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Abstract. In survival studies and life testing, the data are generally truncated. Recently,
authors have studied a weighted version of Kerridge inaccuracy measure for truncated dis-
tributions. In the present paper we consider weighted residual and weighted past inaccuracy
measure and study various aspects of their bounds. Characterizations of several important
continuous distributions are provided based on weighted residual (past) inaccuracy measure.
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1. Introduction

The concept of weighted distribution introduced by Rao [25] has many applications

in different areas of statistics such as reliability, survival analysis, forestry, ecology,

survey sampling and several other fields. Weighted distributions arise when the

observations generated from a stochastic process are recorded with some weight

function. Many well-known probability models, such as probability density functions

of order statistics, record values, or the proportional (reversed) hazard model can

be considered weighted distributions. Jain et al. [15], Gupta and Kirmani [14] and

Nanda and Jain [23] used the weighted distribution in many practical problems to

model unequal sampling probabilities. Let w(x) be a nonnegative function of x such

that E(w(X)) is finite. Then the corresponding probability density function of the

The work is supported by Department of Science and Technology, Government of India
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weighted random variable Xw is given by

fw(x) =
w(x)f(x)

E(w(X))
.

The basic problem in using a weighted distribution as a tool for modeling is the

identification of the appropriate weight function that fits the data. When w(x) = x,

i.e., the weight function depends on the length of the unit of interest, Xw is said to

be a length-biased or a size-biased random variable with probability density function

f∗(x) =
xf(x)

E(X)
, x > 0 and E(X) <∞.

Then the length-biased distribution function and the survival function are defined as

F ∗(t) = E(X)−1
∫ t

0 xf(x) dx and F
∗(t) = E(X)

−1 ∫∞

t xf(x) dx, respectively. These

functions characterize weighted distributions that arise in clinical trials, reliability,

queuing models, survival analysis and population studies where a proper sampling

frame is absent. In such situations, items are sampled at rate proportional to their

length so that larger values of the quantity being measured are sampled with higher

probabilities. See, for details, Cox [4] and Patil and Ord [24].

Recently, the application of Kerridge’s [16] inaccuracy measure as a generalization

of Shannon’s [27] entropy has attracted increasing attention. It has been extensively

used as a useful tool for measurement of error in experimental results. Let X and Y

be two absolutely continuous nonnegative random variables with distribution func-

tions F (x), G(x) and probability density functions f(x), g(x), respectively. If F (x)

is the actual distribution corresponding to the observations and G(x) is the distribu-

tion function assigned by the experimenter, then the inaccuracy measure is defined

as

(1.1) H(f, g) = −

∫
∞

0

f(x) ln g(x) dx.

It has applications in statistical inference, estimation and coding theory. See, for

more details, Smitha [28]. The dissimilarity between f(x) and g(x), which may

represent the income distributions of two groups or regions or two different economic

models, is measured by distance or divergence. One important divergence measure

due to Kullback-Leibler [17] is given by

D(f ||g) =

∫
∞

0

f(x) ln
f(x)

g(x)
dx,

which represents the expected uncertainty contained in g(x) with respect to f(x).

With this definition, Kullback-Leibler divergence measure can be written as

D(f ||g) = H(f, g)−H(f),
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where H(f) is the well-known Shannon’s entropy given by

(1.2) H(f) = −

∫
∞

0

f(x) ln f(x) dx,

which can also be obtained from (1.1) for g(x) = f(x). It measures the expected

uncertainty contained in f(·) about the predictability of an outcome of X . If the

ratio g(x)/f(x) is far from unity, i.e., difference in the distribution is large, then both

Kullback-Leibler divergence and Kerridge inaccuracy measure will increase. D(f ||g)

vanishes for g(x) = f(x), which in turn gives H(f, g) = H(f), i.e., there is no

inaccuracy and we are left only with uncertainty measured by Shannon.

However, in some practical situations, such as reliability or mathematical neuro-

biology, a shift-dependent information measure is desirable. An important feature of

the human visual system is that it can recognize objects in a scale and translation

invariant manner. Achieving this desirable behavior using biologically realistic net-

works is a challenge (cf. Wallis [30]). Indeed, knowing that a device fails to operate,

or a neuron fails to release spikes in a given time-interval, yields a relevantly differ-

ent information from the case when such an event occurs in a different equally wide

interval. In some cases we are thus led to resort to a shift-dependent information

measure that, for instance, assigns different measures to such distributions.

In agreement with Di Crescenzo and Longobardi [7], the weighted measure of

inaccuracy is given by

(1.3) Hw(f, g) = −

∫
∞

0

xf(x) ln g(x) dx,

which yields a ‘length-biased’ shift-dependent inaccuracy measure assigning greater

importance to larger values of X . The following example illustrates the role of

weighted inaccuracy measure in the case of random lifetimes.

E x am p l e 1.1. Let X1 and X2 denote random lifetimes of two components with

probability density functions f1(x) = 2x, x ∈ (0, 1), and f2(x) = 2(1− x), x ∈ (0, 1),

respectively. By simple calculations, we have H(f1, f2) = H(f2, f1) = 3/2 − ln 2.

But,

Hw(f1, f2) =
11

9
−

2

3
ln 2 and Hw(f2, f1) =

5

18
−

1

3
ln 2.

That is, the inaccuracy measure of the observer for the observations X1 (or X2)

taking X2 (or X1) as corresponding assigned outcomes by the experimenter are

identical, while Hw(f1, f2) > Hw(f2, f1), i.e., weighted inaccuracy of the observer

for X1, X2 is higher than that for X2, X1.
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Weighted measures of inaccuracy for residual and past lifetime distributions have

also been proposed in the literature. Motivated by the above example we consider

weighted inaccuracy for truncated random variables. The rest of the paper is ar-

ranged as follows. In Section 2 we provide characterizations of several useful contin-

uous distributions based on weighted residual inaccuracy measure. We also study the

bounds of the weighted residual inaccuracy measure and its monotonic transforma-

tions. In Section 3 we study the same for weighted past inaccuracy measure. Some

characterization results are also provided based on this measure. In conclusion, some

discussion concerning empirical inaccuracy measure is made in Section 4.

Throughout this paper, the words increasing and decreasing are not used in strict

sense unless otherwise specified.

2. Characterizations based on weighted residual

inaccuracy measure

In the literature, the problem of characterizing probability distributions has been

investigated by many researchers, see, for instance, Galambos and Kotz [10] and

Azlarov and Volodin [2]. The standard practice in modeling statistical data is either

to derive the appropriate model based on the physical properties of the system or to

choose a flexible family of distributions and then find a member of the family that

is appropriate to the data. In both situations it is helpful if we find characterization

theorems that explain the distribution. In fact, characterization approach is very

appealing to both theoreticians and applied researchers. In this section we provide

characterizations of several useful continuous distributions based on weighted residual

inaccuracy measure.

First we review some properties of the weighted residual inaccuracy measure. Ku-

mar et al. [19] introduced the notion of weighted residual inaccuracy at time t of

a random variable X as the differential weighted inaccuracy of the left truncated

random variable [X − t | X > t] given by

(2.1) Hw(f, g; t) = −

∫
∞

t

x
f(x)

F (t)
ln
( g(x)
G(t)

)
dx

and studied various aspects of this measure in analogy with weighted residual entropy.

The following theorem, due to Kumar et al. [19], provides a lower bound for the

weighted residual inaccuracy measure in terms of hG(t) = g(t)/G(t), the hazard rate

of Y , and the conditional mean of X given by

mX(t) = E[X | X > t] =
1

F (t)

∫
∞

t

xf(x) dx.
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For more applications ofmX(t) in insurance and economics, one may refer to Furman

and Zitikis [9]. For completeness we give a brief outline of the proof.

Theorem 2.1. If the hazard rate function hG(t) is decreasing in t, then

(2.2) Hw(f, g; t) > −mX(t) lnhG(t).

P r o o f. Note that (2.1) can alternatively be written as

(2.3) Hw(f, g; t) = −
1

F (t)

∫
∞

t

xf(x) ln hG(x) dx−
1

F (t)

∫
∞

t

xf(x) ln
(G(x)

G(t)

)
dx.

Using the fact that ln(G(x)/G(t)) 6 0 for x > t, and by the assumption lnhG(x) 6

lnhG(t), we have

Hw(f, g; t) > −
1

F (t)

∫
∞

t

xf(x) ln hG(x) dx

> −
lnhG(t)

F (t)

∫
∞

t

xf(x) dx.

Hence, the result follows. �

R em a r k 2.1. In order to characterize the distributions which attain the lower

bound of the weighted residual inaccuracy measure as given in the above theorem, let

us assume that Hw(f, g; t) = −mX(t) ln hG(t). Then, differentiating with respect to t

and simplifying, we get g′(t)/g(t) = 0, which in turn gives via (d/dt)hG(t) = (hG(t))
2

that hG(t) cannot be decreasing, constant or zero. So the inequality of (2.2) is strict.

In the following theorem we provide an upper bound for the weighted residual

inaccuracy measure. The proof is immediate from (2.3), and hence omitted.

Theorem 2.2. If the hazard rate function hG(t) is increasing in t, then

(2.4) Hw(f, g; t) 6 −mX(t) ln hG(t)−
1

F (t)

∫
∞

t

xf(x) ln
(G(x)

G(t)

)
dx.

E x am p l e 2.1. Let X be a nonnegative random variable with probability density

function

f(x) =

{
2x, 0 < x < 1,

0, otherwise,

and Y is uniformly distributed over (0, 1). Then hG(t) = 1/(1−t), which is increasing

in t, mX(t) = 2(t2+t+1)/(3(t+1)) and Hw(f, g; t) = 2(t2+t+1) ln(1−t)/(3(t+1)).

Note that the right hand side of (2.4) is greater than 2(t2+ t+1) ln(1− t)/(3(t+1)).

It is easily seen that (2.4) is fulfilled.
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R em a r k 2.2. Proceeding analogously as in Remark 2.1, we can show that the

equality in (2.4) holds if and only if Y follows exponential distribution.

Below, we study the weighted residual inaccuracy measure under monotonic trans-

formations in analogy with Di Crescenzo and Longobardi [7].

Theorem 2.3. Let X and Y be two absolutely continuous nonnegative random

variables. Suppose ϕ(x) is strictly monotonic, continuous and differentiable function

with derivative ϕ′(x). Then

Hw(ϕ(X), ϕ(Y ); t) =





Hw,ϕ(X,Y ;ϕ−1(t))

+E[ϕ(X) lnϕ′(X) | X > ϕ−1(t)], ϕ strictly increasing,

Hw,ϕ(X,Y ;ϕ−1(t))

+E[ϕ(X) ln−ϕ′(X) | X 6 ϕ−1(t)], ϕ strictly decreasing,

where

Hw,ϕ(X,Y ; t) = −

∫
∞

t

ϕ(x)
f(x)

F (t)
ln
g(x)

G(t)
dx

and

Hw,ϕ(X,Y ; t) = −

∫ t

0

ϕ(x)
f(x)

F (t)
ln
g(x)

G(t)
dx,

which is the weighted past inaccuracy measure corresponding to weight function ϕ(x)

as discussed in the next section.

R em a r k 2.3. For two absolutely continuous nonnegative random variables X

and Y

Hw(aX, aY ; t) = aHw
(
f, g;

t

a

)
+mX

( t
a

)
a lna

for all a > 0 and t > 0. Furthermore, for all b > 0 and t > b

Hw(X + b, Y + b; t) = Hw(f, g; t− b) + bH(f, g; t− b),

whereH(f, g; t) = −
∫
∞

t (f(x)/F (t)) ln(g(x)/G(t)) dx is the residual inaccuracy mea-

sure given by Taneja et al. [29].

In order to provide characterization results we define the proportional hazard rate

model (PHRM, cf. Cox [3]), proportional reversed hazard rate model (PRHRM,

cf. Gupta et al. [12]) and the geometric vitality function (cf. Nair and Rajesh [22]).

Let X and Y be two random variables with hazard rate functions hF (t), hG(t) and

reversed hazard rate functions ϕF (t) (= f(t)/F (t)), ϕG(t), respectively.
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Definition 2.1. Two random variables X and Y are said to satisfy the PHRM,

if there exists θ > 0 such that hG(t) = θhF (t), or equivalently, G(t) = [F (t)]θ , for

some θ.

Definition 2.2. Two random variablesX and Y are said to satisfy the PRHRM,

if there exists θ > 0 such that ϕG(t) = θϕF (t). Or, equivalently, G(t) = [F (t)]θ, for

some θ.

Definition 2.3. The geometric vitality function of a left truncated random vari-

able is given by

GX(t) = E[lnX | X > t]

and the corresponding weighted version of it is given by Gw
X(t) = E[X lnX | X > t],

provided E(lnX) is finite.

The PHRM model has been widely used in analyzing survival data; see, for in-

stance, Cox [5], Ebrahimi and Kirmani [8], Gupta and Han [13], and Nair and Gupta

[21]. The PRHRM model is flexible enough to accommodate both monotonic and

non-monotonic failure rates even though the baseline failure rate is monotonic. See

Sengupta et al. [26], Di Crescenzo [6] or Gupta and Gupta [11] for some results on

this model. For more properties and applications of the geometric vitality function,

one may refer to Nair and Rajesh [22].

Now we provide characterization theorems for some continuous distributions using

hazard rate, conditional mean, weighted geometric vitality function and weighted

residual inaccuracy measure under PHRM and PRHRM. Below, we characterize the

uniform distribution.

Theorem 2.4. Let X and Y be two absolutely continuous random variables sat-

isfying PRHRM with proportionality constant θ (> 0). A relation of the form

(2.5) Hw(f, g; t) +mX(t) lnhG(t) = (1− θ)[Gw
Z (t)−mX(t) ln(t− α)],

where Gw
Z (t) = E[X ln(X−α) | X > t] and α < t < β, holds if and only if X denotes

the random lifetime of a component with uniform distribution over (α, β).

P r o o f. The if part is obtained from (2.1). To prove the converse, let us assume

that (2.5) holds. Then by definition we can write

−

∫
∞

t

xf(x) ln
g(x)

G(t)
dx+ lnhG(t)

∫
∞

t

xf(x) dx

= (1− θ)

[∫
∞

t

x ln(x− α)f(x) dx− ln(t− α)

∫
∞

t

xf(x) dx

]
.
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Differentiating with respect to t, we get after some algebraic calculations

g(t) = k(t− α)θ−1, k > 0 (constant),

which gives the required result. �

Next, we give a theorem which characterizes the power distribution.

Theorem 2.5. For two absolutely continuous random variables X and Y satis-

fying PRHRM with proportionality constant θ (> 0), the relation

(2.6) Hw(f, g; t) +mX(t) ln hG(t) = (1− cθ)[Gw
X(t)−mX(t) ln t],

for all 0 < t < b, characterizes the power distribution

(2.7) F (t) =






( t
b

)c
, 0 < t < b, b, c > 0

0, otherwise.

P r o o f. IfX follows the power distribution as given in (2.7), then (2.6) is obtained

from (2.1). To prove the converse, let us assume that (2.6) holds. Then differentiating

with respect to t, we get, after some algebraic calculations,

g(t) = ktcθ−1, k > 0 (constant),

which gives the required result. �

Below, we characterize exponential distribution under PHRM.

Theorem 2.6. Let X and Y be two absolutely continuous random variables sat-

isfying PHRM with proportionality constant θ (> 0). A relation of the form

(2.8) Hw(f, g; t) +mX(t) ln hG(t) = λθ[mX2(t)− tmX(t)],

where mX2(t) = E[X2 | X > t], the conditional expectation of X2, holds for all

t > 0 if and only if X follows exponential distribution with mean 1/λ.

P r o o f. The if part is straightforward. To prove the converse, let us assume

that (2.8) holds. Then differentiating with respect to t, we get, after some algebraic

calculations,

g(t) = ke−λθt, k > 0 (constant),

which gives the required result. �
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Next, we provide characterization of Weibull and Rayleigh distributions.

Theorem 2.7. Let X and Y be two absolutely continuous random variables sat-

isfying PHRM with proportionality constant θ (> 0). A relation of the form

(2.9) Hw(f, g; t) +mX(t) lnhG(t)

= (1− p)[Gw
X(t)−mX(t) ln t] + θ[mXp+1(t)− tpmX(t)],

where mXp+1(t) = E[Xp+1 | X > t], the conditional expectation of Xp+1, holds for

all t > 0, p > 0 if and only if X follows Weibull distribution

F (t) = 1− e−tp , t > 0, p > 0.

P r o o f. The if part is straightforward. To prove the converse, let us assume

that (2.9) holds. Then differentiating with respect to t, we get, after some algebraic

calculations,

g(t) = kt(p−1)e−θtp , k > 0 (constant),

which gives the required result. �

Corollary 2.1. Let X and Y be two absolutely continuous random variables

satisfying PHRM with proportionality constant θ (> 0). A relation of the form

Hw(f, g; t) +mX(t) ln
(hG(t)

t

)
+ Gw

X(t) = θ[mX3(t)− t2mX(t)],

where mX3(t) = E[X3 | X > t], the conditional expectation of X3, holds for all

t > 0 if and only if X follows Rayleigh distribution F (t) = e−t2 , t > 0.

Now we consider Pareto-type distributions which are flexible parametric models

and play an important role in reliability, actuarial science, economics, finance, and

telecommunications. Arnold [1] proposed a general version of this family of distri-

butions called Pareto-IV distribution having the cumulative distribution function

(2.10) F (x) = 1−
[
1 +

(x− µ

β

)1/γ]−α

, x > µ,

where −∞ < µ < ∞, β > 0, γ > 0, and α > 0 are location, scale, inequality, and

shape parameters, respectively. This distribution is related to many other families

of distributions. For example, setting α = 1, γ = 1 and (γ = 1, µ = β) in (2.10), one

at a time, we obtain Pareto-III, Pareto-II, and Pareto-I distributions, respectively.

Also, taking µ = 0 and γ → 1/γ in (2.10), we obtain Burr-XII distribution.

705



Now we consider Pareto-type distributions for characterization under PHRM. Be-

low, we provide characterization of Pareto-I distribution.

Theorem 2.8. Let X and Y be two absolutely continuous random variables sat-

isfying PHRM with proportionality constant θ (> 0). Then a relation

(2.11) Hw(f, g; t) +mX(t) lnhG(t) = (αθ + 1)[Gw
X(t)−mX(t) ln t],

holds for all t > β if and only if X follows Pareto-I distribution

F (t) = 1−
(β
t

)α
, t > β, α, β > 0.

P r o o f. The if part is straightforward. To prove the converse, let us assume that

(2.11) holds. Then, differentiating with respect to t, we get, after some algebraic

calculations,

g(t) = kt−(αθ+1), k > 0 (constant),

which gives the required result. �

We conclude this section by characterizing Pareto-II distribution. The proof is

similar to that of Theorem 2.8 and hence omitted.

Theorem 2.9. Let X and Y be two absolutely continuous random variables sat-

isfying PHRM with proportionality constant θ (> 0). Then a relation

Hw(f, g; t) +mX(t) ln hG(t) = (αθ + 1)[Gw
Z (t)−mX(t) ln(t− µ+ β)],

where Gw
Z (t) = E[X ln(X−µ+β) | X > t] holds for all t > µ if and only if X follows

Pareto-II distribution

F (t) = 1−
[
1 +

( t− µ

β

)]
−α

, t > µ.
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3. Characterizations based on weighted past inaccuracy measure

In this section we consider the same distributions as in the previous section for

characterization based on weighted past inaccuracy measure. First we review some

properties of the weighted past inaccuracy measure.

Kumar and Taneja [18] introduced the notion of weighted past inaccuracy measure

of a random variable X truncated above some t as

(3.1) Hw(f, g; t) = −

∫ t

0

x
f(x)

F (t)
ln
( g(x)
G(t)

)
dx

and studied various aspects of this measure in analogy with weighted past entropy.

In agreement with Theorem 4.2 of Kumar and Taneja [18], a sharper upper bound

for the weighted past inaccuracy measure is given in the following theorem.

Theorem 3.1. If ϕG(t) is decreasing in t, then

(3.2) Hw(f, g; t) 6 −mX(t) lnϕG(t) +
1

F (t)

∫ t

0

xf(x) ln
(G(t)
G(x)

)
dx,

where mX(t) = E[X | X < t], the conditional mean of the right truncated random

variable [X | X < t].

P r o o f. Note that (3.1) can be written as

Hw(f, g; t) = −
1

F (t)

∫ t

0

xf(x) lnϕG(x) dx−
1

F (t)

∫ t

0

xf(x) ln
(G(x)
G(t)

)
dx.

Hence we obtain the result by using the fact that lnϕG(x) > lnϕG(t), for x 6 t, if

ϕG(·) is a decreasing function. �

E x am p l e 3.1. Let X and Y be two nonnegative random variables as given

in Example 2.1. Then ϕG(t) = 1/t, which is decreasing in t, mX(t) = 2
3 t and

Hw(f, g; t) = 2
3 t ln t, t > 0. Note that the right-hand side of (3.2) is 2

3 t ln t +
2
9 t.

Hence, (3.2) is fulfilled.

R em a r k 3.1. In order to characterize the distributions which attain the upper

bound of the weighted past inaccuracy measure as given in the above theorem, let us

assume that the equality in (3.2) holds. Then, differentiating with respect to t and

simplifying we get ϕG(t) = constant, which contradicts the fact thatX is nonnegative

random variable. So the inequality of (3.2) is strict.
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In the following theorem we provide a lower bound for the weighted past inaccuracy

measure. The proof is analogous to Theorem 4.2 of Kumar and Taneja [18] but for

completeness we give a brief outline of the proof.

Theorem 3.2. For two absolutely continuous nonnegative random variables X

and Y ,

(3.3) Hw(f, g; t) > mX(t)−
1

F (t)

∫ t

0

xf(x)ϕG(x) dx.

P r o o f. From (3.1), we have

Hw(f, g; t) = −
1

F (t)

∫ t

0

xf(x) lnϕG(x) dx+
1

F (t)

∫ t

0

xf(x) ln
(G(t)
G(x)

)
dx

> −
1

F (t)

∫ t

0

xf(x) lnϕG(x) dx

>
1

F (t)

∫ t

0

xf(x)(1 − ϕG(x)) dx

> mX(t)−
1

F (t)

∫ t

0

xf(x)ϕG(x) dx,

where the second-last inequality follows from the fact that lnx 6 x−1 for x > 0. �

E x am p l e 3.2. Let X and Y be two nonnegative random variables as given in

Example 2.1. Then Hw(f, g; t) = 2
3 t ln t and the right-hand side of (3.3) is

2
3 t − 1,

for t ∈ (0, 1). Denote ψ(t) = 2
3 t(ln t− 1) + 1, which is decreasing in t with ψ(1) > 0.

Hence it is easily seen that (3.3) is fulfilled.

R em a r k 3.2. Proceeding analogously as in Remark 3.1, we can show that there

is no nonnegative random variable which attains the lower bound of the weighted

past inaccuracy measure and the inequality of (3.3) is strict.

In analogy with Theorem 2.3, we obtain results on weighted past inaccuracy mea-

sure under monotonic transformations.

Theorem 3.3. Let X and Y be two absolutely continuous nonnegative random

variables. Suppose ϕ(x) is strictly monotonic, continuous and differentiable function

with derivative ϕ′(x). Then

Hw(ϕ(X), ϕ(Y ); t) =





Hw,ϕ(X,Y ;ϕ−1(t))

+E[ϕ(X) lnϕ′(X) | X 6 ϕ−1(t)], ϕ strictly increasing,

Hw,ϕ(X,Y ;ϕ−1(t))

+E[ϕ(X) ln−ϕ′(X) | X > ϕ−1(t)], ϕ strictly decreasing,

where Hw,ϕ(X,Y ; t) and Hw,ϕ(X,Y ; t) are as defined in Theorem 2.3.
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R em a r k 3.3. For two absolutely continuous nonnegative random variables X

and Y

Hw(aX, aY ; t) = aHw
(
f, g;

t

a

)
+mX

( t
a

)
a lna

for all a > 0 and t > 0. Furthermore, for all b > 0 and t > b

Hw(X + b, Y + b; t) = Hw(f, g; t− b) + bH(f, g; t− b),

where H(f, g; t) = −
∫ t

0
(f(x)/F (t)) ln(g(x)/G(t)) dx is the past inaccuracy measure

given by Kumar et al. [20].

Now we provide characterization theorems for the same distributions as consid-

ered in the previous section using reversed hazard rate, conditional mean, weighted

geometric vitality function and weighted past inaccuracy measure under PHRM and

PRHRM. Recall that weighted geometric vitality function of a right truncated ran-

dom variable is given by Gw
X(t) = E[X lnX | X < t]. Below, we characterize the

uniform distribution.

Theorem 3.4. Let X and Y be two absolutely continuous random variables sat-

isfying PRHRM with proportionality constant θ (> 0). A relation of the form

(3.4) Hw(f, g; t) +mX(t) lnϕG(t) = (1 − θ)[Gw
Z(t)−mX(t) ln(t− α)],

where Gw
Z(t) = E[X ln(X−α) | X < t] and α < t < β, holds if and only if X denotes

the random lifetime of a component with uniform distribution over (α, β).

P r o o f. The if part is obtained from (3.1). To prove the converse, let us assume

that (3.4) holds. Then by definition we can write

−

∫ t

0

xf(x) ln
g(x)

G(t)
dx+ lnϕG(t)

∫ t

0

xf(x) dx

= (1 − θ)

[∫ t

0

x ln(x− α)f(x) dx− ln(t− α)

∫ t

0

xf(x) dx

]
.

Differentiating with respect to t, we get after some algebraic calculations

g(t) = k(t− α)θ−1, k > 0 (constant),

which gives the required result. �
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Next, we give a theorem which characterizes the power distribution. The proof

follows the same lines as that of Theorem 2.5.

Theorem 3.5. For two absolutely continuous random variables X and Y satis-

fying PRHRM with proportionality constant θ (> 0), the relation

Hw(f, g; t) +mX(t) lnϕG(t) = (1− cθ)[Gw
X(t)−mX(t) ln t],

for all 0 < t < b, characterizes the power distribution as given in (2.7).

Below, we characterize exponential distribution under PHRM. The proof is similar

to that of Theorem 2.6 and hence omitted.

Theorem 3.6. Let X and Y be two absolutely continuous random variables sat-

isfying PHRM with proportionality constant θ (> 0). A relation of the form

Hw(f, g; t) +mX(t) lnϕG(t) = λθ[mX2(t)− tmX(t)],

where mX2(t) = E[X2 | X < t], the conditional expectation of X2, holds for all

t > 0 if and only if X follows exponential distribution with mean 1/λ.

Next, we provide characterization of Weibull and Rayleigh distributions. The

proof is similar to that of Theorem 2.7 and hence omitted.

Theorem 3.7. Let X and Y be two absolutely continuous random variables sat-

isfying PHRM with proportionality constant θ (> 0). A relation of the form

Hw(f, g; t) +mX(t) lnϕG(t) = (1− p)[Gw
X(t)−mX(t) ln t] + θ[mXp+1(t)− tpmX(t)],

where mXp+1(t) = E[Xp+1 | X < t], the conditional expectation of Xp+1, holds for

all t > 0, p > 0 if and only if X follows Weibull distribution as given in Theorem 2.7.

Corollary 3.1. Let X and Y be two absolutely continuous random variables

satisfying PHRM with proportionality constant θ (> 0). A relation of the form

Hw(f, g; t) +mX(t) ln
(ϕG(t)

t

)
+ Gw

X(t) = θ[mX3(t)− t2mX(t)],

where mX3(t) = E[X3 | X < t], the conditional expectation of X3, holds for all

t > 0 if and only if X follows Rayleigh distribution F (t) = e−t2 , t > 0.

Below, we provide characterization of Pareto-I distribution. The proof is similar

to that of Theorem 2.8 and hence omitted.
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Theorem 3.8. Let X and Y be two absolutely continuous random variables sat-

isfying PHRM with proportionality constant θ (> 0). Then a relation

Hw(f, g; t) +mX(t) lnϕG(t) = (αθ + 1)[Gw
X(t)−mX(t) ln t],

holds for all t > β if and only if X follows Pareto-I distribution as given in Theo-

rem 2.8.

Last, we characterize Pareto-II distribution. The proof is similar to that of Theo-

rem 2.9 and hence omitted.

Theorem 3.9. Let X and Y be two absolutely continuous random variables sat-

isfying PHRM with proportionality constant θ (> 0). Then a relation

Hw(f, g; t) +mX(t) lnϕG(t) = (αθ + 1)[Gw
Z(t)−mX(t) ln(t− µ+ β)],

where Gw
Z(t) = E[X ln(X−µ+β) | X < t] holds for all t > µ if and only if X follows

Pareto-II distribution as given in Theorem 2.9.

4. Conclusion

The investigation of measures of information is an issue of fundamental importance

in different areas of science and engineering. In recent years, various authors have

shown interest in studying the weighted version of Kerridge inaccuracy measure for

truncated distributions. Here we consider weighted residual (past) inaccuracy mea-

sure and study their bounds. Characterizations of some commonly used continuous

distributions have also been provided. In conclusion, some discussion is made on the

empirical version of the inaccuracy measure.

Let X1, X2, . . . , Xn be nonnegative, absolutely continuous independent and iden-

tically distributed (iid) random variables, that constitute a random sample from a

population having the distribution function F (x). Also, let us consider another ran-

dom sample Y1, Y2, . . . , Yn of nonnegative, absolutely continuous iid random variables

from G(x). Then the empirical inaccuracy measure is defined as

H(f̂n, ĝn) = −

∫
∞

0

f̂n(u)ĝn(u) du,

where f̂n, ĝn are the empirical densities of the samples. Now we study some statistical

interpretations of the inaccuracy measure in connection with maximum likelihood

estimate (MLE).
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Suppose each sample value Xi, i = 1, 2, . . . , n, is assigned probability 1/n, then

f̂n(X̃) =
1

n

n∑

i=1

δ(X̃ −Xi).

Also let Gθ(X̃) be a statistical model g(X̃ | θ̃) with unknown parameter θ̃. Then the

empirical version of the inaccuracy measure is

H(f̂n, gθ) = −

∫
∞

0

ln g(X̃ | θ̃)

[
1

n

n∑

i=1

δ(X̃ −Xi)

]
dX̃

= −
1

n

n∑

i=1

ln g(Xi | θ̃)

= −
1

n
ln

n∏

i=1

g(Xi | θ̃),

which is just the log-likelihood function apart from the factor (−1/n). It can be

shown that EX [H(f̂n, gθ)] = H(f, gθ), i.e., the empirical version reduces to the

population version for any n by taking its expectation. Hence, from H(f, g) =

H(f) +D(f ||g), maximizing the likelihood to find the MLE is the same as finding θ̃

which minimizes H(f, gθ) or D(f ||gθ). It is obvious that the best possible model is

the one that fits the data exactly, i.e., when f(x) = gθ(x). Therefore, for any general

model gθ(x)

H(f, gθ) > H(f),

which can also be verified from the nonnegativity property of Kullback-Leibler di-

vergence measure.
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