑

n=1

nαp−2−αrψ(n)

( n
∑

i=1

a2niE(X ′
ni)

2

)r/2

:= I∗1 + I∗2 .

We consider the following three cases:

Case 1. α > 1/2, αp > 1 and p > 2.

Take r = q. By q > max{(αp − 1)/(α − 1/2), 2}, it follows that q > p and

αp− 2− αq + q/2 < −1.

For I∗1 , we have by Cr’s inequality that

(3.10) I∗1 6 C

∞
∑

n=1

nαp−2−αqψ(n)

×

n
∑

i=1

|ani|
q
(

E|Xni|
qI(|Xni| 6 nα) + nαqP (|Xni| > nα)

)

6 C

∞
∑

n=1

nαp−2−αqψ(n)

n
∑

i=1

|ani|
q(E|X |qI(|X | 6 nα) + nαqP (|X | > nα))

6 C

∞
∑

n=1

nαp−1−αqψ(n)E|X |qI(|X | 6 nα)

+ C

∞
∑

n=1

nαp−1−αψ(n)E|X |I(|X | > nα)

6 C

∞
∑

n=1

nα(p−q)−1
n
∑

j=1

jαqP (j − 1 < |X |1/α 6 j) + C

6 C

∞
∑

j=1

jαqP (j − 1 < |X |1/α 6 j)

∞
∑

n=j

nα(p−q)−1ψ(n) + C

6 C

∞
∑

j=1

jαpψ(j)P (j − 1 < |X |1/α 6 j) + C

6 CE|X |pψ(|X |) + C <∞.

For I∗2 , note that EX
2 <∞ if E|X |pψ(|X |) <∞ for p > 2. We have by (3.7) that

I∗2 6 C
∞
∑

n=1

nαp−2−αqψ(n)

( n
∑

i=1

a2niEX
2
ni

)q/2

6 C

∞
∑

n=1

nαp−2−αqψ(n)

( n
∑

i=1

a2niEX
2

)q/2

6 C

∞
∑

n=1

nαp−2−αq+q/2ψ(n) <∞.
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Case 2. α > 1/2, αp > 1 and 1 < p < 2.

Take r = 2. Similarly to the proofs of (3.8)–(3.10) , we have that

(3.11) I∗ 6 C

∞
∑

n=1

nαp−2−2αψ(n)

n
∑

i=1

a2ni(EX
2
niI(|Xni| 6 nα) + n2αP (|Xni| > nα))

6 C
∞
∑

n=1

nαp−1−2αψ(n)EX2I(|X | 6 nα)

+ C

∞
∑

n=1

nαp−1−αψ(n)E|X |I(|X | > nα) <∞.

Case 3. α > 1/2, αp = 1 and p > 1

Take r = 2. Note that 1/2 < α < 1 if αp = 1. Similarly to the proof of (3.11), it

follows that I∗ <∞.

ii) Let p = 1. Note that α > 1 due to αp > 1. By EXni = 0 for i > 1 and n > 1,

Lemma 2.1, (3.7) and (3.5), we have that

n−α max
16j6n

∣

∣

∣

∣

j
∑

i=1

aniEX
′
ni

∣

∣

∣

∣

= n−α max
16j6n

∣

∣

∣

∣

j
∑

i=1

aniEXniI(|Xni| > nα)

∣

∣

∣

∣

6 n−α
n
∑

i=1

|ani|E|Xni|I(|Xni| > nα)

6 n1−αE|X |I(|X | > nα) → 0 as n→ ∞.

Hence, for n large enough, we have

(3.12) n−α max
16j6n

∣

∣

∣

∣

j
∑

i=1

aniEX
′
ni

∣

∣

∣

∣

<
ε

2
.

It follows that

∞
∑

n=1

nα−2ψ(n)P

(

max
16j6n

∣

∣

∣

∣

j
∑

i=1

aniXni

∣

∣

∣

∣

> εnα

)

(3.13)

6

∞
∑

n=1

nα−2ψ(n)

n
∑

i=1

P (|Xni| > nα)

+

∞
∑

n=1

nα−2ψ(n)P

(

max
16j6n

∣

∣

∣

∣

j
∑

i=1

aniX
′
ni

∣

∣

∣

∣

> εnα

)

597



6 C

∞
∑

n=1

nα−1ψ(n)P (|X | > nα)

+ C

∞
∑

n=1

nα−2ψ(n)P

(

max
16j6n

∣

∣

∣

∣

j
∑

i=1

ani(X
′
ni − EX ′

ni)

∣

∣

∣

∣

>
εnα

2

)

:= CI1 + CI2.

For I1, we have by (3.1) and (3.5) that

(3.14) I1 =

∞
∑

n=1

nα−1ψ(n)

∞
∑

i=n

P (iα < |X | 6 (i+ 1)α)

=

∞
∑

i=1

P (iα < |X | 6 (i+ 1)α)

i
∑

n=1

nα−1ψ(n)

6 C
∞
∑

i=1

P (iα < |X | 6 (i+ 1)α)iαψ(i) 6 CE|X |ψ(|X |) <∞.

For I2, we have by Markov’s inequality, Lemma 2.2, Lemma 2.1, (3.2) and (3.3)

that

(3.15)

I2 6 C
∞
∑

n=1

n−α−2ψ(n)E max
16j6n

( j
∑

i=1

ani(X
′
ni − EX ′

ni)

)2

6 C

∞
∑

n=1

n−α−2ψ(n)

n
∑

i=1

a2niE(X ′
ni)

2

= C

∞
∑

n=1

n−α−2ψ(n)

{ n
∑

i=1

a2niEX
2
niI(|Xni| 6 nα) + n2α

n
∑

i=1

a2niP (|Xni| > nα)

}

6 C

∞
∑

n=1

n−α−1ψ(n)EX2I(|X | 6 nα) + C

∞
∑

n=1

nα−1ψ(n)P (|X | > nα)

= C

∞
∑

n=1

n−α−1ψ(n)

n
∑

k=1

EX2I((k − 1)α < |X | 6 kα) + C

= C

∞
∑

k=1

EX2I((k − 1)α < |X | 6 kα)

∞
∑

n=k

n−α−1ψ(n) + C

6 C

∞
∑

k=1

k−αψ(k)EX2I((k − 1)α < |X | 6 kα) + C

6 CE|X |ψ(|X |) + C <∞.

By (3.13)–(3.15), (3.6) holds for the case p = 1.
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iii) Let 0 < p < 1. Denote

(3.16)

j
∑

i=1

aniXni =

j
∑

i=1

aniXniI(|Xni| 6 nα) +

j
∑

i=1

aniXniI(|Xni| > nα)

=: S′
nj + S′′

nj .

Noting that E|X |pψ(|X |) < ∞, we have by Markov’s inequality, Lemma 2.1, (3.2),

(3.3), and (3.7) that

(3.17)

∞
∑

n=1

nαp−2ψ(n)P
(

max
16j6n

|S′
nj | > εnα

)

6 ε−1
∞
∑

n=1

nαp−2−αψ(n)E

(

max
16j6n

∣

∣

∣

∣

j
∑

i=1

aniXniI(|Xni| 6 nα)

∣

∣

∣

∣

)

6 ε−1
∞
∑

n=1

nαp−2−αψ(n)

n
∑

i=1

|ani|E|Xni|I(|Xni| 6 nα)

6 Cε−1
∞
∑

n=1

nαp−1−αψ(n)E|X |I(|X | 6 nα)

+ Cε−1
∞
∑

n=1

nαp−1ψ(n)P (|X | > nα)

= Cε−1
∞
∑

n=1

nαp−1−αψ(n)
n
∑

j=1

E|X |I(j − 1 < |X |1/α 6 j)

+ Cε−1
∞
∑

n=1

nαp−1ψ(n)

∞
∑

j=n

P (j < |X |1/α 6 j + 1)

= Cε−1
∞
∑

j=1

jαP (j − 1 < |X |1/α 6 j)

∞
∑

n=j

nαp−1−αψ(n)

+ Cε−1
∞
∑

j=1

P (j < |X |1/α 6 j + 1)

j
∑

n=1

nαp−1ψ(n)

6 Cε−1
∞
∑

j=1

jαpψ(j)P (j − 1 < |X |1/α 6 j)

+ Cε−1
∞
∑

j=1

jαpψ(j)P (j < |X |1/α 6 j + 1)

6 CE|X |pψ(|X |) <∞
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and

(3.18)

∞
∑

n=1

nαp−2ψ(n)P
(

max
16j6n

|S′′
nj | > εnα

)

6 ε−p/2
∞
∑

n=1

nαp/2−2ψ(n)E

(

max
16j6n

∣

∣

∣

∣

j
∑

i=1

aniXniI(|Xni| > nα)

∣

∣

∣

∣

)p/2

6 ε−p/2
∞
∑

n=1

nαp/2−2ψ(n)
n
∑

i=1

|ani|
p/2E|Xni|

p/2I(|Xni| > nα)

6 Cε−p/2
∞
∑

n=1

nαp/2−1ψ(n)E|X |p/2I(|X | > nα)

= Cε−p/2
∞
∑

n=1

nαp/2−1ψ(n)

∞
∑

j=n

E|X |p/2I(j < |X |1/α 6 j + 1)

= Cε−p/2
∞
∑

j=1

jαp/2P (j < |X |1/α 6 j + 1)

j
∑

n=1

nαp/2−1ψ(n)

6 Cε−p/2
∞
∑

j=1

jαpψ(j)P (j − 1 < |X |1/α 6 j)

6 CE|X |pψ(|X |) <∞.

Hence, (3.16)–(3.18) implies (3.6). The proof of the theorem is completed. �

R em a r k 3.1. Under the conditions of Theorem 3.1, we have that for p > 1

(3.19)

∞
∑

n=1

nαp−2−αψ(n)E

(

max
16j6n

∣

∣

∣

∣

j
∑

i=1

aniXni

∣

∣

∣

∣

− εnα

)+

<∞ for all ε > 0.

In fact, by Lemma 2.3 with r > 2

∞
∑

n=1

nαp−2−αψ(n)E

(

max
16j6n

∣

∣

∣

∣

j
∑

i=1

aniXni

∣

∣

∣

∣

− εnα

)+

6 C

∞
∑

n=1

nαp−2−αrψ(n)E

(

max
16j6n

∣

∣

∣

∣

j
∑

i=1

(aniX
′
ni − EaniX

′
ni)

∣

∣

∣

∣

)r

+

∞
∑

n=1

nαp−2−αψ(n)E

(

max
16j6n

∣

∣

∣

∣

j
∑

i=1

(aniX
′′
ni − EaniX

′′
ni)

∣

∣

∣

∣

)

.

By applying the process of the proof of Theorem 3.1 for the case p > 1, it follows

that (3.19) holds.
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R em a r k 3.2. Zhou and Lin [33] and Guo [8] established the complete conver-

gence for arrays of dependent random variables. Theorem 3.2 of Zhou and Lin [33]

yields the complete convergence of weighted sums for arrays of rowwise ̺-mixing ran-

dom variables stochastically dominated by a random variablesX with E|X |p <∞ for

1 6 p 6 2. The weighted condition in Theorem 3.2 of Zhou and Lin [33] guarantees

that for some r > 2

(3.20) max
16i6n

|ani|
p = O(nν−1) for some 0 < ν < 2/r.

Note that in the case of non-weight (take ani ≡ 1) (3.20), cannot be satisfied but

(3.4), can; hence (3.20) is stronger than (3.4). Actually, by (3.20), it follows that

n
∑

i=1

|ani|
q 6 Cn1+ ν−1

p
q
6 Cn.

We discuss the complete convergence of weighted sums for arrays of rowwise ϕ-

mixing random variables stochastically dominated by a random variable X with

E|X |p < ∞ for p > 0 under the condition (3.4) which is satisfied for the case of

non-weight (take ani ≡ 1). The Corollary 2.5 of Guo [8] establishes the complete

moment convergence for arrays of rowwise ϕ-mixing random variables stochastically

dominated by a random variable X with E|X |pl(|X |1/α) for αp > 1 and 1/2 <

α < 1, where l(x) > 0 is a slowly varying function. In Remark 3.1, we consider

the complete moment convergence of weighted sums for arrays of rowwise ϕ-mixing

random variables to two special slowly varying functions ψ(x) = 1 or ψ(x) = log x,

and relax the conditions αp > 1 and 1/2 < α < 1 to the case αp > 1, p > 1, and

α > 1/2.

Similarly to the proof of Theorem 3.1, we can get easily the following result.

Theorem 3.2. Let α > 1/2 and αp > 1. Suppose that {Xn, n > 1} is a se-

quence of ϕ-mixing random variables which is stochastically dominated by a random

variable X . Assume that {ani, i > 1, n > 1} is an array of real numbers with
n
∑

i=1

|ani|
q = O(n) for some q > max{(αp − 1)/(α − 1/2), 2}. Assume further that

∞
∑

n=1
ϕ1/2(n) <∞ and EXn = 0 for n > 1 if p > 1. If (3.5) holds, then

∞
∑

n=1

nαp−2ψ(n)P

(

max
16j6n

∣

∣

∣

∣

j
∑

i=1

aniXi

∣

∣

∣

∣

> εnα

)

<∞ for all ε > 0.
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Corollary 3.1. Let α > 1/2 and αp > 1. Suppose that {Xn, n > 1} is a sequence

of ϕ-mixing random variables which is stochastically dominated by a random vari-

able X . Assume that {an, n > 1} is a sequence of real numbers with
n
∑

i=1

|ai|
q = O(n)

for some q > max{(αp− 1)/(α− 1/2), 2}. Assume further that
∞
∑

n=1
ϕ1/2(n) <∞ and

EXn = 0 for n > 1 if p > 1. If E|X |p <∞, then

(3.21)

∞
∑

n=1

nαp−2P

(

max
16j6n

∣

∣

∣

∣

j
∑

i=1

aiXi

∣

∣

∣

∣

> εnα

)

<∞ for all ε > 0

and

(3.22) n−α
n
∑

i=1

aiXi → 0 a.s. n→ ∞.

P r o o f. Taking ψ(x) = 1, and ani = ai for 1 6 i 6 n and ani = 0 otherwise in

Theorem 3.2, we obtain (3.21) immediately. We will prove (3.22).

By (3.21), it follows that for all ε > 0,

∞ >

∞
∑

n=1

nαp−2P

(

max
16j6n

∣

∣

∣

∣

j
∑

i=1

aiXi

∣

∣

∣

∣

> εnα

)

=
∞
∑

k=0

2k+1
−1

∑

n=2k

nαp−2P

(

max
16j6n

∣

∣

∣

∣

j
∑

i=1

aiXi

∣

∣

∣

∣

> εnα

)

>















∞
∑

k=0

(2k)αp−22kP
(

max
16j62k

∣

∣

∣

j
∑

i=1

aiXi

∣

∣

∣
> ε2(k+1)α

)

, if αp > 2,

∞
∑

k=0

(2k+1)αp−22kP
(

max
16j62k

∣

∣

∣

j
∑

i=1

aiXi

∣

∣

∣
> ε2(k+1)α

)

, if 1 6 αp < 2.

>















∞
∑

k=0

P
(

max
16j62k

∣

∣

∣

j
∑

i=1

aiXi

∣

∣

∣
> ε2(k+1)α

)

, if αp > 2,

1/2
∞
∑

k=0

P
(

max
16j62k

∣

∣

∣

j
∑

i=1

aiXi

∣

∣

∣
> ε2(k+1)α

)

, if 1 6 αp < 2.

By the Borel-Cantelli lemma, we obtain that

(3.23)

max
16j62k

∣

∣

∣

j
∑

i=1

aiXi

∣

∣

∣

2(k+1)α
→ 0 a.s. k → ∞.
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For every positive integer n there exists a positive integer k such that 2k−1 6 n 6 2k.

We have by (3.23) that

n−α

∣

∣

∣

∣

n
∑

i=1

aiXi

∣

∣

∣

∣

6 max
2k−16n62k

n−α

∣

∣

∣

∣

n
∑

i=1

aiXi

∣

∣

∣

∣

6

2α max
16j62k

∣

∣

∣

j
∑

i=1

aiXi

∣

∣

∣

2(k+1)α
→ 0 a.s. k → ∞,

which implies that

n−α
n
∑

i=1

aiXi → 0 a.s. n→ ∞.

This completes the proof of the corollary. �

R em a r k 3.3. Take an ≡ 1 in Corollary 3.1. Compared with Theorem 1.2, we

relax the conditions 1/2 < α 6 1 and p > 1 to the conditions α > 1/2 and p > 0,

and also consider the case αp = 1. Taking αp = 1 in Corollary 3.1, we can get

Theorem 1.3 immediately, i.e., Theorem 1.3 is a special case of Corollary 3.1. Taking

α = 1 and p = 2 in Corollary 3.1, we can get the Hsu-Robbins-type theorem (see Hsu

and Robbins [9]) for ϕ-mixing random variables. Hence, we extend and complement

the corresponding results of Wang and Hu [26].

If the condition of stochastic domination in Theorem 3.1 is replaced by the stronger

condition that (3.24) below is satisfied, we get the following result.

Theorem 3.3. Let α > 1/2 and αp > 1. Let {Xni, i >, n > 1} be an array of

rowwise ϕ-mixing random variables. Assume that {ani, i > 1, n > 1} is an array

of real numbers with
n
∑

i=1

|ani|
q = O(n) for some q > max{(αp − 1)/(α − 1/2), 2}.

Assume further that
∞
∑

n=1
ϕ1/2(n) <∞ and EXni = 0 for i > 1 and n > 1 if p > 1. If

there exist a random variable X and positive numbers C1 and C2 such that for all

x > 0, n > 1,

(3.24) C1P (|X | > x) 6 inf
i>1

P (|Xni| > x) 6 sup
i>1

P (|Xni| > x) 6 C2P (|X | > x),

then (3.5) is equivalent to (3.6).

P r o o f. By Theorem 3.1, we can see that (3.5) implies (3.6) under the conditions

of Theorem 3.3. So we only need to prove that (3.6) implies (3.5).

By (3.6), taking ani ≡ 1 for all i > 1 and n > 1, it follows that for all ε > 0

(3.25)

∞
∑

n=1

nαp−2ψ(n)P
(

max
16j6n

|Xnj | > εnα
)

<∞.
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We have by (3.25) that

(3.26) P
(

max
16j6n

|Xnj| > εnα
)

→ 0 as n→ ∞.

By Lemma 2.2, one has that

Var

( n
∑

i=1

I(|Xni| > εnα)

)

= E

( n
∑

i=1

(I(|Xni| > εnα)− EI(|Xni| > εnα))

)2

6 C

n
∑

i=1

P (|Xni| > εnα),

which implies that by Lemma 2.4

(

1− P
(

max
16j6n

|Xnj | > εnα
))2 n

∑

i=1

P (|Xni| > εnα)(3.27)

6 CP
(

max
16j6n

|Xnj | > εnα
)

.

Combining (3.24) with (3.26) and (3.27), we have that for all ε > 0

(3.28) nP (|X | > εnα) 6 C

n
∑

j=1

P (|Xnj | > εnα) 6 CP
(

max
16j6n

|Xnj | > εnα
)

.

Take ε = 1. It follows from (3.25) and (3.28) and (3.1) that

∞ >

∞
∑

n=1

nαp−2ψ(n)P
(

max
16j6n

|Xnj| > nα
)

> C
∞
∑

n=1

nαp−1ψ(n)P (|X | > nα)

= C

∞
∑

n=1

nαp−1ψ(n)

∞
∑

j=n

P (j < |X |1/α 6 j + 1)

= C
∞
∑

j=1

P (j < |X |1/α 6 j + 1)

j
∑

n=1

nαp−1ψ(n)

> C

∞
∑

j=1

P (j < |X |1/α 6 j + 1)jαpψ(j)

> CE|X |pψ(|X |),

i.e. (3.5) holds. The proof of the theorem is completed. �

Similarly to the proof of Theorem 3.3, we obtain the following result easily.
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Theorem 3.4. Let α > 1/2 and αp > 1. Assume that {Xn, n > 1} is a sequence

of ϕ-mixing random variables. Assume further that
∞
∑

n=1
ϕ1/2(n) < ∞ and EXn = 0

for n > 1 if p > 1. If there exist a random variable X and positive numbers C1 and

C2 such that for all x > 0

(3.29) C1P (|X | > x) 6 inf
i>1

P (|Xi| > x) 6 sup
i>1

P (|Xi| > x) 6 C2P (|X | > x),

then (3.5) is equivalent to (3.6).

If {Xn, n > 1} is a sequence of identically distributed random variables, then

(3.29) is satisfied. So we can get the following corollary from Theorem 3.4.

Corollary 3.2. Let α > 1/2 and αp > 1. Let {Xn, n > 1} be a sequence of

identically distributed ϕ-mixing random variables. Assume that
∞
∑

n=1
ϕ1/2(n) < ∞

and EXn = 0 for n > 1 if p > 1. Then the following two statements are equivalent:

(i) E|X1|
p <∞;

(ii)
∞
∑

n=1
nαp−2P

(

max
16j6n

∣

∣

∣

j
∑

i=1

Xi

∣

∣

∣
> εnα

)

<∞ for all ε > 0.

R em a r k 3.4. Corollary 3.2 extends the Baum-Katz Theorem (i.e. Theorem 1.1)

for i.i.d. random variables to the case of ϕ-mixing random variables. In addition, we

complement the case αp = 1 and α > 1/2.

Corollary 3.3. Let α > 1/2, αp > 1 and p > 1. Let {Xn, n > 1} be a sequence

of zero mean and identically distributed ϕ-mixing random variables. Assume that
∞
∑

n=1
ϕ1/2(n) <∞. Then the following two statements are equivalent:

(i) E|X1|
p <∞;

(ii)
∞
∑

n=1
nαp−2−αE

(

max
16j6n

∣

∣

∣

j
∑

i=1

Xi

∣

∣

∣
− εnα

)+

<∞ for all ε > 0.

P r o o f. Taking ψ(x) = 1 in Theorem 3.1, (i) implies (ii) from Theorem 3.1 and

Remark 3.1 immediately. We only need to prove (ii) implies (i).

It is easy to check that

εnαP

(

max
16j6n

∣

∣

∣

∣

j
∑

i=1

Xi

∣

∣

∣

∣

> 2εnα

)

6 E

(

max
16j6n

∣

∣

∣

∣

j
∑

i=1

Xi

∣

∣

∣

∣

− εnα

)+

.

Hence, (ii) implies that

∞
∑

n=1

nαp−2P

(

max
16j6n

∣

∣

∣

∣

j
∑

i=1

Xi

∣

∣

∣

∣

> εnα

)

<∞ for all ε > 0.

605



The rest of the proof is similar to that of Theorem 3.3 and is omitted. This completes

the proof of the corollary. �
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