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Abstract. In this paper, a discrete version of continuous non-autonomous predator-prey
model with infected prey is investigated. By using Gaines and Mawhin’s continuation
theorem of coincidence degree theory and the method of Lyapunov function, some sufficient
conditions for the existence and global asymptotical stability of positive periodic solution
of difference equations in consideration are established. An example shows the feasibility
of the main results.

Keywords: predator-prey model; periodic solution; topological degree; global asymptotic
stability

MSC 2010 : 34K20, 34C25

1. Introduction

Recently, qualitative research and analysis of population dynamical models, espe-

cially predator-prey models, has been an important and interesting problem which

has attracted a great deal of attention. Many authors have explored the dynamics of

predator-prey systems [1], [2], [5], [6], [9], [14], [18], [21], [23], [31]. For example, Liu

and Chen [8] discussed complex dynamics of Holling type II Lotka-Volterra predator-

prey model with impulsive perturbations on the predator. Song and Li [21] studied

the linear stability of the trivial periodic solution and semi-trivial periodic solutions

and the permanence of the periodic predator-prey model with modified Leslie-Gower

The research has been supported by National Natural Science Foundation of China
(Number 11261010), Soft Science and Technology Program of Guizhou Province (Num-
ber 2011LKC2030), Natural Science and Technology Foundation of Guizhou Province
(J[2012]2100), Governor Foundation of Guizhou Province ([2012]53) and Doctoral Foun-
dation of Guizhou University of Finance and Economics (2010).
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Holling-type II schemes and impulsive effect. Liu and Xu [16] investigated the exis-

tence of periodic solutions for a delay one-predator and two-prey system with Holling

type-II functional response. Agiza et al. [1] considered the chaotic phenomena of

a discrete prey-predator model of Holling type II. Pei et al. [19] analysed the extinc-

tion and permanence for one-prey multi-predators of Holling type II function response

system with impulsive biological control. Zhang and Luo [30] gave a theoretical study

on the existence of multiple positive periodic solutions for a delayed predator-prey

system with stage structure for the predator. Zhang and Hou [29] established the

existence of at least four positive periodic solutions for a ratio-dependent predator-

prey system with multiple exploited (or harvesting) terms. Ko and Ryu [13] focused

on the coexistence states of a nonlinear Lotka-Volterra type predator-prey model

with cross-diffusion. Jian et al. [10] considered the prey-extinction periodic solution

of a biological management model with impulsive stocking juvenile predators and

continuous harvesting adult predators. In detail, one can see [2], [11], [12], [15], [17],

[18]. In 2006, Hilker and Malchow [9] dealt with the local dynamics and strange

periodic attractor of the predator-prey model with infected prey

(1.1)





dS(t)

dt
= r1S(t)(1− S(t)− I(t))−

aS(t)Z(t)

1 + b(S(t) + I(t))

−
αS(t)I(t)

S(t) + I(t)
,

dI(t)

dt
= r2I(t)(1 − S(t)− I(t)) −

aI(t)Z(t)

1 + b(S(t) + I(t))

+
αS(t)I(t)

S(t) + I(t)
−m2I(t),

dZ(t)

dt
=

a(S(t) + I(t))Z(t)

1 + b(S(t) + I(t))
−m3Z(t),

where S(t) and I(t) are the susceptible phytoplankton population and the infected

phytoplankton population, Z(t) grazes on both the susceptible and infected phyto-

plankton. Frequency-dependent transmissions rate α > 0 as well as an additional

disease-induced mortality of infected prey (virulence) with rate m2 is assumed.

Then r1 and r2 are the intrinsic growth rates of susceptible and infected population,

respectively. Rate m3 represents the natural mortality rate of zooplankton. Futher

a, b are positive constants. In detail, on can see [9], [20].

Noting that any biological or environmental parameters are naturally subject to

fluctuation in time, we think that it is necessary and important to consider mod-

els with periodic ecological parameters. Thus the assumption of periodicity of the

parameters is a way of incorporating the periodicity of the environment. Then the

system (1.1) can be modified to the form
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(1.2)





dS(t)

dt
= r1(t)S(t)(1 − S(t)− I(t))−

a(t)S(t)Z(t)

1 + b(t)(S(t) + I(t))

−
α(t)S(t)I(t)

S(t) + I(t)
,

dI(t)

dt
= r2(t)I(t)(1 − S(t)− I(t)) −

a(t)I(t)Z(t)

1 + b(t)(S(t) + I(t))

+
α(t)S(t)I(t)

S(t) + I(t)
−m2(t)I(t),

dZ(t)

dt
=

a(t)(S(t) + I(t))Z(t)

1 + b(t)(S(t) + I(t))
−m3(t)Z(t).

Many authors have argued that discrete time models governed by difference equations

are more appropriate for describing the dynamics relationship among populations

than the continuous ones when the populations have non-overlapping generations.

Moreover, discrete time models can also provide efficient models of continuous ones

for numerical simulation. Therefore, it is reasonable to study time predator-prey

systems governed by difference equations.

In implementing the continuous-time predator-prey model for simulation or com-

putational purposes, in this paper we formulate a discrete-time system which is an

analogue of the continuous-time model (1.2). We know that the discrete-time ana-

logue when derived as a numerical approximation of (1.2) can preserve the dynamical

behavior of the continuous-time model. Once this is established, the discrete-time

analogue can be used without loss of functional similarity to the continuous-time

model and it preserves any biological reality that the continuous-time model has.

There are several schemes how to obtain the discrete-time analogues of continuous-

time models.

We consider the autonomous differential equation

du(t)

dt
= f(u(t)), t > 0.

The first-order derivative is approximated by the forward Euler expression

du(t)

dt
→

u(k + 1)− u(k)

ϕ
,

with the denominator function ϕ such that

ϕ(h) = h+O(h2),

where h = 1/m denotes the step-size and u(k) denotes the approximate value to

u(kh). Then we get

u(k + 1)− u(k) = ϕ(h)f(u(k)).

This method can be seen as the forward Euler method.
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The principle object of this article is to propose a discrete analogue system (1.2) by

using the Euler’s method and explore its dynamics. That is, following the methods in

[5], [24], we derive a discrete analogue of (1.2), apply Mawhin’s continuous theorem [8]

and the method of Lyapunov function to study the existence and globally asymptotic

stability of positive periodic solutions of the discrete analogue of (1.2). There are

some papers which deal with this topic, see [3], [4], [9], [22], [23], [25], [26], [27], [28].

The paper is organized as follows: in Section 2, by means of differential equations

with piecewise constant arguments, we first propose a discrete analogue of system

(1.2). In Section 3, based on the coincidence degree and the related continuation

theorem, some sufficient conditions for the existence of positive periodic solution

of difference equations are established. Using the method of Lyapunov function,

some sufficient conditions for the globally asymptotical stability of the system under

consideration are obtained in Section 4. The paper ends with an example which

shows the feasibility of the main results.

2. Discrete analogue of system (1.2)

In the following, we will discretize the system (1.2). Following the lines of [5], [24],

we assume that the average growth rates in system (1.2) change at regular intervals

of time. We can incorporate this aspect in (1.2) and obtain the following modified

system:

(2.1)





1

S(t)
Ṡ(t) = r1([t])(1 − S([t])− I([t]))−

a([t])Z([t])

1 + b([t])(S([t]) + I([t]))

−
α([t])I([t])

S([t]) + I([t])
,

1

I(t)
İ(t) = r2([t])(1 − S([t])− I([t]))−

a([t])Z([t])

1 + b([t])(S([t]) + I([t]))

+
α([t])S([t])

S([t]) + I([t])
−m2([t]),

1

Z(t)
Ż(t) =

a([t])(S([t]) + I([t]))

1 + b([t])(S([t]) + I([t]))
−m3([t]),

where t 6= 0, 1, 2, . . ., [t] denotes the integer part of t, t ∈ (0,∞). Equations of

type (2.1) are known as differential equations with piecewise constant arguments

and they occupy a position midway between differential equations and difference

equations. By a solution of (2.1), we mean a function x̃ = (S, I, Z)T which is defined

for t ∈ [0,∞) and has the following properties:

1. x̄ is continuous on [0,∞).
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2. The derivatives dS(t)/dt, dI(t)/dt, dZ(t)/dt exist at each point t ∈ [0,∞) with

the possible exception of the points t ∈ {0, 1, 2, . . .}, where left-sided derivatives

exist.

3. The equations in (2.1) are satisfied on each interval [k, k+1) with k = 0, 1, 2, . . .

We integrate (2.1) on any interval of the form [k, k+1), k = 0, 1, 2, . . . , and obtain

for k 6 t < k + 1, k = 0, 1, 2, . . .

(2.2)





S(t) = S(k) exp
{[

r1(k)(1− S(k)− I(k))−
a(k)Z(k)

1 + b(k)(S(k) + I(k))

−
α(k)I(k)

S(k) + I(k)

]
(t− k)

}
,

I(t) = I(k) exp
{[

r2(k)(1 − S(k)− I(k))−
a(k)Z(k)

1 + b(k)(S(k) + I(k))

+
α(k)S(k)

S(k) + I(k)
−m2(t)

]
(t− k)

}
,

Z(t) = Z(k) exp
{[ a(k)(S(k) + I(k))

1 + b(k)(S(k) + I(k))
−m3(k)

]
(t− k)

}
.

Let t → k + 1, then (2.2) takes the following form:

(2.3)





S(k + 1) = S(k) exp
[
r1(k)(1 − S(k)− I(k))

−
a(k)Z(k)

1 + b(k)(S(k) + I(k))
−

α(k)I(k)

S(k) + I(k)

]
,

I(k + 1) = I(k) exp
[
r2(k)(1− S(k)− I(k))

−
a(k)Z(k)

1 + b(k)(S(k) + I(k))
+

α(k)S(k)

S(k) + I(k)
−m2(k)

]
,

Z(k + 1) = Z(k) exp
[ a(k)(S(k) + I(k))

1 + b(k)(S(k) + I(k))
−m3(k)

]
,

which is a discrete time analogue of system (1.2). Here k = 0, 1, 2, . . .

3. Existence of positive periodic solutions

For convenience and simplicity in our discussion, we use the following notation

throughout the paper:

Iω := {0, 1, 2, . . . , ω − 1}, f :=
1

ω

ω−1∑

k=0

f(k), fL := min
k∈Z

{f(k)}, fM := max
k∈Z

{f(k)},
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where f(k) is an ω-periodic sequence of real numbers defined for k ∈ Z. We always

assume that

(H1) a, b, α,m2,m3, r1, r2 : Z → R
+ are ω-periodic, i.e.,

a(k + ω) = a(t), b(k + ω) = b(k), α(k + ω) = α(k), m2(k + ω) = m2(k),

m3(k + ω) = m3(k), r1(k + ω) = r1(k), r2(k + ω) = r2(k) for any k ∈ Z.

In order to explore the existence of positive periodic solutions of (2.3) and for the

reader’s convenience, we shall first introduce a few concepts and results without

proof, borrowing them from [8].

Let X , Y be normed vector spaces, L : DomL ⊂ X → Y a linear mapping,

N : X → Y a continuous mapping. The mapping L will be called a Fredholm

mapping of index zero if dimKerL = codim ImL < ∞ and ImL is closed in Y . If L is

a Fredholm mapping of index zero and there exist continuous projectors P : X → X

and Q : Y → Y such that ImP = KerL, ImL = KerQ = Im(I −Q), it follows that

L : DomL ∩ KerP : (I − P )X → ImL is invertible. We denote the inverse of that

map by KP . If Ω is an open bounded subset of X , the mapping N will be called

L-compact on Ω if QN(Ω) is bounded and KP (I −Q)N : Ω → X is compact. Since

ImQ is isomorphic to KerL, there exists an isomorphism J : ImQ → KerL.

Lemma 3.1 ([8], Continuation theorem). Let L be a Fredholm mapping of index

zero and let N be L-compact on Ω. Suppose

(a) for each λ ∈ (0, 1), every solution x of Lx = λNx is such that x /∈ ∂Ω;

(b) QNx 6= 0 for each x ∈ KerL ∩ ∂Ω, and deg{JQN,Ω ∩KerL, 0} 6= 0.

Then the equation Lx = Nx has at least one solution lying in DomL ∩ Ω.

Lemma 3.2 ([5]). Let g : Z → R be ω-periodic, i.e., g(k + ω) = g(k), then for

any fixed k1, k2 ∈ Iω and any k ∈ Z, one has

g(k) 6 g(k1) +

ω−1∑

s=0

|g(s+ 1)− g(s)|,

g(k) > g(k2)−

ω−1∑

s=0

|g(s+ 1)− g(s)|.

Define

l3 = {y = {y(k)} : y(k) = (y1(k), y2(k), y3(k))
T ∈ R

3, k ∈ Z}.

Let lω ⊂ l3 denote the subspace of all ω-periodic sequences equipped with the usual

supremum norm ‖·‖, i.e., ‖y‖ = |y1(k)|+|y2(k)|+|y3(k)| for any y = {y(k) : k ∈ Z} ∈

lω. It is easy to show that lω is a finite-dimensional Banach space.
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Let

lω0 =
{
y = {y(k)} ∈ lω :

ω−1∑

k=0

y(k) = 0
}
,(3.1)

lωc = {y = {y(k)} ∈ lω : y(k) = h ∈ R
3, k ∈ Z}.(3.2)

Then it follows that both lω0 and lω
c
are closed linear subspaces of lω and

lω = lω0 + lωc , dim lωc = 3.

Now we are ready to establish our result.

Theorem 3.1. Let S1, S̃1, S2 and S̃2 be defined by (3.16), (3.33), (3.20) and

(3.29), respectively, and set

K1 = r̄1(exp{S1}+ exp{S2}),

K2 = r̄2(exp{−S1}+ exp{−S2})− ā exp{S1},

K3 = r̄2(exp{S̃1}+ exp{S̃2}),

K4 = r̄2(exp{−S̃1}+ exp{−S̃2})− ā exp{S̃1}.

Suppose that conditions

m3 > max{ā exp{S1}, ā exp{S̃1}},(H2)

r̄2 −m3 > max{K1,K2,K3,K4}(H3)

hold. Then system (2.3) has at least one ω-periodic solution.

P r o o f. First of all, we make the change of variables

x1(k) = exp{u1(k)}, x2(k) = exp{u2(k)}, z(k) = exp{u3(k)},

then (2.3) can be reformulated as

(3.3)





u1(k + 1)− u1(k) = r1(k)(1− exp{u1(k)} − exp{u2(k)})

−
a(k) exp{u3(k)}

1 + b(k)(exp{u1(k)}+ exp{u2(k)})

−
α(k) exp{u2(k)}

exp{u1(k)} + exp{u2(k)}
,

u2(k + 1)− u2(k) = r2(k)(1− exp{u1(k)} − exp{u2(k)})

−
a(k) exp{u3(k)}

1 + b(k)(exp{u1(k)}+ exp{u2(k)})

+
α(k) exp{u1(k)}

exp{u1(k)} + exp{u2(k)}
−m2(k),

u3(k + 1)− u3(k) =
a(k)(exp{u1(k)}+ exp{u2(k)})

1 + b(k)(exp{u1(k)} + exp{u2(k)})
−m3(k).
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Let X = Y = lω,

(Lu)(k) = u(k + 1)− u(k) =




u1(k + 1)− u1(k)

u2(k + 1)− u2(k)

u3(k + 1)− u3(k)


 ,(3.4)

(Nu)(k) =




f1(u1(k), u2(k), u3(k))

f2(u1(k), u2(k), u3(k))

f3(u1(k), u2(k), u3(k))


 ,(3.5)

where u ∈ X, k ∈ Z and

f1(u1(k), u2(k), u3(k)) = r1(k)(1 − exp{u1(k)} − exp{u2(k)})

−
a(k) exp{u3(k)}

1 + b(k)(exp{u1(k)}+ exp{u2(k)})

−
α(k) exp{u2(k)}

exp{u1(k)}+ exp{u2(k)}
,

f2(u1(k), u2(k), u3(k)) = r2(k)(1 − exp{u1(k)} − exp{u2(k)})

−
a(k) exp{u3(k)}

1 + b(k)(exp{u1(k)}+ exp{u2(k)})

+
α(k) exp{u1(k)}

exp{u1(k)}+ exp{u2(k)}
−m2(k),

f3(u1(k), u2(k), u3(k)) =
a(k)(exp{u1(k)} + exp{u2(k)})

1 + b(k)(exp{u1(k)}+ exp{u2(k)})
−m3(k).

Then it is trivial to see that L is a bounded linear operator and

KerL = lω
c
, ImL = lω0 ,

and

dimKerL = 3 = codim ImL.

Then it follows that L is a Fredholm mapping of index zero. Define

Py =
1

ω

ω−1∑

s=0

y(s), y ∈ X, Qz =
1

ω

ω−1∑

s=0

z(s), z ∈ Y.

It is not difficult to show that P and Q are continuous projectors such that

ImP = KerL, ImL = KerQ = Im(I −Q).

Furthermore, the generalized inverse (to L) KP : ImL → KerP ∩DomL exists and

is given by

KP (z) =

ω−1∑

s=0

z(s)−
1

ω

ω−1∑

s=0

(ω − s)z(s).
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Obviously, QN and KP (I − Q)N are continuous. Since X is a finite-dimensional

Banach space, using the Arzelà-Ascoli theorem it is not difficult to show that

KP (I −Q)N(Ω) is compact for any open bounded set Ω ⊂ X. Moreover, QN(Ω) is

bounded. Thus, N is L-compact on Ω for any open bounded set Ω ⊂ X.

Now we are at the point to search for an appropriate open, bounded subset Ω for

the application of the continuation theorem. Corresponding to the operator equation

Lu = λNu, λ ∈ (0, 1), we have

(3.6)





u1(k + 1)− u1(k) = λf1(u1(k), u2(k), u3(k)),

u2(k + 1)− u2(k) = λf2(u1(k), u2(k), u3(k)),

u3(k + 1)− u3(k) = λf3(u1(k), u2(k), u3(k)).

Suppose that u(k) = (u1(k), u2(k), u3(k))
T ∈ X is an arbitrary solution of system

(3.6) for a certain λ ∈ (0, 1). Summing both sides of (3.6) from 0 to ω − 1 with

respect to k, we obtain





ω−1∑
k=0

[
r1(k)(exp{u1(k)}+ exp{u2(k)}) +

a(k) exp{u3(k)}

1 + b(k)(exp{u1(k)} + exp{u2(k)})

+
α(k) exp{u2(k)}

exp{u1(k)} + exp{u2(k)}

]
= r̄1ω,

ω−1∑
k=0

[
r2(k)(exp{u1(k)}+ exp{u2(k)}) +

a(k) exp{u3(k)}

1 + b(k)(exp{u1(k)} + exp{u2(k)})

−
α(k) exp{u1(k)}

exp{u1(k)} + exp{u2(k)}

]
= (r̄2 −m3)ω,

ω−1∑
k=0

[ a(k)(exp{u1(k)} + exp{u2(k)})

1 + b(k)(exp{u1(k)}+ exp{u2(k)})

]
= m3ω.

(3.7)

From (3.7) it follows that

ω−1∑

k=0

|u1(k + 1)− u1(k)| 6 2r̄1ω,(3.8)

ω−1∑

k=0

|u2(k + 1)− u2(k)| 6 2(r̄2 −m3)ω,(3.9)

ω−1∑

k=0

|u3(k + 1)− u3(k)| 6 2m3ω.(3.10)

In view of the hypothesis that u = {u(k)} ∈ X , there exist ξi, ηi ∈ Iω such that

(3.11) ui(ξi) = min
k∈Iω

{ui(k)}, ui(ηi) = max
k∈Iω

{ui(k)} (i = 1, 2, 3).
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From the first equation of (3.7), we have

r̄1ω >
ω−1∑

k=0

r1(k) exp{u1(k)} > r̄1ω exp(u1(ξ1)),

r̄1ω >
ω−1∑

k=0

r1(k) exp{u2(k)} > r̄1ω exp(u2(ξ2)),

which leads to

(3.12) u1(ξ1) < 0, u2(ξ2) < 0.

In the sequel, we consider two cases.

Case (a). If u1(η1) > u2(η2), then it follows from the third equation of (3.7) that

m3ω 6

ω−1∑

k=0

[a(k)(exp{u1(k)}+ exp{u2(k)})]

6

ω−1∑

k=0

[2a(k) exp{u1(η1)}] = 2āω exp{u1(η1)}.

Then

(3.13) u1(η1) > ln
[m3

2ā

]
.

Therefore

u1(k) 6 u1(ξ1) +
ω−1∑

s=0

|u1(s+ 1)− u1(s)| 6 2r̄1ω := M1,(3.14)

u1(k) > u1(η1)−
ω−1∑

s=0

|u1(s+ 1)− u1(s)| > ln
[m3

2ā

]
− 2r̄1ω := m1.(3.15)

Thus

(3.16) max
k∈Iω

{u1(k)} 6 max{|m1|, |M1|} := S1.

By the third equation of (3.7) again, we get

m3ω 6

ω−1∑

k=0

[a(k)(exp{u1(k)} + exp{u2(k)})] 6
ω−1∑

k=0

[a(k)(exp{S1}+ exp{u2(η2)})].
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Then

(3.17) u2(η2) > ln
[m3 − ā exp{S1}

ā

]
.

From Lemma 3.2, (3.12) and (3.17), we get

u2(k) 6 u2(ξ2) +

ω−1∑

s=0

|u2(s+ 1)− u2(s)| 6 2(r̄2 −m3)ω := M2,(3.18)

u2(k) > u2(η2)−

ω−1∑

s=0

|u2(s+ 1)− u2(s)|(3.19)

> ln
[m3 − ā exp{S1}

ā

]
− 2(r̄2 −m3)ω := m2.

Then

(3.20) max
k∈Iω

{u2(k)} 6 max{|m2|, |M2|} := S2.

From the second equation of (3.7), we obtain

ω−1∑

k=0

[r2(k)(exp{u1(k)}+ exp{u2(k)}) + a(k) exp{u3(k)}] > (r̄2 −m3)ω

and

ω−1∑

k=0

[
r2(k)(exp{u1(k)}+ exp{u2(k)})

+
a(k) exp{u3(k)}

1 + b(k)(exp{u1(k)} + exp{u2(k)})
− α(k) exp{u1(k)}

]
< (r̄2 −m3)ω,

hence

ω−1∑

k=0

[r2(k)(exp{S1}+ exp{S2}) + a(k) exp{u3(η3)}] > (r̄2 −m3)ω

and

ω−1∑

k=0

[
r2(k)(exp{−S1}+ exp{−S2})

+
a(k) exp{u3(ξ3)}

1 + bM (exp{S1}+ exp{S2})
− α(k) exp{S1}

]
< (r̄2 −m3)ω.
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Then

u3(ξ3) < ln
[ (r̄2 −m3)− r̄2(exp{S1}+ exp{S2})

ā

]
,(3.21)

u3(η3) > ln
[Θ1Θ2

ā

]
,(3.22)

where

Θ1 = (r̄2 −m3)− r̄2(exp{−S1}+ exp{−S2}) + ā exp{S1},

Θ2 = 1 + bM (exp{S1}+ exp{S2}).

From Lemma 3.2, (3.21) and (3.22), we derive

u3(k) 6 u3(ξ3) +
ω−1∑

s=0

|u3(s+ 1)− u3(s)|(3.23)

6 ln
[ (r̄2 −m3)− r̄2(exp{S1}+ exp{S2})

ā

]
+ 2m3ω := M∗

3 ,

u3(k) > u3(η3)−

ω−1∑

s=0

|u3(s+ 1)− u3(s)|(3.24)

> ln
[Θ1Θ2

ā

]
− 2m3ω := m∗

3.

Then

(3.25) max
k∈Iω

{u3(k)} 6 max{|m∗

3|, |M
∗

3 |} := S3.

Case (b). If u1(η1) < u2(η2), then it follows from the second equation of (3.7)

that

m3ω 6

ω−1∑

k=0

[a(k)(exp{u1(k)}+ exp{u2(k)})]

<
ω−1∑

k=0

[2a(k) exp{u2(η2)}] = 2āω exp{u2(η2)}.

Then

(3.26) u2(η2) > ln
[m3

2ā

]
.
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Therefore

u2(k) 6 u2(ξ2) +

ω−1∑

s=0

|u2(s+ 1)− u2(s)| 6 2(r̄2 −m3)ω := M̃2,(3.27)

u2(k) > u2(η2)−

ω−1∑

s=0

|u2(s+ 1)− u2(s)| > ln
[m3

2ā

]
− 2(r̄2 −m3)ω := m̃2.(3.28)

Thus

(3.29) max
k∈Iω

{u2(k)} 6 max{|m̃2|, |M̃2|} := S̃2.

By the third equation of (3.7) again, we get

m3ω 6

ω−1∑

k=0

[a(k)(exp{u1(k)}+ exp{u2(k)})]

6

ω−1∑

k=0

[a(k)(exp{u1(η1)}+ exp{S̃2})].

Then

(3.30) u1(η1) > ln
[m3 − ā exp{S̃2}

ā

]
.

From Lemma 3.2, (3.12) and (3.30), we get

u1(k) 6 u1(ξ1) +

ω−1∑

s=0

|u1(s+ 1)− u1(s)| 6 2r̄1ω := M̃1,(3.31)

u1(k) > u1(η1)−

ω−1∑

s=0

|u1(s+ 1)− u1(s)| > ln
[m3 − ā exp{S̃2}

ā

]
− r̄1ω := m̃1.(3.32)

Then

(3.33) max
k∈Iω

{u1(k)} 6 max{|m̃1|, |M̃1|} := S̃1.

From the second equation of (3.7), we obtain

ω−1∑

k=0

[r2(k)(exp{u1(k)}+ exp{u2(k)}) + a(k) exp{u3(k)}] > (r̄2 −m3)ω
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and

ω−1∑

k=0

[
r2(k)(exp{u1(k)}+ exp{u2(k)})

+
a(k) exp{u3(k)}

1 + b(k)(exp{u1(k)} + exp{u2(k)})
− α(k) exp{u1(k)}

]
< (r̄2 −m3)ω,

hence

ω−1∑

k=0

[r2(k)(exp{S̃1}+ exp{S̃2}) + a(k) exp{u3(η3)}] > (r̄2 −m3)ω

and

ω−1∑

k=0

[
r2(k)(exp{−S̃1}+ exp{−S̃1})

+
a(k) exp{u3(ξ3)}

1 + bM (exp{S̃1}+ exp{S̃1})
−α(k) exp{S̃1}

]
< (r̄2 −m3)ω.

Then

u3(ξ3) < ln
[ (r̄2 −m3)− r̄2(exp{S̃1}+ exp{S̃2})

ā

]
,(3.34)

u3(η3) > ln
[ Θ̃1Θ̃2

ā

]
,(3.35)

where

Θ̃1 = (r̄2 −m3)− r̄2(exp{−S̃1}+ exp{−S̃2}) + ā exp{S̃1},

Θ̃2 = 1 + bM (exp{S̃1}+ exp{S̃2}).

From Lemma 3.2, (3.21) and (3.22), we derive

u3(k) 6 u3(ξ3) +

ω−1∑

s=0

|u3(s+ 1)− u3(s)|(3.36)

6 ln
[ (r̄2 −m3)− r̄2(exp{S̃1}+ exp{S̃2})

ā

]
+ 2m3ω := M̃∗

3 ,

u3(k) > u3(η3)−

ω−1∑

s=0

|u3(s+ 1)− u3(s)|(3.37)

> ln
[ Θ̃1Θ̃2

ā

]
− 2m3ω := m̃∗

3.
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Then

(3.38) max
k∈Iω

{u3(k)} 6 max{|m̃∗

3|, |M̃
∗

3 |} := S̃3.

Obviously, mi, Mi (i = 1, 2), m∗

3, M
∗

3 , m̃
∗

i
(i = 1, 2), m̃∗

3 and M̃∗

3 are independent of

the choice of λ ∈ (0, 1). Take M = max{S1, S̃1}+max{S2, S̃2}+max{S3, S̃3}+M0,

where M0 is taken sufficiently large such that

max{|ln{u∗

1}|, |ln{u
∗

2}|, |ln{u
∗

3}|} < M0,

where (u∗

1, u
∗

2, u
∗

3)
T is the unique solution of the system of equations





r̄1 − r̄1 exp{u1(k)} = 0,

r̄2 −
1

ω

ω−1∑

k=0

[ a(k) exp{u3(k)}

1 + b(k)(exp{u1(k)}+ exp{u2(k)})

]
= 0,

1

ω

ω−1∑

k=0

[ a(k)(exp{u1(k)}+ exp{u2(k)})

1 + b(t)(exp{u1(k)}+ exp{u2(k)})

]
−m3 = 0.

(3.39)

Now we will prove that any solution u = {u(k)} = {(u1(k), u2(k), u3(k))
T} of (3.6)

in X satisfies ‖u‖ < M , k ∈ Z.

Let Ω := {u = {u(k)} ∈ X : ‖u‖ < M}, then it is easy to see that Ω is an open,

bounded set in X and verifies requirement (a) of Lemma 3.1. When u ∈ ∂Ω∩KerL,

u = {(u1(k), u2(k), u3(k))
T} is a constant vector in R3 with ‖u‖ = |u1|+ |u2|+ |u3| =

M. Then

(3.40) QNu =




f1

f2

f3


 6=




0

0

0


 ,

where

f1 = r̄1(1− exp{u1(k)} − exp{u2(k)})−
1

ω

ω−1∑

k=0

[ a(k) exp{u3(k)}

1 + b(k)(exp{u1(k)}+ exp{u2(k)})

]

−

ω−1∑

k=0

[ α(k) exp{u2(k)}

exp{u1(k)} + exp{u2(k)}

]
,

f2 = r̄2(1− exp{u1(k)} − exp{u2(k)})−
1

ω

ω−1∑

k=0

[ a(k) exp{u3(k)}

1 + b(k)(exp{u1(k)}+ exp{u2(k)})

]

+
1

ω

ω−1∑

k=0

[ α(k) exp{u1(k)}

exp{u1(k)}+ exp{u2(k)}

]
−m2,

f3 =
1

ω

ω−1∑

k=0

[ a(k)(exp{u1(k)} + exp{u2(k)})

1 + b(k)(exp{u1(k)}+ exp{u2(k)})

]
−m3.
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Now let us consider the homotopy ϕ(u1, u2, u3, µ) = µQNu + (1 − µ)Gu, µ ∈ [0, 1],

where

Gu =




r̄1 − r̄1 exp{u1(k)}

r̄2 −
1

ω

ω−1∑

k=0

[ a(k) exp{u3(k)}

1 + b(k)(exp{u1(k)}+ exp{u2(k)})

]

1

ω

ω−1∑

k=0

[ a(k)(exp{u1(k)}+ exp{u2(k)})

1 + b(k)(exp{u1(k)}+ exp{u2(k)})

]
−m3




.

Letting J be equal to the identity mapping I, by direct calculation we get

deg{JQN(u1, u2, u3)
T ; Ω ∩KerL ; 0} = deg{QN(u1, u2, u3)

T ; Ω ∩KerL ; 0}

= deg{ϕ(u1, u2, u3, 1); Ω ∩KerL ; 0}

= deg{ϕ(u1, u2, u3, 0); Ω ∩KerL ; 0}

= sign



det




χ11 0 0

χ21 χ22 χ23

χ21 χ32 0







where
χ11 = r̄1 exp{u

∗

1} > 0,

χ21 =
1

ω

ω−1∑

k=0

[ a(k)b(k) exp{u∗

1 + u∗

3}

[1 + b(k)(exp{u∗

1}+ exp{u∗

2})]
2

]
> 0,

χ22 =
1

ω

ω−1∑

k=0

[ a(k) exp{u∗

2 + u∗

3}

[1 + b(k)(exp{u∗

1}+ exp{u∗

2})]
2

]
> 0,

χ23 = −
1

ω

ω−1∑

k=0

[ a(k) exp{u∗

3}

[1 + b(k)(exp{u∗

1}+ exp{u∗

2})]
2

]
< 0,

χ31 =
1

ω

ω−1∑

k=0

[ a(k) exp{u∗

1}

1 + b(k)(exp{u∗

1}+ exp{u∗

2})

]
> 0,

χ32 =
1

ω

ω−1∑

k=0

[ a(k) exp{u∗

2}

1 + b(k)(exp{u∗

1}+ exp{u∗

2})

]
> 0.

Then

deg{JQN(u1, u2, u3)
T; Ω ∩KerL; 0} = sign{χ11χ23χ32} = −1 6= 0.

By now, we have proved that Ω verifies all requirements of Lemma 3.1, hence it follows

that Lu = Nu has at least one solution in DomL∩Ω, that is to say, (3.3) has at least

one ω-periodic solution in DomL ∩ Ω, say u∗ = {u∗(k)} = {(u∗

1(k), u
∗

2(k), u
∗

3(k))
T}.

Let x∗(k) = (x∗

1(k), x
∗

2(k), z
∗(k))T = (exp{u∗

1(k)}, exp{u
∗

2(k)}, exp{u
∗

3(k)})
T, then

it follows that x∗(k) is an ω-periodic solution of system (2.3) with strictly positive

components. The proof is complete. �
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4. Global asymptotic stability

In this section, we shall present sufficient conditions for the global asymptotic

stability of system (2.3).

Theorem 4.1. Let A1, A2 and A3 be defined by (4.7), (4.8) and (4.9), respec-

tively. Assume that (H1), (H2) and (H3) are satisfied and furthermore suppose that

there exist positive constants v, θ1, θ2 and θ3 such that

1−max{M1, M̃1}+
b(k)min{m3, m̃3}min{m1, m̃1}

(1 + b(k)(max{M1, M̃1}+max{M2, M̃2}))2
(i)

+
α(k)min{m1, m̃1}min{m2, m̃2}

(max{M1, M̃1}+max{M2, M̃2})2
> v,

[
1−max{M2, M̃2}+

b(k)min{m3, m̃3}

(1 + b(k)(max{M1, M̃1}+max{M2, M̃2}))2
(ii)

+
a(k)min{m2, m̃2}

(max{M1, M̃1}+max{M2, M̃2})2

]
> v,

and Ai > 0 (i = 1, 2, 3). Then the positive ω-periodic solution of system (2.3) is

globally asymptotically stable.

P r o o f. In view of Theorem 3.1, there exists a positive periodic solution

{S∗(k), I∗(k), Z∗(k)} of system (2.3). Now we prove that it is uniformly asymptoti-

cally stable. First, we make the change of variable

(4.1) N1(k) = S(k)− S∗(k), N2(k) = I(k)− I∗(k), N3(k) = Z(k)− Z∗(k).

It follows from (2.3) that

N1(k + 1) = S(k + 1)− S∗(k + 1)(4.2)

= S(k) exp
[
r1(k)(1− S(k)− I(k))−

a(k)Z(k)

1 + b(k)(S(k) + I(k))

−
α(k)I(k)

S(k) + I(k)

]
− S∗(k) exp

[
r1(k)(1 − S∗(k)− I∗(k))

−
a(k)Z∗(k)

1 + b(k)(S∗(k) + I∗(k))
−

α(k)I∗(k)

S∗(k) + I∗(k)

]

=
{
S(k) exp

[
−N1(k)−N2(k)

−
( a(k)Z(k)

1 + b(k)(S(k) + I(k))
−

a(k)Z∗(k)

1 + b(k)(S∗(k) + I∗(k))

)

×
( α(k)I(k)

S(k) + I(k)
−

α(k)I∗(k)

S∗(k) + I∗(k)

)
− S∗(k)

}S∗(k + 1)

S∗(k)
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=
{[

1− S∗(k) +
b(k)Z∗(k)S∗(k)

(1 + b(k)(S∗(k) + I∗(k)))2
+

α(k)I∗(k)S∗(k)

(S∗(k) + I∗(k)))2

]

×
N1(k)

S∗(k)
+

[ b(k)Z∗(k)

(1 + b(k)(S∗(k) + I∗(k)))2
−

α(k)S∗(k)

(S∗(k) + I∗(k))2
− 1

]

×N2(k) +
a(k)

1 + b(k)(S∗(k) + I∗(k))
N3(k) + f1

}
S∗(k + 1),

N2(k + 1) = I(k + 1)− I∗(k + 1)(4.3)

= I(k) exp
[
r2(k)(1 − S(k)− I(k)) −

a(k)Z(k)

1 + b(k)(S(k) + I(k))

+
α(k)S(k)

S(k) + I(k)
−m2(k)

]
− I∗(k) exp

[
r2(k)(1 − S∗(k)− I∗(k))

−
a(k)Z∗(k)

1 + b(k)(S∗(k) + I∗(k))
+

α(k)S∗(k)

S∗(k) + I∗(k)
−m2(k)

]

=
{
I(k) exp

[
−N1(k)−N2(k)−

( a(k)Z(k)

1 + b(k)(S(k) + I(k))

−
a(k)Z∗(k)

1 + b(k)(S∗(k) + I∗(k))

)
+
( α(k)S(k)

S(k) + I(k)

−
α(k)S∗(k)

S∗(k) + I∗(k)

)
− I∗(k)

}I∗(k + 1)

I∗(k)

=
{[

1− I∗(k) +
b(k)Z∗(k)

(1 + b(k)(S∗(k) + I∗(k)))2
+

a(k)I∗(k)

(S∗(k) + I∗(k))2

]

×
N2(k)

I∗(k)
+

[ b(k)Z∗(k)

(1 + b(k)(S∗(k) + I∗(k)))2
+

a(k)S∗(k)

(S∗(k) + I∗(k))2
− 1

]

×N1(k)−
a(k)

1 + b(k)(S∗(k) + I∗(k))
N3(k) + f2

}
I∗(k + 1),

N3(k + 1) = Z(k + 1)− Z∗(k + 1)(4.4)

= Z(k) exp
[ a(k)(S(k) + I(k))

1 + b(k)(S(k) + I(k))
−m3(k)

]

− Z∗(k) exp
[ a(k)(S∗(k) + I∗(k))

1 + b(k)(S∗(k) + I∗(k))
−m3(k)

]

=
{
Z(k) exp

[ a(k)(S(k) + I(k))

1 + b(k)(S(k) + I(k))
−

a(k)(S∗(k) + I∗(k))

1 + b(k)(S∗(k) + I∗(k))

]

− z∗(k)
}Z∗(k + 1)

Z∗(k)

=
{ a(k)(S∗(k) + I∗(k))

1 + b(k)(S∗(k) + I∗(k))

N3(k)

Z∗(k)
+

a(k)

(1 + b(k)(S∗(k) + I∗(k)))2

×N1(k) +
a(k)

(1 + b(k)(S∗(k) + I∗(k)))2
N2(k) + f3

}
Z∗(k + 1),
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where fi/‖Ni‖ (i = 1, 2, 3) converges, uniformly with respect to k ∈ Z
+, to zero as

‖N‖ → 0.

Define a function V by

(4.5) V (N(k)) = θ1

∣∣∣N1(k)

S∗(k)

∣∣∣+ θ2

∣∣∣N2(k)

I∗(k)

∣∣∣+ θ3

∣∣∣N3(k)

Z∗(k)

∣∣∣,

where θ1, θ2 and θ3 are positive constants given by (4.7), (4.8) and (4.9), respectively.

Calculating the difference of V along the solution of system (4.2)–(4.4), in view of

(i) and (ii) we get

△V = θ1

(∣∣∣N1(k + 1)

S∗(k + 1)
−

N1(k)

S∗(k)

∣∣∣
)
+ θ2

(∣∣∣N2(k + 1)

I∗(k + 1)
−

N2(k)

I∗(k)

∣∣∣
)

(4.6)

+ θ3

(∣∣∣N3(k + 1)

Z∗(k + 1)
−

N3(k)

z∗(k)

∣∣∣
)

6 − θ1

[
S∗(k)−

b(k)Z∗(k)S∗(k)

(1 + b(k)(S∗(k) + I∗(k)))2
−

α(k)S∗(k)I∗(k)

(S∗(k) + I∗(k))2

]
|N1(k)|

+ θ1

[
1 +

b(k)Z∗(k)S∗(k)

(1 + b(k)(S∗(k) + I∗(k)))2
+

α(k)S∗(k)

(S∗(k) + I∗(k))2

]
|N2(k)|

+ θ1
a(k)

1 + b(k)(S∗(k) + I∗(k))
|N3(k)|+ θ1f1

− θ2

[
I∗(k)−

b(k)Z∗(k)

(1 + b(k)(S∗(k) + I∗(k)))2
−

a(k)I∗(k)

(S∗(k) + I∗(k))2

]
|N2(k)|

+ θ2

[
1 +

b(k)Z∗(k)

(1 + b(k)(S∗(k) + I∗(k)))2
+

α(k)S∗(k)

(S∗(k) + I∗(k))2

]
|N1(k)|

+ θ2
a(k)

1 + b(k)(S∗(k) + I∗(k))
|N3(k)|+ θ2f2

− θ3

[
1−

a(k)(S∗(k) + I∗(k))

1 + b(k)(S∗(k) + I∗(k))

]
|N3(k)|+ θ3

α(k)

(S∗(k) + I∗(k))2
|N1(k)|

+ θ3
a(k)

(1 + b(k)(S∗(k) + I∗(k)))2
|N2(k)|

6 − θ1

[
min{m1, m̃1} −

b(k)max{M3, M̃3}max{M1, M̃1}

(1 + b(k)(min{m1, m̃1}+min{m2, m̃2}))2

−
α(k)max{M1, M̃1}max{M1, M̃1}

(min{m1, m̃1}+min{m2, m̃2})2

]
|N1(k)|

+ θ1

[
1 +

b(k)max{M1, M̃1}max{M3, M̃3}

(1 + b(k)(min{m1, m̃1}+min{m2, m̃2}))2

+
α(k)max{M1, M̃1}

(min{m1, m̃1}+min{m2, m̃2})2

]
|N2(k)|
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+ θ1
a(k)

1 + b(k)(min{m1, m̃1}+min{m2, m̃2})
|N3(k)|+ θ1f1

− θ2

[
min{m2, m̃2} −

b(k)max{M3, M̃3}

(1 + b(k)(min{m1, m̃1}+min{m2, m̃2}))2

−
a(k)max{M2, M̃2}

(min{m1, m̃1}+min{m2, m̃2})2

]
|N2(k)|

+ θ2

[
1 +

b(k)max{M3, M̃3}

(1 + b(k)(min{m1, m̃1}+min{m2, m̃2}))2

+
α(k)max{M1, M̃1}

(min{m1, m̃1}+min{m2, m̃2})2

]
|N1(k)|

+ θ2
a(k)

1 + b(k)(min{m1, m̃1}+min{m2, m̃2})
|N3(k)|+ θ2f2

− θ3

[
1−

a(k)(max{M1, M̃1}+max{M2, M̃2})

1 + b(k)(min{m1, m̃1}+min{m2, m̃2})

]
|N3(k)|

+ θ3
α(k)

(S∗(k) + I∗(k))2
|N1(k)|

+ θ3
a(k)

(1 + b(k)(min{m1, m̃1}+min{m2, m̃2}))2
|N2(k)|+ θ3f3

= −A1|N1(k)| −A2|N2(k)| −A3|N3(k)|+

3∑

i=1

θifi,

where

A1 = θ1

[ b(k)max{M3, M̃3}max{M1, M̃1}

(1 + b(k)(min{m1, m̃1}+min{m2, m̃2}))2
(4.7)

+
α(k)max{M1, M̃1}max{M1, M̃1}

(min{m1, m̃1}+min{m2, m̃2})2
−min{m1, m̃1}

]

− θ2

[
1 +

b(k)max{M3, M̃3}

(1 + b(k)(min{m1, m̃1}+min{m2, m̃2}))2

+
α(k)max{M1, M̃1}

(min{m1, m̃1}+min{m2, m̃2})2

]
− θ3

α(k)

(S∗(k) + I∗(k))2
,

A2 = θ2

[
I∗(k)−

b(k)Z∗(k)

(1 + b(k)(S∗(k) + I∗(k)))2
−

a(k)I∗(k)

(S∗(k) + I∗(k))2

]
(4.8)

− θ1

[
1 +

b(k)Z∗(k)S∗(k)

(1 + b(k)(S∗(k) + I∗(k)))2
+

α(k)S∗(k)

(S∗(k) + I∗(k))2

]

− θ3
a(k)

(1 + b(k)(min{m1, m̃1}+min{m2, m̃2}))2
,
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A3 = θ3

[
1−

a(k)(max{M1, M̃1}+max{M2, M̃2})

1 + b(k)(min{m1, m̃1}+min{m2, m̃2})

]
(4.9)

− θ1
a(k)

1 + b(k)(min{m1, m̃1}+min{m2, m̃2})

− θ2
a(k)

1 + b(k)(min{m1, m̃1}+min{m2, m̃2})
.

It follows from conditions (i) and (ii) that there exists a positive constant α such

that, if k is sufficiently large and ‖N‖ < α, then

(4.10) ∆V 6 −
v

3
{|N1(k)|+ |N2(k)|+ |N3(k)|} < −

v

3
‖N(k)‖.

In view of Freedman [7], we can see that the trivial solution of (4.2)–(4.4) is uniformly

asymptotically stable and so is the solution x∗ = {x∗(k)} = {(x∗

1(k), x
∗

2(k), z
∗(k))T}

of (2.3). Thus we can conclude that the positive periodic solution of (2.3) is globally

asymptotically stable. The proof is complete. �

5. An example

In this section, we give an example which shows the feasibility of the main results

Theorem 3.1 and Theorem 4.1 of this paper. Let us consider the following special

form of system (2.3):

(5.1)





S(k + 1) = S(k) exp
{
[0.0005 + 0.0005 sin(kπ/2)][1− S(k)− I(k)])

−
[0.0002 + 0.0002 sin(kπ/2)]Z(k)

1 + [0.0005 + 0.0005 sin(kπ/2)][S(k) + I(k)]

−
[0.0002 + 0.0002 cos(kπ/2)]I(k)

S(k) + I(k)

}
,

I(k + 1) = I(k) exp
{
[0.0008 + 0.0008 cos(kπ/2)][1 − S(k)− I(k)]

−
[0.0002 + 0.0002 sin(kπ/2)]Z(k)

1 + [0.0005 + 0.0005 sin(kπ/2)][S(k) + I(k)]

+
α(k)S(k)

S(k) + I(k)
−m2(k)

}
,

Z(k + 1) = Z(k) exp
{ [0.0002 + 0.0002 sin(kπ/2)][S(k) + I(k)]

1 + [0.0005 + 0.0005 sin(kπ/2)][S(k) + I(k)]

−m3(k)
}
.
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Here

a(k) = 0.0002 + 0.0002 sin(kπ/2), b(k) = 0.0005 + 0.0005 sin(kπ/2),

α(k) = 0.0002 + 0.0002 cos(kπ/2), r1(k) = 0.0005 + 0.0005 sin(kπ/2),

r2(k) = 0.0008 + 0.0008 cos(kπ/2), m3(k) = 0.0004 + 0.0004 cos(kπ/2),

m2(k) = 0.0003 + 0.0003 cos(kπ/2), m3(k) = 0.0004 + 0.0004 cos(kπ/2).

By direct computation by Matlab 7.0 software, we get the following values:

r̄1 = 0.0005, r̄2 = 0.0008, m3 = 0.0004, ā = 0.0002, m1 = −0.0040,

M1 = 0.0040, S1 = 0.0040, m2 = −0.0032, M2 = 0.0008, S2 = 0.0032,

m∗

3 = − 0.0028, M∗

3 = 0.0036, S3 = 0.0028, m̃2 = −0.0032, M̃2 = 0.0032,

S̃2 = 0.0032, m̃1 = −0.0004, M̃1 = 0.0004, S̃1 = 0.0004, S̃3 = 0.0041,

m̃∗

3 = − 0.0038, M̃∗

3 = 0.0041, K1 = 0.0002, K2 = 0.00016, K3 = 0.0004,

K4 = 0.00008.

Let v = 0.00003, θ1 = 0.0004, θ2 = 0.0003 and θ3 = 0.0007. Then we can verify

that all the assumptions in Theorem 3.1 and Theorem 4.1 are satisfied. Thus system

(2.3) has a 4-periodic solution which is globally asymptotically stable.
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