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17. listopadu 12, 771 46 Olomouc, Czech Republic
ae-mail: jan.andres@upol.cz

be-mail: martina.chvostekova@upol.cz
ce-mail: eva.fiserova@upol.cz

2Department of General Linguistics, Philosophical Faculty, Palacký University
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Abstract

The paper continues our studies released under the same title [4]. As
the main result justifying the conclusions in [4], the theorem is presented
enunciating that the English original of Poe’s celebrated poem Raven is a
language fractal only w.r.t. the application of the simplest truncated for-
mulas of the Menzerath–Altmann law, but not w.r.t. other applied formu-
las under our consideration. Moreover, the related degree of semanticity
is calculated in these cases, including the naive intervals of such a degree.
A suitability of the applied formulas is discussed from the point of view of
a verbal version of the Menzerath–Altmann law (i.e. the tendency of the
approximating functions is to be decreasing) and by means of quantitative
criteria characterizing the accuracy of fitted data. Our discussion extends
the traditional approaches to the Menzerath–Altmann law.

Key words: Menzerath–Altmann law, fractal analysis, accuracy of
data approximations, accuracy of shape parameter estimates, opti-
mal usage of formulas.

2010 Mathematics Subject Classification: 62F25, 62J05, 91F20

1a,cSupported by the IGA UPOL grant IGA PrF 2014028.
1bSupported by the project CZ.1.07/2.3.00/30.0041 POSTUPII.
2Supported by the project CZ.1.07/2.3.00/30.0004 POSTUP.

5
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1 Introduction

In our former paper [4] with the same title, the following four formulas of the
Menzerath–Altmann law (one of the generally accepted linguistic laws formu-
lated in a quantitative way):

I) y = y1x
−b,

II) y = Ax−b,

III) y = y1x
−bec(x−1),

IV) y = Ax−becx,

where A, b, c are real parameters, were examined from two perspectives. The
first goal was related to the best approximation of given data, while the second
one was especially concentrated on the accuracy of a calculated shape parameter
b which is necessary for the fractal analysis of the text (for more details, see [5],
[6], [7], [8]).
For the conclusions dealing with optimal strategies (i.e. the balance between

rigorousness and simplicity), we have always presumed that the formulas I)–
IV) are true models. Moreover, in Section 3 titled “Comparison of accuracy of
parameter estimations”, the term σ2

N in the formula

Var(Θ̂(Yδ), N) :=
σ2

N
M−1(δ)

for covariance matrix of the regression parameter estimates, was assumed to be
equal to 1.
In the present paper, only formulas I), II) and IV) will be taken into account.

On the other hand, the length y of constituents will be considered not only as the
mean value ȳ as in [4], but also as the set {y} of partially averaged values of y,
which we call semi-averaging. Namely, for each construct, we make individually
the averaging of its associated constituents1). In this way, we make a certain
normalization, because the frequencies of constructs will be always equal to 1.
On the other hand, in the case without any averaging, the lengths of constituents
would be integers, but the frequencies of repeated constructs should be then
taken, rather curiously, noninteger-valued, in general. Therefore, the formulas
I), II) and IV) as above will concern this time the situation with semi-averaging,
while the “bar” formulas, i.e.

I) ȳ = ȳ1x
−b,

II) ȳ = Ax−b,

IV) ȳ = Ax−becx,

will be those with the averaged values ȳ of y ∈ {y}, i.e. the averaged value of
semi-averaged values.

1)For instance, for the word constituted of 2 syllables with lengths 2 and 3, we have x = 2
and y = (2 + 3)/2 = 2.5.
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All formulas will be again applied only to three pairs of linguistic levels:
level 1, i.e. semantic constructs2) vs. clauses, level 2, i.e. clauses vs. words,
level 3, i.e. words vs. syllables. For their testing on concrete data, the English
original of Poe’s celebrated poem “Raven” will be employed.
It should be highlighted that every experiment has to follow certain method-

ological steps and to meet certain requirements. The analysis described in this
paper as well as in [4] is a part of a complex research which amalgamates linguis-
tics, mathematics and statistics. In our two papers, we intended to introduce,
first and foremost, those obstacles which can courageously be faced if we em-
ploy appropriate quantitative and statistical tools. All the other research steps
of equal importance have either been discussed (cf. e.g. [7], [8]) or, following this
stage of the research, they are to be tested and presented in the near future.
Nevertheless, we feel the need to present here at least briefly a few impor-

tant notes. Firstly, the sample text, which we chose to analyze, was the poem
“Raven” by E. A. Poe. As a poem it follows certain particular rhythmic rules
which are very natural to be taken into account in the choice of the segmen-
tation method and its units. Yet, if we wanted the segmentation to reflect the
rhythmic quality of the text, we would require to analyze and segment the poem
recited. Instead, since it is still one of the initial steps in the whole research, we
decided to follow the segmentation method and to employ units as used e.g. in
[16] and to concentrate firstly on the above mentioned problems. Our research
is going to be soon supplied with a number of new text samples.
Another methodological step which needs to be at least briefly mentioned

at the onset is the segmentation itself. Although it is not in the spotlight of
this part of the research, we deeply understand its significance and plan to
spend plenty of time performing experiments with different segmentation units,
different samples, etc. Yet, to be able to perform them we need to set up the
quantitative and statistical background. Additionally, we employed the above
already mentioned segmentation units, used e.g. in [16]. In the chain of the
linguistic units used there, we omitted sentences for the same reasons as were
discussed in [9]. We are aware of the fact that either Aren’s law should be
employed in exploring Level 1 or the sentence will be included in between the
semantic construct and the clause in our future experiments. For the interested
reader, we recommend to follow the segmentation obstacles and questions which
we have so far encountered on our voyage.
In order to distinguish formally the situations, for instance, the case of II3

will mean that the truncated formula

ȳ = Ax−b

with the averaged values ȳ of syllable lengths y (calculated in the number of
their phonemes) is applied to the level of words, whose lengths x are calculated

2)We followed Hřeb́ıček’s suggestion, in the private communication with the first author, to
call the unit at the top of our chain of linguistic units the semantic construct, instead of the
hreb or the aggregate, as documented in [9]. Yet, we are open to use any other terminology
in case it is proved in the further experiments that the MAL parameters are not suitable for
measuring semanticity of a given sample.
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in the number of their syllables. If the weights wk = zk∑
j zj
, where zk denotes

the frequency of the k-th construct, are also taken into account (its length is
denoted by xk), then the notation would read as II

w

3 , etc.
Unlike in [4], the given data will be this time analyzed in detail from the

statistical point of view. More precisely, their normality will be tested by
the Kolmogorov–Smirnov test (see e.g. [24]), their homoscedasticity resp. het-
eroscedasticity will be tested by the White test (see e.g. [25]). The quality of
fitting will be checked by means of the residual standard error, the root mean
square error, the normalized root mean square error and the coefficient of de-
termination (see e.g. [22]). It should be noted that we consider Poe’s Raven as
a population. This means that we do not deal with our data as a sample. Thus,
the computed characteristics are presented as true population characteristics,
i.e. not as the sample estimates.
The appropriate model for the calculation of real parameters A, b, c will be

selected just on the basis of such an analysis. In the case of non-normality, the
related confidence intervals will be calculated by the bootstrap technique (for
more details, see e.g. [13]).
Hence, the paper will be organized as follows. At first, auxiliary definitions

and further useful information will be recalled. Then, the panorama of com-
mented particular cases will be presented. Finally, besides formulation of the
main theorem, the conclusions regarding model suitability, and in a certain sense
also optimality (whence the title again), of particular formulas will be discussed.
Let us emphasize with this respect that all these conclusions will be exclusively
related only to data under our current investigation.

2 Some preliminaries from statistics

In the entire text, the symbol N denotes the total number of observed values
yj ∈ {y}, while n stands for the number of different construct lengths. Let us
note that N and n can differ for different linguistic levels.
Using the logarithmic transformation, all models under consideration can be

linearized. Thus, for the models I), II) and IV), when the values of constituent
lengths are semi-averaged, we obtain linear models of the form:

ad I) lnYj = ln ȳ1 − b lnxj + εj , j = 1, 2, . . . , N ,

ad II) lnYj = lnA− b lnxj + εj , j = 1, 2, . . . , N ,

ad IV) lnYj = lnA− b lnxj + cxj + εj , j = 1, 2, . . . , N .

Here, ȳ1 is the average of the observed constituent lengths yj of the shortest
construct with the length x1. The symbol εj denotes the j-th random error; Yj

means the j-th observation, its realization is yj . We will use the general matrix
form for the models as well as for the estimators which are more suitable for
further consideration. In particular, the matrix form of the linearized models I),
II) and IV) reads Y ∗ = X∗β + ε, where the j-th element of the vector Y ∗, the
j-th row of the matrix X∗ and the vector β of unknown regression parameters
are
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ad I) Y ∗
j = lnYj − ln ȳ1, x∗

j = − lnxj , β = b,

ad II) Y ∗
j = lnYj , x∗

j
T = (1,− lnxj), β = (lnA, b)T ,

ad IV) Y ∗
j = lnYj , x∗

j
T = (1,− lnxj , xj), β = (lnA, b, c)T .

The vector parameter β can be estimated either by the ordinary least squares
estimator (OLSE), or by the weighted least squares estimator (WLSE) (cf. e.g.
[10, 22]), in accordance with the assumptions imposed on random errors εj .
More precisely, if the dispersion of random errors is constant, then we speak
about homoscedasticity, otherwise, we speak about heteroscedasticity. For the
homoscedasticity with constant dispersion σ2, the OLSE of the vector parameter
β is (cf. e.g. [22])

β̂ = (X∗TX∗)−1X∗TY ∗, (1)

with the covariance matrix

var(β̂) = σ2(X∗TX∗)−1, (2)

where σ2 is the unknown parameter to be estimated. The unbiased estimator
of σ2 is (cf. e.g. [13])

σ̂2 =
(Y ∗ −X∗β̂)T (Y ∗ −X∗β̂)

N −K
, (3)

where K is the number of regression parameters (the length of the vector β).
Once the parameter σ2 is estimated, its value can be plugged into the formula
(2), by which the covariance matrix can be estimated as well.
For the heteroscedasticity, when the dispersion of random error εj is σ2

j ,
j = 1, 2, . . . , N , the formula for the WLSE of the vector parameter β takes the
form

β̂ = (X∗TW−1X∗)−1X∗TW−1Y ∗,

var(β̂) = (X∗TW−1X∗)−1,
(4)

whereW = diag{σ2
1 , σ

2
2 , . . . , σ

2
N} is a diagonal matrix.

If random errors are heteroscedastic, the relationship between errors and
explanatory variables should be analyzed in order to estimate the dispersions
σ2
1 , σ

2
2 , . . . , σ

2
N . The algorithm is the following. Firstly, the OLSE of β and

corresponding residual vector e = y∗ − X∗β̂ are calculated. Next, the rela-
tionship between σ2

i and explanatory variables is fitted applying the ordinary
least squares method to residual vector e. Consequently, σ2

1 , σ
2
2 , . . . , σ

2
N are es-

timated. Finally, the estimates of σ2
j are plugged into the matrix W, and the

WLSE of β can be determined. Specific situations will be discussed in detail in
the next section.
If averaged models are analyzed, the procedure is similar. More precisely,

the matrix form of models takes the form Y
∗
= X∗β+ε, where the k-th element

of the vector Y
∗
, the k-th row of the matrix X∗ and the vector β of unknown

regression parameters are
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ad I) Y
∗
k = lnY k − ln ȳ1, x∗

k = − lnxk, β = b, k = 1, 2, . . . , n,

ad II) Y
∗
k = lnY k, x∗

k
T = (1,− lnxk), β = (lnA, b)T , k = 1, 2, . . . , n,

ad IV) Y
∗
k = lnY k, x∗

k
T = (1,− lnxk, xk), β = (lnA, b, c)T , k = 1, 2, . . . , n.

Thus, the formula for the ordinary least squares estimator of β is given by the
equation (1), when the vector Y ∗ is replaced by Y

∗
. Analogously, the parameter

σ2 is unbiasedly estimated by the formula (3), using n instead of N . In this
case, the explicit formulas for the OLSE of the parameters A, b, c are derived
in [4].
When the weights wi = zi/

∑n
k=1 zk, where zi is the frequency of the i-

th construct, are also taken into account in the averaged models, the vector
parameter β should be estimated by the weighted least squares method using the
expressions (4), where W = diag{1/w1, 1/w2, . . . , 1/wn} is a diagonal matrix
of the reciprocal values of weights. Let us note that the dispersions of random
errors εk equal σ2/wk, and so they are not constant in this case. Thus, the
covariance matrix of β̂ is estimated by σ̂2(X∗TW−1X∗)−1, where the unbiased
estimator of the parameter σ2 is given by

σ̂2 =
(Y

∗ −X∗β̂)TW−1(Y
∗ −X∗β̂)

n−K
. (5)

Once the model is fitted, the assumptions of homoscedasticity (in the case
for averaged models without weights and models with semi-averaging) and nor-
mality distribution of random errors should be tested. Homoscedasticity can be
tested, e.g., by the White test (see e.g. [25]). Normality can be tested, e.g., by
the Shapiro–Wilk test or by the Kolmogorov–Smirnov test (see e.g. [24]) applied
to standardized residuals(

e1√
var(e1)

, . . . ,
eN√

var(eN )

)T

,

var(e) = σ̂2
(
W −X∗(X∗TW−1X∗)−1X∗T

)
.

The formulas are valid for heteroscedastic models with semi-averaging. For
homoscedastic models, the identity matrix is used, instead of matrixW. When
averaged models are analyzed, the subscript runs from 1 to n.
If normality of random errors is not rejected, a confidence interval can be

determined in a standard way by theWald statistic (cf. e.g. [22]). In particular,
the 100(1− α)% confidence interval for the parameter b is

I1−α(b) =

[
b̂− σ̂

√
var(b̂)tN−K(1− α/2), b̂+ σ̂

√
var(b̂)tN−K(1− α/2)

]
,

where tN−K(1−α/2) means the (1−α/2)-quantile of the Student t-distribution
with N − K degrees of freedom. If the parameter b is estimated in averaged
models, the number N is replaced by n. The level of 100(1 − α)% confidence
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of the confidence interval indicates the probability that the confidence range
captures the true value of the parameter b.
When random errors are not normally distributed, a confidence interval for

b can be determined by bootstrap percentiles (cf. e.g. [13]). The bootstrap
techniques are based on a bootstrap data set. The usual way of bootstrapping a
regression model consists of bootstrapping pairs (x∗

j , yj) from the original data
set, so that a bootstrap data set d is of the form

d = {(x∗
j1 , yj1), (x

∗
j2 , yj2), . . . , (x

∗
jN , yjN )},

where indices j1, j2, . . . , jN represent a random sample of the integers from 1
to N . Obviously, the bootstrap data set consists of pairs (x∗

j , yj), some ap-
pearing zero times, some appearing once, some appearing twice, etc. Let us
note that bootstrap data sets should be taken from the original data set with
semi-averaging.
The algorithm for determination of a bootstrap confidence interval is the

following. Firstly, we generate B independent bootstrap data sets d1,d2 . . . ,dB .
For each bootstrap data set, we fit the model and compute the estimates b̂(dj),
j = 1, 2, . . . , B. Then, we determine 100(α/2)-th and 100(1−α/2)-th empirical

percentiles of b̂(dj)-estimates. These percentiles will be denoted as b
α/2
B and

b
1−α/2
B , respectively. It means that bα/2B is the B(α/2)-th value in the ordered
list of values b̂. If B(α/2) is not an integer, we can take the largest integer k ≤
(B + 1)(α/2) and define bα/2B by the k-th largest values of b̂(dj). The resulting
approximate 100(1−α)% bootstrap confidence interval for the parameter b reads

I1−α(b) =
[
b
α/2
B , b

1−α/2
B

]
.

The authors of the book [13] suggest a general rule of thumb about the
number of bootstrap replications B, for bootstrap confidence intervals, such
that B should be from the interval [500, 1000]. Let us note that the percentile
bootstrap confidence intervals are meanigful only if the bootstrap statistic has
a symmetric distribution. As a simple way for verification such a symmetry, we
recommend to construct a histogram of bootstrap estimates b̂(dj) and to check
the symmetry graphically.
The goodness of fit measures (cf. e.g. [22]) of a regression model widely

used in practice can be characterized by means of the residual standard error σ̂,
the root mean square error (RMSE ), the normalized root mean square error
(NRMSE ) and the coefficient of determination R2. The first three measures
characterize the achieved precision fit, the latter one represents the proportion
of variation explained by the model.
The quantities of RMSE and σ̂ can be interpreted as the average deviation of

fitted and observed values of y. They can range from zero to infinity; obviously,
the lower the values, the better. Since the RMSE is scale-dependent (RMSE
has the same unit as the dependent variable), the application of the normalized
root mean square error is more suitable. The value is often expressed as a
percentage, where lower values indicate less residual variance.



12 J. Andres, M. Benešová, M. Chvosteková, E. Fǐserová

The coefficient of determination R2 tells us how accurately our model ex-
plains a phenomena. It takes values from zero to one; obviously, the higher the
values, the better. In soft sciences, we believe that the threshold for a good
model can start from 0.5.
The related formulas for residual standard errors are given by the square

root expressions in (3) and (5). For heteroscedastic models with semi-averaging,
symbol n is replaced by N in formula (5). Formulas for RMSE, NRMSE and
R2 for heteroscedastic models with semi-averaging are as follows:

RMSE =

√
(Y ∗ −X∗β̂)TW−1(Y ∗ −X∗β̂)

N
,

NRMSE =
RMSE

Y ∗
max − Y ∗

min

,

R2 = 1− (Y ∗ −X∗β̂)TW−1(Y ∗ −X∗β̂)

(Y ∗ − Y
∗
W1)TW−1(Y ∗ − Y

∗
W1)

,

where
Y

∗
W = (1′W−11)−11′W−1Y ∗.

Here, the symbol 1 denotes the vector of N units. For homoscedastic models,
the identity matrix is used, instead of matrix W. For averaged models, the
symbol N is replaced by n. Note that, for cases I, I

w
, I (i.e. for the models

without intercept), the value of R2 is computed as follows:

R2 = 1− (Y ∗ −X∗β̂)TW−1(Y ∗ −X∗β̂)

Y ∗TW−1Y ∗ ,

(see e.g. [12]).

3 Panorama of linguistics alternatives

At first, the given data will be analyzed with semi-averaging. By given data,
we mean those in terms of constructs (units of a linguistic level) and constituents
(i.e. units on the directly lower linguistic level) related to the English original
of Poe’s Raven (its segmentation is described in detail in [7], [8]).
As usually, the length of a construct (in the number of its constituents)

will be denoted by x but, this time rather unconventionally, the length of con-
stituents will be calculated, for each construct, individually as a partial average
(i.e. as a semi-averaged number of units on a consecutive lower level). In this
way, the dependence of the length y ∈ {y} of constituents on the length x of
constructs can be expressed by a multivalued sequence (for its graph and an
optimal single-valued continuous approximation, see the figures below).
If the homoscedasticity is rejected, the matrixW takes the form of

W = diag{σ̂2
1 , σ̂

2
2 , . . . , σ̂

2
N}, σ̂j = α̂0 + α̂1 lnxj , j = 1, 2, . . . , N.
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The estimators α̂0, α̂1 are computed by means of the formula (1), where

Y ∗ = (e21, e
2
2, . . . , e

2
N )T .

The presented confidence intervals for b are at the 95% confidence level unless,
otherwise, the confidence level is indicated in the brackets.
If the normality is not rejected, a confidence interval is the exact interval

at the 100(1− α)% confidence level. Otherwise, the confidence interval is com-
puted by the mentioned bootstrap method, when using B = 1000 bootstrap
replications. For our data, we can point out that the applied bootstrap statistic
has a symmetric distribution.

The panorama of alternatives is as follows:

• case I1 (application of formula I to the first level)

Homoscedasticity: rejected; normality: rejected;

R2 .
= 0.0260; RMSE

.
= 1.0034; NRMSE

.
= 0.3912;

ȳ1
.
= 9.8193; b̂

.
= 0.0624; b ∈ [0.0191, 0.1051].

0 10 20 30 40 50 60
0

5

10

15

20

25

30

x

y

Figure 1: Data yj vs. values y1x
−b̂
j , j = 1, 2, . . . , 397; for case I1.

• case I2 (application of formula I to the second level)

Homoscedasticity: rejected; normality: rejected;

R2 .
= 0.6552; RMSE

.
= 0.9726; NRMSE

.
= 0.8853;

ȳ1
.
= 2.5556; b̂

.
= 0.2386; b ∈ [0.1336, 0.3220].
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Figure 2: Data yj vs. values ȳ1x
−b̂
j , j = 1, 2, . . . , 150; for case I2.

• case I3 (application of formula I to the third level)

Homoscedasticity: rejected; normality: rejected;

R2 .
= 0.0538; RMSE

.
= 1.0007; NRMSE

.
= 0.5585;

ȳ1
.
= 2.6625; b̂

.
= 0.1037; b ∈ [0.0617, 0.1406].
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Figure 3: Data yj vs. values ȳ1x
−b̂
j , j = 1, 2, . . . , 959; for case I3.

• case II1 (application of formula II to the first level)

Homoscedasticity: rejected; normality: rejected;
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R2 .
= 0.0001; RMSE

.
= 1.0021; NRMSE

.
= 0.3907;

Â
.
= 8.6581; b̂

.
= −0.0049; b ∈ [−0.0446, 0.0346].
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Figure 4: Data yj vs. values Âx−b̂
j , j = 1, 2, . . . , 397; for case II1.

• case II2 (application of formula II to the second level)

Homoscedasticity: rejected; normality: not rejected;

R2 .
= 0.0577; RMSE

.
= 1.0236; NRMSE

.
= 0.9318;

Â
.
= 1.2092; b̂

.
= −0.1167; b ∈ [−0.1911,−0.0424].
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Figure 5: Data yj vs. values Âx−b̂
j , j = 1, 2, . . . , 150; for case II2.
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• case II3 (application of formula II to the third level)

Homoscedasticity: rejected; normality: rejected;

R2 .
= 0.0053; RMSE

.
= 1.0005; NRMSE

.
= 0.5584;

Â
.
= 2.5255; b̂

.
= 0.048; b ∈ [0.0074, 0.0877].
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Figure 6: Data yj vs. values Âx−b̂
j , j = 1, 2, . . . , 959; for case II3.

• case IV1 (application of formula IV to the first level)

Homoscedasticity: rejected; normality: rejected;

R2 .
= 0.0003; RMSE

.
= 1.0021; NRMSE

.
= 0.3907;

Â
.
= 8.6486; b̂

.
= −0.0139; b ∈ [−0.0920, 0.0622]; ĉ

.
= −0.0015.
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Figure 7: Data yj vs. values Âx−b̂
j eĉxj , j = 1, 2, . . . , 397; for case IV1.
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• case IV2 (application of formula IV to the second level)

Homoscedasticity: rejected; normality: rejected;

R2 .
= 0.0803; RMSE

.
= 0.9931; NRMSE

.
= 0.9040;

Â
.
= 1.4047; b̂

.
= 0.0701; b ∈ [−0.0759, 0.2095]; ĉ

.
= 0.0268.
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Figure 8: Data yj vs. values Âx−b̂
j eĉxj , j = 1, 2, . . . , 150; for case IV2.

• case IV3 (application of formula IV to the third level)

Homoscedasticity: rejected; normality: rejected;

R2 .
= 0.0089; RMSE

.
= 1.0006; NRMSE

.
= 0.5585;

Â
.
= 2.7904; b̂

.
= −0.1522; b ∈ [−0.3512, 0.0488]; ĉ

.
= −0.1086.
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Figure 9: Data yj vs. values Âx−b̂
j eĉxj , j = 1, 2, . . . , 959; for case IV3.
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Now, the same data will be analyzed for the averaged lengths ȳ of con-
stituents. Moreover, the weights wi (i.e. relative frequencies of constructs)
will be implemented into calculations. Thus, the dependence of the length ȳ of
constituents on the length x of constructs can be traditionally expressed by a
(single-valued) sequence whose graph can be approximated in an optimal way
by a continuous function.

• case I
w

1 (application of formula I to the first level, provided the weights are
included in calculations)

Homoscedasticity: not rejected; normality: not rejected;

R2 .
= 0.4263; RMSE

.
= 0.1736; NRMSE

.
= 0.3293;

ȳ1
.
= 9.8193; b̂

.
= 0.0374; b ∈ [0.0152, 0.0595].
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Figure 10: Data ȳj vs. values ȳ1x
−b̂
j , j = 1, 2, . . . , 18; for case I

w

1 .

• case I
w

2 (application of formula I to the second level, with weights)

Homoscedasticity: rejected, normality: not rejected;

R2 .
= 0.9406; RMSE

.
= 0.5885; NRMSE

.
= 1.2533;

ȳ1
.
= 2.5556; b̂

.
= 0.1917; b ∈ [0.1522, 0.2311].



Optimization of parameters in the Menzerath–Altmann law, II 19
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Figure 11: Data ȳj vs. values ȳ1x
−b̂
j , j = 1, 2, . . . , 19; for case I

w

2 .

• case I
w

3 (application of formula I to the third level, with weights)

Homoscedasticity: not rejected; normality: not rejected;

R2 .
= 0.8390; RMSE

.
= 0.2660; NRMSE

.
= 0.4433;

ȳ1
.
= 2.6625; b̂

.
= 0.0686; b ∈ [0.0134, 0.1237].
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Figure 12: Data ȳj vs. values ȳ1x
−b̂
j , j = 1, 2, . . . , 4; for case I

w

3 .
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• case II
w

1 (application of formula II to the first level, with weights)

Homoscedasticity: not rejected; normality: not rejected;

R2 .
= 0.3468; RMSE

.
= 0.1736; NRMSE

.
= 0.3293;

Â
.
= 9.8178; b̂

.
= 0.0374; b ∈ [0.0102, 0.0643].
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Figure 13: Data ȳj vs. values Âx
−b̂
j , j = 1, 2, . . . , 18; for case II

w

1 .

• case II
w

2 (application of formula II to the second level, with weights)

Homoscedasticity: rejected; normality: not rejected;

R2 .
= 0.6204; RMSE

.
= 2.2830; NRMSE

.
= 0.3213;

Â
.
= 1.3362; b̂

.
= −0.0716; b ∈ [−0.0835,−0.0597].
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Figure 14: Data ȳj vs. values Âx
−b̂
j , j = 1, 2, . . . , 19; for case II

w

2 .



Optimization of parameters in the Menzerath–Altmann law, II 21

• case II
w

3 (application of formula II to the third level, with weights)

Homoscedasticity: not rejected; normality: not rejected;

R2 .
= 0.7924; RMSE

.
= 0.2608; NRMSE

.
= 0.4526;

Â
.
= 2.6744; b̂

.
= 0.0734; b ∈ [0.0128, 0.1340] (85 %).
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Figure 15: Data ȳj vs. values Âx
−b̂
j , j = 1, 2, . . . , 4; for case II

w

3 .

• case IV
w

1 (application of formula IV to the first level, with weights)

Homoscedasticity: not rejected; normality: not rejected;

R2 .
= 0.3474; RMSE

.
= 0.1735; NRMSE

.
= 0.3292;

Â
.
= 9.8168; b̂

.
= 0.0390; b ∈ [0.0018, 0.0765]; ĉ

.
= 0.0004.

0 10 20 30 40 50 60
6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

x

y

Figure 16: Data ȳj vs. values Âx
−b̂
j eĉxj , j = 1, 2, . . . , 18; for case IV

w

1 .
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• case IV
w

2 (application of formula IV to the second level, with weights)

Homoscedasticity: not rejected; normality: not rejected;

R2 .
= 0.2724; RMSE

.
= 0.3924; NRMSE

.
= 1.8796;

Â
.
= 1.7355; b̂

.
= 0.2618; b ∈ [0.0113, 0.5124]; ĉ

.
= 0.0485.
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Figure 17: Data ȳj vs. values Âx
−b̂
j eĉxj , j = 1, 2, . . . , 19; for case IV

w

2 .

• case IV
w

3 (application of formula IV to the third level, with weights)

Homoscedasticity: not rejected; normality: not rejected;

R2 .
= 0.9314; RMSE

.
= 0.1499; NRMSE

.
= 0.7873;

Â
.
= 2.9274; b̂

.
= −0.0937; b ∈ [−1.6110, 1.4230]; ĉ

.
= −0.0942.
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Figure 18: Data ȳj vs. values Âx−b̂
j eĉxj , j = 1, 2, . . . , 4; for case IV

w

3 .
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Finally, the same given data will be again analyzed for the averaged lengths
ȳ of constituents, but without weights in calculations. Unlike above, the
graphs of the related sequences and their optimal continuous approximations
will be (in view of their similarity to those in the foregoing part) omitted.

• case I1 (application of formula I to the first level, without weights)

Homoscedasticity: not rejected; normality: not rejected;

R2 .
= 0.2350; RMSE

.
= 0.1195; NRMSE

.
= 4.4112;

ȳ1
.
= 9.8193; b̂

.
= 0.0265; b ∈ [0.0020, 0.0510].

• case I2 (application of formula I to the second level, without weights)

Homoscedasticity: rejected; normality: not rejected;

R2 .
= 0.7125; RMSE

.
= 0.2211; NRMSE

.
= 3.3368;

ȳ1
.
= 2.5556; b̂

.
= 0.1717; b ∈ [0.1648, 0.1785].

• case I3 (application of formula I to the third level, without weights)

Homoscedasticity: not rejected; normality: not rejected;

R2 .
= 0.9425; RMSE

.
= 0.0191; NRMSE

.
= 6.1774;

ȳ1
.
= 2.6625; b̂

.
= 0.0814; b ∈ [0.0445, 0.1184].

• case II1 (application of formula II to the first level, without weights)

Homoscedasticity: not rejected; normality: not rejected;

R2 .
= 0.0686; RMSE

.
= 0.1194; NRMSE

.
= 4.4156;

Â
.
= 9.9463; b̂

.
= 0.0312; b ∈ [0.0004, 0.0602] (70 %).

• case II2 (application of formula II to the second level, without weights)

Homoscedasticity: rejected; normality: not rejected;

R2 .
= 0.6360; RMSE

.
= 2.2900; NRMSE

.
= 0.3217;

Â
.
= 1.1380; b̂

.
= −0.1526; b ∈ [−0.1770,−0.1280].

• case II3 (application of formula II to the third level, without weights)

Homoscedasticity: not rejected; normality: not rejected;

R2 .
= 0.8760; RMSE

.
= 0.0180; NRMSE

.
= 6.5621;

Â
.
= 2.6940; b̂

.
= 0.0918; b ∈ [0.0445, 0.1184] (90 %).

• case IV1 (application of formula IV to the first level, without weights)

Homoscedasticity: not rejected; normality: not rejected;

R2 .
= 0.1505; RMSE

.
= 0.1140; NRMSE

.
= 4.6236;

Â
.
= 9.3502; b̂

.
= −0.0294; b ∈ [−0.1308, 0.0720]; ĉ

.
= −0.0049.

• case IV2 (application of formula IV to the second level, without weights)

Homoscedasticity: not rejected; normality: not rejected;

R2 .
= 0.2080; RMSE

.
= 0.1326; NRMSE

.
= 5.5616;

Â
.
= 1.8227; b̂

.
= 0.1739; b ∈ [0.0002, 0.3476]; ĉ

.
= 0.0261.
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• case IV3 (application of formula IV to the third level, without weights)

Homoscedasticity: not rejected; normality: not rejected;

R2 .
= 0.9163; RMSE

.
= 0.0148; NRMSE

.
= 7.9900;

Â
.
= 2.1994; b̂

.
= −0.0058; b ∈ [−1.8260, 1.8140]; ĉ

.
= −0.0463.

4 Suitability of applied formulas

In order to discuss the suitability of formulas applied above, let us recall at first
the verbal form of the Menzerath–Altmann law (MAL), and the definitions of
a language fractal and its degree of semanticity given in [3], [5], [6].
The verbal form of MAL sounds as follows (e.g. [1], [2], [27]): “the longer

a language construct is, the shorter its constituents are”. This means that the
relationship between the lengths of constructs and constituents can be geomet-
rically expressed by means of the graph of a decreasing function.
Let us note that although all mathematical formulas for MAL (see e.g. [4],

[2], [11], [14], [15], [17]–[21], [23], [26]) should somehow rely on this heuristic
version, the related graphs of complete formulas do not satisfy very often the
decreasing character. In our analysis, this concerns the cases IV2, IV

w

2 , IV1,
IV2, which might be related to a nonsuitable implementation of parameter c.
However, since the curves gained when applying the related formulas do not
decrease also in the cases II1, II2, II

w

2 , II2, associated with truncated formulas,
modeling by means of these formulas does not seem to be appropriate.
Despite the decreasing character of related functions, the cases I3, II3, IV3

must still be excluded from possible modeling, because the total number of only
4 points of the empirically gained observations is quite insufficient from the
statistical point of view. All the remaining cases, i.e. I1, I2, I3, II3, IV1, IV3

(almost), I
w

1 , I
w

2 , I
w

3 , II
w

1 , II
w

3 , IV
w

1 , IV
w

3 , I1, I2, II1, are in accordance with
the verbal form of MAL. In particular, it is true for the truncated formulas y =
ȳ1x

−b as well as ȳ = ȳ1x
−b applied to all linguistic levels under our consideration,

provided either there is a semi-averaging or the weights (i.e. relative frequencies)
are incorporated into calculations.
Now, let us proceed to the definitions of a language fractal and its degree of

semanticity (for more details, see [3], [5], [6]).

Definition 1 By a language fractal, we mean the text satisfying MAL with
positive shape parameters b > 0, on all linguistic levels under consideration.
For the application of a concrete formula of MAL, we speak about the language
fractal w.r.t. this applied formula.

Definition 2 By the degree of semanticity D of a language fractal, we under-
stand the reciprocal mean value of all shape parameters b > 0.

Let us note with this respect that the notions of a language fractal and its
degree of semanticity are based on the isomorphism between the logarithmized
form of MAL and the Moran–Hutchinson formula for computation of a self-
similarity (fractal) dimension D (for more details, see [3], [5], [6]). In this way,
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D (as the reciprocal mean value of b’s) means at the same time the fractal
dimension of the associated geometrical model whose fractal dimension must
be positive. Because of this correspondence, this in turn means that we are
exclusively restricted here by the case of positive values of shape parameters b,
whatever formula of MAL is applied.
In our analysis, denoting by b1, b2, b3 the shape parameters associated with

the levels 1 (i.e. semantic constructs vs. clauses), 2 (i.e. clauses vs. words),
3 (i.e. words vs. syllables), the degree of semanticity D equals

D =
3

b1 + b2 + b3
,

provided b1 > 0, b2 > 0, b3 > 0. Of course, adding or replacing some linguistic
levels under consideration, when analyzing the same text, can change the results.
One can readily check that only truncated formulas I), I

w
), I) lead to satis-

fying Definition 1. Hence, we can immediately give the following theorem.

Theorem 1 The English original of Poe’s Raven is a language fractal w.r.t.
the application of truncated formulas I), I

w
), I), but not otherwise. Its degree

of semanticity equals

DI
.
= 7.4124, DĪw

.
= 8.7143, DĪ

.
= 10.7297,

respectively.

Remark 1 The naive intervals for these degrees of semanticity (deduced from
the confidence intervals for the shape parameter b) are as follows:

DI ∈ [5.2809, 13.9962], DI
w ∈ [7.0726, 11.3534], DI ∈ [8.6222, 14.1965].

The left interval ends are the reciprocal mean values of the right ends of confi-
dence intervals and, vice versa, the right interval ends are the reciprocal mean
values of the left ends of confidence intervals. On the other hand, since the
formulas for MAL are not statistically significant in the cases I3, II3, IV3 (only
4 points to our disposal and no weights are involved), neither the value of
DI

.
= 10.7297, nor the associated naive interval of DI ∈ [8.6222, 14.1965] make

much sense.

Remark 2 In case of semi-averaging, extremely low values of the coefficient of
determination R2, with only one exceptional case I2, practically exclude here
the application of formulas I), II) and IV)3). On the first level (i.e. semantic
constructs vs. clauses), all values of R2 are less than 0.5, even in all the cases
(i.e. with total as well as partial averaging). On the other hand, the inequality
R2 > 0.5 holds, for the cases I

w

2 , I
w

3 , II
w

2 , II
w

3 , IV
w

3 and I2, I3, II2, II3, IV3.
In other words, with averaging, qualitatively similar situations occur for cases

3)We have checked, but not documented here, that exactly the same is true in the case
without any averaging. Moreover, the integer-valued constituent lenghts would require a
completely different statistical methodology.
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with and without weights implemented into calculations. Nevertheless, on the
most subtle first level, the values of R2 are significantly larger in cases with
weights than in those without them. Moreover, R2 .

= 0.4263, obtained for
the case I

w

1 , is the highest value of all, on the first level, which is not so far
from 0.5. This suggests us to apply here preferably the averaged formulas to
cases, when weights (i.e. relative frequences) are incorporated into calculations.
In particular, in view of the above observations, the application of formula
I
w

1 ) seems to be optimal here, from the point of view of goals formulated in
Introduction.

For the last comparison in these lines, the relative NRMSE -values are more
suitable than the absolute RMSE -values which are not normalized. One can
readily check that, with averaging, all the NRMSE -values are significantly
smaller (i.e. better), when the weights are again taken into account than other-
wise. Moreover, since only on the second level the NRMSE -values are smaller
in cases I2 and IV2 than for cases I

w

2 and IV
w

2 , respectively, and, on the third
level, the one for IV3 is smaller than for IV

w

3 , this inconvenience does not affect
the averaged formulas with weights so much to be preferred among all again (cf.
especially Remark 2).

5 Concluding remarks

As already pointed out several times, all the conclusions must be exclusively
reserved only for the text under consideration, i.e. in our study, the English
original of Poe’s Raven. Nevertheless, we believe that they can at the same
time indicate some situations which might prove to be more general.
For instance, despite some loss of information about the structure of the

given data, the procedure of averaging can help us especially to increase the
coefficient of determination (see Remark 2). The incorporation of weights (i.e.
relative frequencies of constructs) into calculations can still eliminate the (nor-
malized) root mean square errors, etc.
Hence, for the sake of the fractal analysis, we can say that the assertion of

Theorem 1 is statistically mostly relevant in case I
w
(i.e. w.r.t. the application

of formula I
w
). This, besides other things, makes our conclusions indicated

already in [4] more precise.
What we tried to find in this stage of our complex research was the uniform,

widely applicable quantitative and statistical methods for testing the MAL va-
lidity. We already pointed out above that, in the following stages of the research,
it is necessary to elaborate further methodological steps. And last but not least,
we will have to continue with practical application to find whether we really can
quantify in this way the semanticity of a text sample. If so, then a natural ques-
tion arises, namely how to measure the semanticity when the values of shape
parameters b are negative.
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[7] Andres, J., Benešová, M.: Fractal analysis of Poe’s Raven. Glottometrics 21 (2011),
73–98.
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