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Amiran Gogatishvili, Filip Soudský, Praha

Abstract. We study normability properties of classical Lorentz spaces. Given a certain
general lattice-like structure, we first prove a general sufficient condition for its associate
space to be a Banach function space. We use this result to develop an alternative approach to
Sawyer’s characterization of normability of a classical Lorentz space of type Λ. Furthermore,
we also use this method in the weak case and characterize normability of Λ∞v . Finally, we
characterize the linearity of the space Λ∞v by a simple condition on the weight v.
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1. Introduction

Classical Lorentz spaces were introduced by Lorentz in 1951 in [6]. Their norma-

bility and duality properties have been intensively studied since 1990 when Sawyer

in [7] determined when a classical Lorentz space of type Λ is equivalent to a Banach

space. It turns out that a classical Lorentz space of type Λ need not in general be

normable and even does not have to be necessarily a linear set (see [3]), similarly for

the space of weak type.

In this paper we present an alternative approach to this problem, using duality

methods based on properties of associate spaces to rather general structures. In

This research was in part supported by the grant P201/13/14743S. The research of
A.Gogatishvili was partialy supported by the grant RVO: 67985840. The research of
F. Soudský was partially supported by the grant SVV-2013-267316.
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our first main result we characterize when the set defined as an associate space to

a certain structure of lattice type has the properties required by the definition of the

so-called Banach function norm (definitions are given in Section 2 below). We then

apply this general result to the specific case of the classical Lorentz space, obtaining

thereby a new proof of Sawyer’s result. We then turn our attention to the classical

Lorentz space of weak type, studied for example in [2] and [4]. We give a necessary

and sufficient condition for the normability of this space.

The paper is structured as follows. In the following section we give some back-

ground material and fix notation. In Section 3 we recall the results of general nature

concerning Banach function spaces. In Section 4 we state and prove our main results

concerning the classical Lorentz spaces. Finally, in Section 5 we state and prove our

results concerning weak-type spaces.

2. Preliminaries

Throughout the paper we shall always consider a σ-finite nonatomic underlying

measure space (R, µ). The symbol M(R) will always be used to denote the set of

all real-valued µ-measurable functions on R. For f ∈ M(R) we shall consider the

distribution function defined by

λf (s) := µ({|f | > s}), s ∈ (0,∞),

the nonincreasing rearrangement of f defined by

f∗(s) := inf{λf 6 s}, s ∈ (0,∞),

and

f∗∗(s) :=
1

s

∫ s

0

f∗(t) dt, s ∈ (0,∞).

The set of all simple functions on R will be denoted by

S(R) :=

{

f : f =

n
∑

i=1

aiχAi
: µ(Ak) < ∞

}

.

Moreover, if µ(R) < ∞, then we set f∗(s) := 0 for s > µ(R). The expression

weight will always refer to a locally integrable nonnegative function defined on (0,∞),

positive on (0, δ) for some δ > 0 and with v(s) = 0 for s ∈ (µ(R),∞). In the following

text we shall also use capitals U , V , W for functions defined as

U(t) :=

∫ t

0

u(s) ds,

V (t) :=

∫ t

0

v(s) ds,
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and

W (t) :=

∫ t

0

w(s) ds, t ∈ (0,∞).

The symbol p′ will always denote the associate exponent to p ∈ (1,∞) defined by

p′ = p/(p− 1).

Definition 2.1. Let (R, µ) be a nonatomic σ-finite measure space. Let us con-

sider a functional ‖·‖X : M(R) → [0,∞] and set X := {f ∈ M(R) : ‖f‖X < ∞}.

Let us consider the following properties.

(P1) ‖·‖X is a norm on X .

(P2) If |f | > |g| a.e., then ‖f‖X > ‖g‖X .

(P3) If 0 6 fn ↑ f a.e., then ‖fn‖X ↑ ‖f‖X .

(P4) ‖χE‖X < ∞, whenever µ(E) < ∞.

(P5) For every set E of a finite measure, there exists a constant CE such that

‖fχE‖X > CE

∫

E

|f | dµ.

(P6) If f∗(s) = g∗(s) for every s ∈ (0, µ(R)), then ‖f‖X = ‖g‖X.

We call X

(1) a Banach function space if (P1)–(P5) are satisfied;

(2) a rearrangement-invariant Banach function space if (P1)–(P6) are satisfied;

(3) a rearrangement-invariant lattice if ‖·‖X is a positively homogeneous functional

and (P2), (P3) and (P6) are satisfied.

Remark 2.1. If ‖·‖X satisfies (P2), it easily follows that |f | = |g| implies ‖f‖X =

‖g‖X .

Definition 2.2. Let ‖·‖X : M(R) → [0,∞] be a functional. For f ∈ M(R)

define

‖f‖X′ := sup
g∈X

∫

R
fg dµ

‖g‖X

and

‖f‖X′′ := sup
g∈X′

∫

R
fg dµ

‖g‖X′

(following the convention 0/0 = ∞/∞ = 0).

Definition 2.3. Let ‖·‖X have the properties (P2), (P3) and (P6). For t ∈ (0,∞)

we define the fundamental function by

ϕX(t) := ‖χE‖X , where µ(E) = t.
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Definition 2.4. Let ‖·‖X , ‖·‖Y : M(R) → [0,∞] and let

X := {f ∈ M(R) : ‖f‖X < ∞}

and

Y := {f ∈ M(R) : ‖f‖Y < ∞}.

Define

Opt(X,Y ) := sup
f∈X

‖f‖Y
‖f‖X

(following the convention 0/0 = ∞/∞ = 0).

3. General duality theorems

We first present a simple sufficient condition for the identity X = X ′′. This result

is of independent interest but also will be very useful for the proofs in the next

chapters.

Theorem 3.1. Let ‖·‖X : M(R) → [0,∞] be a functional with the following

properties.

(1) If ‖f‖X = ‖|f |‖X .

(2) ‖χE‖X < ∞ whenever µ(E) < ∞.

(3) For every E of finite measure there exists ∞ > CE > 0 such that

CE‖fχE‖X >

∫

E

|f | dµ.

Then the functional ‖·‖X′ is a Banach function norm.

Moreover, ‖·‖X is equivalent to a Banach function norm if and only if ‖·‖X ≈

‖·‖X′′ .

P r o o f. Let us first assume ‖·‖X ≈ ‖·‖X′′ . We shall verify that ‖·‖X′ is a Banach

function norm. Let f1, f2 ∈ X ′ and g ∈ X , obviously

∫

R
(f1 + f2)g dµ

‖g‖X
=

∫

R
f1g dµ

‖g‖X
+

∫

R
f2g dµ

‖g‖X
6 sup

g∈X

∫

R
f1g dµ

‖g‖X
+ sup

g∈X

∫

R
f2g dµ

‖g‖X
.

Passing to the supremum on the left-hand side proves

‖f1 + f2‖X′ 6 ‖f1‖X′ + ‖f2‖X′ .
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If µ({|f | > 0}) > 0, then there exists ε > 0 such that µ({|f | > ε}) > 0. Let us

consider A ⊂ {|f | > ε} with µ(A) > 0. Then

0 <

∫

R
εχA dµ

‖χA‖X
6

∫

R
fχA · sgn(f) dµ

‖χA‖X
6 ‖f‖X′.

Since the homogeneity is obvious, we have that ‖·‖X′ is a norm. Now, if |f | > |g|

a.e., then (due to assumption (1)) for every h ∈ X we have ‖h‖X = ‖|h| sgn(f)‖X ,

and therefore

∫

R
gh dµ

‖h‖X
6

∫

R
|gh| dµ

‖h‖X
6

∫

R
|f ||h| dµ

‖h‖X
=

∫

R
f sgn(f)|h| dµ

‖h‖X

=

∫

R
f sgn(f)|h| dµ

‖|h| sgn(f)‖X
6 ‖f‖X′ .

Passing to the supremum over h on the left-hand side gives (P2) for X ′. Property

(P3) is an easy consequence of the monotone convergence theorem. Let µ(E) < ∞

and let CE be the constant from property (3) of X . Then

∫

R
χEg dµ

‖g‖X
6 CE < ∞.

Passing to the supremum over g ∈ X we obtain (P4). Choose E with µ(E) < ∞ and

g ∈ X ′ such that

∫

E

g dµ =

∫

R

gχEχE dµ 6 ‖gχE‖X′‖χE‖X = CE‖gχE‖X′

and that proves (P5) for X ′. If X ′ is a BFS then X ′′ is also a BFS.

Let us now assume that ‖·‖X is equivalent to some Banach function norm ‖·‖Y .

Then, obviously ‖·‖X′ ≈ ‖·‖Y ′ . And hence ‖·‖X′′ ≈ ‖·‖Y ′′ = ‖·‖Y ≈ ‖·‖X . The proof

is complete. �

Lemma 3.1. Define X := {f ∈ M(R) : ‖f‖X < ∞}, where ‖·‖X satisfies the

conditions of Theorem 3.1. Then X →֒ X ′′.

P r o o f. The proof is analogous to the one in [1], Theorem 2.7. �
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Lemma 3.2. Let X0, X1, Y be rearrangement invariant lattices. Let (X0, X1)

be a compatible couple. Then

Opt(X0 +X1, Y ) ≈ Opt(X0, Y ) + Opt(X1, Y ).

P r o o f.

Opt(X0 +X1, Y ) = sup
f

‖f‖Y
inf

f=f1+f2
(‖f1‖X0

+ ‖f2‖X1
)
.

We search for the optimal constant of the embedding

(3.1) ‖f‖Y 6 C(‖f1‖X1
+ ‖f − f1‖X0

),

where f , f1 are arbitrary measurable functions. Since we have the assumption (P2),

the following holds

‖f‖Y 6 ‖(|f1|+ |f − f1|)‖Y .

Therefore, to prove (3.1) it is enough, in fact, to prove

‖(|f1|+ |f − f1|)‖Y 6 C(‖|f1|‖X1
+ ‖|f − f1|‖X0

).

Thus we may suppose f > 0, f1 > 0, and f − f1 > 0. We have

1

2
(‖f1‖Y + ‖f − f1‖Y ) 6 ‖f‖Y 6 ‖f1‖Y + ‖f − f1‖Y .

Since

sup
f1,f2>0

‖f1‖Y + ‖f2‖Y
‖f1‖X0

+ ‖f2‖X1

≈ sup
f>0

‖f‖Y
‖f‖X0

+ sup
f>0

‖f‖Y
‖f‖X1

,

the inequality & is obtained immediately, since the sum of the two suprema on the

right-hand side is equivalent to its maximum, which is attained if we set f1 = 0 or

f2 = 0. Since the other inequality is obvious, we have

Opt(X0 +X1, Y ) = sup
f>g>0

‖g‖Y + ‖f − g‖Y
(‖g‖X0

+ ‖f − g‖X1
)
≈ sup

f1,f2>0

‖f1‖Y + ‖f2‖Y
‖f1‖X0

+ ‖f2‖X1

≈ sup
f>0

‖f‖Y
‖f‖X0

+ sup
f>0

‖f‖Y
‖f‖X1

= Opt(X0, Y ) + Opt(X1, Y ).

�
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4. Normability of lambda spaces, case 1 < p < ∞

Definition 4.1. Let p ∈ (1,∞), µ(R) = ∞ and let v be a weight. Define

Λp
v :=

{

f ∈ M : ‖f‖Λp
v
:=

(
∫ ∞

0

f∗(s)pv(s) ds

)1/p

< ∞

}

,

Γp
v :=

{

f ∈ M : ‖f‖Γp
v
:=

(
∫ ∞

0

f∗∗(s)pv(s) ds

)1/p

< ∞

}

,

Λ∞
v :=

{

f ∈ M(R) : ‖f‖Λ∞

v
:= ess sup

s>0
f∗(s)v(s) < ∞

}

,

and

Γ∞
v :=

{

f ∈ M(R) : ‖f‖Γ∞

v
:= ess sup

s>0
f∗∗(s)v(s) < ∞

}

.

Remark 4.1. Note that the spaces Λ∞
v and Γ∞

v generalize the spaces of type

Λp,∞
v and Γp,∞

v (see [2] for the definition). Indeed, we have

‖f‖Λ∞

V p
= ‖f‖Λp,∞

v

and

‖f‖Γ∞

Vp
= ‖f‖Γp,∞

v
.

Remark 4.2. Usually, X may be called rearrangement invariant laticce only if,

in addition to our assumptions on this structure, it is a linear set. But that would

cause certain troubles in this case, because for an arbitrary weight v, Λp
v and Λp,∞

v

do not have to be linear sets (for an equivalent condition on weight for which Λp
v

is a linear space see [3]). Consider for instance the case of R = (−∞,∞) Λp
v with

µ(R) = ∞, where

v(s) :=
∞
∑

n=1

n!χ(n,n+1)(s), s ∈ (0,∞),

and functions f, g with supt f ∩ supt g = ∅. For instance, set

f(s) :=

∞
∑

n=1

1

n2n!
χ(n,n+1)(s), g(s) :=

∞
∑

n=1

1

n2n!
χ(−n−1,−n)(s).

Then clearly

f∗(s) = g∗(s) =

∞
∑

n=1

1

n2n!
χ(n,n+1)(s).

Therefore f, g ∈ Λp
v, but f + g /∈ Λp

v. But in the following text by abuse of language

we shall call the Λp
v spaces.
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For a weight v, p ∈ (1,∞) and t ∈ (0,∞), let us recall the fundamental function

for spaces Λ and Γ. We have

ϕΛp
v
(t) =

(
∫ ∞

0

χ(0,t)v(s) ds

)1/p

= V (t)1/p.

As for Γp
v, let µ(E) = t. We have

(χE)
∗∗(s) =

1

s

∫ s

0

χ(0,t)(ξ) dξ = min
{

1,
t

s

}

.

Therefore

ϕΓp
v
(t) =

(
∫ t

0

v(s) ds+ tp
∫ ∞

t

v(s)

sp
ds

)1/p

≈ V 1/p(t) + t

(
∫ ∞

t

v(s)

sp
ds

)1/p

.

Similarly

ϕΛp,∞
v

(t) = sup
s>0

χ(0,t)(s)V (s)1/p = V (t)1/p

and

ϕΓp,∞
v

= sup
s>0

(χ(0,t))
∗∗(s)V (s)1/p ≈ V (t)1/p + t sup

s>t

V (s)1/p

s
.

Remark 4.3. Let us check that ‖·‖Λp
v
satisfies the assumptions of Theorem 3.1.

The assumption (1) is obviously satisfied. The assumption (2) demands the funda-

mental function to be finite. For this it is sufficient to have v ∈ L1
loc. The character-

ization of the assumption (3) is described in the next proposition.

Proposition 4.1. The functional ‖·‖Λp
v
satisfies assumption (3) from Theorem 3.1

if and only if
∫ min{1,µ(R)}

0

tp
′−1

V (t)p′−1
dt < ∞.

P r o o f. Choose E ⊂ R with µ(E) < ∞. We need to show

(
∫ ∞

0

(χEf)
∗(s)pv(s) ds

)1/p

> C

∫

R

χEf dµ.

This inequality holds if and only if there exists 0 < C < ∞ such that

(
∫ µ(E)

0

f∗(s)pv(s) ds

)1/p

> C

∫ µ(E)

0

f∗(s) ds,
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for every f ∈ M(R). This is equivalent to the embedding

Λp
v →֒ Λ1

1,

which holds (see [2]) if and only if

∫ min{1,µ(R)}

0

tp
′−1

V (t)p′−1
dt < ∞.

�

Now for a weight v define

(4.1) va(s) = sp
′ v(s)

V (s)p′
.

Then, since the embedding of type Γ →֒ Λ has already been characterized in [5],

Theorem 4.2, we have

‖f‖
(Γp′

va)
′
= Opt(Γp′

va ,Λ
1
f ) ≈

(
∫ ∞

0

f∗∗(t)pvaa(t) dt

)1/p

,

where

(4.2) vaa(t) =
tp+p′+1

∫ t

0
sp

′

v(s)V (s)−p ds
[

V (t)1−p′

− V (∞)1−p′
]

(∫ t

0 s
p′v(s)V −p′(s) ds+ tp

[

V (t)1−p′ − V (∞)1−p′
])p′+1

.

Lemma 4.1. Let 1 < p 6 q < ∞. Then the following holds:

Opt(Γp
v,Λ

q
w) := sup

f∈Γv
p

‖f‖Λq
w

‖f‖Γp
v

≈ sup
t>0

ϕΛq
w
(t)

ϕΓp
v
(t)

.

P r o o f. Obviously

sup
f∈Γv

p

‖f‖Λq
w

‖f‖Γp
v

> sup
t>0

ϕΛq
w
(t)

ϕΓp
v
(t)

.

It is enough to realize that on the right-hand side we are taking the supremum over

the characteristic functions of sets of finite measure.

From [5], page 24, we obtain

Opt(Γp
v,u,Λ

q
w) ≈ sup

t>0

W (t)1/q
(

V (t) + U(t)p
∫∞

t U(s)−pv(s) ds
)1/p

,

in this particular case with u(t) = 1 and U(t) = t. Hence we get

Opt(Γp
v,Λ

q
w) ≈ sup

t>0

W (t)1/q

(

V (t) + tp
∫∞

t
s−pv(s) ds

)1/p
≈ sup

t>0

ϕΛq
w
(t)

ϕΓp
v
(t)

.

�
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Lemma 4.2. Let v be a weight. If we set X := Λp
v, then the following conditions

are equivalent.

(1) Opt(X ′′, X) < ∞.

(2)
∫ t

0 s
p′

v(s)V −p′

(s) ds . tp
′

V 1−p′

(t).

P r o o f. According to [7], Theorem 1, we have:

‖f‖(Λp
v)′ ≈ ‖f‖

Γp′

va

+
‖f‖1
‖v‖1

.

In the case of v /∈ L1, we have

(Λp
v)

′ = Γp′

va ,

where va is defined by (4.1). If v ∈ L1, then

(Λp
v)

′ = Γp′

va ∩ L1.

In the case of v /∈ L1, (1) is satisfied if and only if

(Γp′

va)
′ = Γp

vaa
→֒ Λp

v

holds (where vaa is defined by (4.2)). In the case of v ∈ L1, this occurs if and only if

(Γp′

va ∩ L1)′ = (Γp
vaa

+ L∞) →֒ Λp
v.

For v /∈ L1 we therefore need to check if

Opt(Γp
vaa

,Λp
v) < ∞.

In the case of v ∈ L1, we need to verify whether

Opt(Γp
vaa

+ L∞,Λp
v) ≈ Opt(Γp

vaa
,Λp

v) + Opt(L∞,Λp
v) < ∞.

But v ∈ L1 implies

Opt(L∞,Λp
v) = sup

t>0
V (t)1/p = ‖v‖

1/p
1 < ∞,

therefore in both cases it is necessary and sufficient to check that

Opt(Γp
vaa

,Λp
v) < ∞.

590



Due to a well known theorem (see [1], Theorem 5.2, 66) we have

ϕX′′(t) =
t

ϕX′(t)
.

From [5], Theorem 4.2, we know it is enough to show that

ϕΛp
v
(t) . ϕΓp

vaa
(t) ≈

t

ϕ
Γp′

va

(t)
.

Therefore, we need the following inequality

ϕΛp
v
(t) .

t

ϕ
Γp′

va

(t)
.

We have

ϕΛp
v
(t) = V (t)1/p,

and

ϕp′

Γp′

va

(t) = Va(t) + tp
′

∫ ∞

t

va(s)

sp′
ds.

This implies

ϕX′(t) ≈ Va(t)
1/p′

+ t

(
∫ ∞

t

va(s)

sp′
ds

)1/p′

.

Hence we have

ϕX′(t) ≈

(
∫ t

0

sp
′ v(s)

V p′(s)
ds

)1/p′

+ t

(
∫ ∞

t

v(s)

V p′(s)
ds

)1/p′

≈

(
∫ t

0

sp
′ v(s)

V p′(s)
ds

)1/p′

+ tV −1/p(t)− tV −1/p(∞).

This occurs if and only if

V 1/p(t) .
t

(∫ t

0 sp′v(s)V −p′(s) ds
)1/p′

+ tV −1/p(t)− tV −1/p(∞)
,

which is equivalent to
(
∫ t

0

sp
′ v(s)

V p′(s)
ds

)

+ tp
′

(V 1−p′

(t)− V 1−p′

(∞)) . tp
′

V 1−p′

(t),

and the latter holds if and only if

∫ t

0

sp
′ v(s)

V p′(s)
ds . tp

′

V 1−p′

(t).

The proof is complete. �
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Theorem 4.1. The following conditions are equivalent.

(1) Functional ‖·‖Λp
v
is equivalent to a Banach function norm.

(2)
∫ t

0 s
p′

v(s)V −p′

(s) ds . tp
′

V 1−p′

(t), t ∈ (0,∞).

(3)
∫ t

0
sp

′−1V −p′+1(s) ds . tp
′

V 1−p′

(t), t ∈ (0,∞).

P r o o f. Let us first show the equivalence of the second and the third condition.

(2) ⇔ (3): Clearly

∫ t

0

sp
′−1

V p′−1(s)
ds ≈

∫ t

0

sp
′−1

(
∫ ∞

s

v(z)

V p′(z)
dz + V 1−p′

(∞)

)

ds

≈

∫ t

0

∫ z

0

sp
′−1 ds

v(z)

V p′(z)
dz +

∫ ∞

t

∫ t

0

sp
′−1 ds

v(z)

V p′(z)
dz

+ tp
′

V 1−p′

(∞) =: I + II + III.

Now, since all three terms on the right-hand side are nonnegative, we have

I ≈

∫ t

0

sp
′ v(s)

V p′(s)
ds 6

∫ t

0

sp
′−1

V p′−1(s)
ds.

Therefore (3) ⇒ (2). For the converse implication, let us recall that since V is

increasing, we have

III = tp
′

V 1−p′

(∞) 6 tp
′

V 1−p′

(t).

Furthermore, we have

II =

∫ t

0

sp
′−1 ds

∫ ∞

t

v(z)

V p′(z)
dz ≈ tp

′

∫ ∞

t

v(z)

V p′(z)
dz

≈ tp
′

(V 1−p′

(t)− V 1−p′

(∞)) . tp
′

V 1−p′

(t).

Therefore, if (2) is satisfied, we have I . tp
′

V 1−p′

(t) and also II+ III . tp
′

V 1−p′

(t)

and that implies I + II + III . tp
′

V 1−p′

(t), which is nothing else but (3).

Now let us show the implication (2) ⇒ (1). First note that if (2) is satisfied,

then (3) is satisfied as well and hence also

∫ 1

0

sp
′−1

V p′−1(s)
ds < ∞.

Therefore by Proposition 4.1, the assumption (3) in Theorem 3.1 is satisfied in the

case of X = Λp
v (we shall use this identity till the end of the proof). Since all weights

are defined as locally integrable positive functions, we also have the assumption (2) in

Theorem 3.1, and as the reader can easily check, the assumption (1) in Theorem 3.1
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is satisfied as well. Theorem 3.1 claims that ‖·‖Λp
v
is equivalent to a BFN if and

only if ‖·‖X ≈ ‖·‖X′′ . Let us first recall that the inequality ‖·‖X′′ . ‖·‖X is trivially

satisfied. It remains to investigate when ‖·‖X . ‖·‖X′′ occurs. If the condition (2)

is satisfied, we only use Lemma 4.2 and obtain Opt(X ′′, X) < ∞, which gives the

desired inequality.

Now let ‖·‖X be equivalent to a Banach function norm. Therefore the as-

sumptions (2) and (3) in Theorem 3.1 have to be satisfied. And hence we have

Opt(X ′′, X) < ∞. If we use Lemma 4.2, we obtain (2). This completes the proof.

�

5. Normability of lambda spaces, case p = ∞

In order to meet the assumption (2) in Theorem 3.1, we need the weight function v

to be essentialy bounded on every finite interval (0, t). This follows from the fact

that for E, with µ(E) = t < ∞, we demand

(5.1) ṽ(t) := ‖χE‖Λ∞

v
= ess sup

s>0
χ(0,t)(s)v(s) = ess sup

0<s<t
v(s) < ∞.

In the following text we shall assume that this assumption is satisfied. And the

weight ṽ will always be defined by (5.1).

Lemma 5.1. Let v be a weight. Then

ess sup
s>0

f∗(s)v(s) = ess sup
s>0

ṽ(s)f∗(s),

for every measurable f .

P r o o f. This proposition can be found in [4], but for the sake of completeness let

us present a short proof. We have

ess sup
s>0

f∗(s)ṽ(s) = ess sup
s>0

f∗(s) ess sup
t<s

v(t)

6 ess sup
s>0

ess sup
s>t>0

v(t)f∗(t) = ess sup
s>0

v(s)f∗(s).

Since the opposite inequality is trivially satisfied, the proof is complete. �
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Theorem 5.1. Let v be a weight. Then the following conditions are equivalent.

(1) Functional ‖·‖Λ∞

v
is equivalent to a Banach function norm.

(2) sup
t>0

ṽ(t)t−1
∫ t

0
dz/ṽ(z) < ∞.

(3) Λ∞
v = Γ∞

v (in the sense of equivalent norms).

P r o o f. Let us show the equivalence of (1) and (2). Denote X := Λ∞
v . By

Lemma 5.1 we have

‖f‖Λ∞

v
= ‖f‖Λ∞

ṽ
.

Since the space (R, µ) is nonatomic and therefore resonant, we may express the dual

norm as

‖f‖X′ = sup
g∈X

∫∞

0 f∗(s)g∗(s) ds

‖g‖X
= sup

g∈Λ∞

v

∫∞

0 f∗(s)g∗(s) ds

‖g‖Λ∞

ṽ

.

We claim that

(5.2) sup
g∈X

∫∞

0
f∗(s)g∗(s) ds

‖g‖X
=

∫ ∞

0

f∗(s)
ds

ṽ(s)
.

For the inequality > we may just choose g ∈ M(R) such that g∗ = 1/ṽ. For the

opposite inequality, just realize that

∫ ∞

0

f∗(s)g∗(s) ds =

∫ ∞

0

f∗(s)

ṽ(s)
g∗(s)ṽ(s) ds 6

∫ ∞

0

f∗(s)

ṽ(s)
ds ess sup

s>0
g∗(s)ṽ(s).

Let us compute the functional ‖·‖X′′ . We have

(5.3) ‖f‖X′′ = sup
g∈X′

∫∞

0 f∗(s)g∗(s) ds
∫∞

0
g∗(s) ds/ṽ(s)

.

We claim that

(5.4) ‖f‖X′′ ≈ sup
t>0

∫ t

0 f∗(s) ds
∫ t

0 ds/ṽ(s)
= sup

t>0
f∗∗(t)

t
∫ t

0 dz/ṽ(z)
.

Indeed, the inequality . is an immediate consequence of Hardy’s lemma (see [1],

Proposition 3.6). The opposite inequality trivially follows by taking g = χ(0,t)

in (5.3).

Now according to Lemma 3.1, we need to show ‖·‖X . ‖·‖X′′ . This holds if and

only if the optimal constant of the inequality

(5.5) ess sup
t>0

f∗(t)ṽ(t) 6 C sup
t>0

f∗∗(t)
t

∫ t

0 dz/ṽ(z)
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is finite. Testing this inequality on the set of simple functions yields

ess sup
s>0

χ(0,t)(s)ṽ(s) = ṽ(t) . sup
s>0

min(s, t)
∫ s

0 dz/ṽ(z)
.

We have

sup
s>0

min(t, s)
∫ s

0 dz/ṽ(z)
= max

(

sup
s<t

s
∫ s

0 dz/ṽ(z)
, sup
s>t

t
∫ s

0 dz/ṽ(z)

)

=: max

(

sup
0<s<t

G(s), sup
s>t

H(s)

)

.

Fix t. The function H(s) is clearly decreasing. We also claim that G(s) is nonde-

creasing. Indeed, we have

G(s) =

(

1

s

∫ s

0

dz

ṽ(z)

)−1

and since the mean value of a nonincreasing function is also nonincreasing, we obtain

the claim. From the monotonicity of these functions, we may conclude

sup
s>0

min(s, t)
∫ s

0 dz/ṽ(z)
=

t
∫ t

0
dz/ṽ(z)

.

Now, using these facts in (5.5), we obtain that the condition (2) is necessary.

Concerning the sufficiency, we have

(5.6) ess sup
t>0

f∗(t)ṽ(t) 6 ess sup
t>0

f∗∗(t)ṽ(t) . ess sup
t>0

f∗∗(t)
t

∫ t

0 dz/ṽ(z)
.

It remains to show that (P5) holds. Let E ⊂ R be a measurable set, such that

µ(E) < ∞. By Hardy-Littlewood-Polya and Hölder inequality, we have

∫

E

|f | dµ =

∫ µ(E)

0

(fχE)
∗(s) 6

∫ µ(E)

0

ds

ṽ(s)
ess sup

t>0
(fχE)

∗(t)ṽ(t).

Now set

CE :=

∫ µ(E)

0

ds

ṽ(s)
.

Since the condition (2) holds, the constant CE is finite. Thus the assumption (3) in

Theorem 3.1 is satisfied and therefore the condition (2) is sufficient. The equivalence

of (1) and (2) is proved.
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Let us now assume (2) is satisfied. From (5.6) we have

‖f‖Γ∞

v
. ‖f‖X′′ 6 ‖f‖X .

Since the opposite inequality is trivially satisfied and the condition (2) implies

(5.7)

∫ t

0

dz

ṽ(z)
< ∞, for every t ∈ (0,∞),

the condition (3) holds.

For the implication (3) ⇒ (1), it suffices to verify that Γ∞
v is a BFS. The only

axiom that is not obvious is (P5). In order to see that (P5) holds, just realize that

the function f ∈ M(R) such that f∗(s) = 1/ṽ(s) belongs to the space Γ∞
v . �

Let us remind that according to Remark 4.2, Λp
v does not have to be a linear

set. A characterization of weight for which Λp
v is a linear set was given in [3] for

1 6 p < ∞. The authors also gave an equivalent condition on weight for which Λ1,∞
v

is a linear set. Let us present now similar characterization for the case of Λ∞
v .

Theorem 5.2. Let v be a weight. Then the set Λ∞
v is linear if and only if

(5.8) ṽ(2s) . ṽ(s), s ∈ (0,∞).

P r o o f. Denote X := Λ∞
v . Due to Lemma 5.1 we have X = Λ∞

ṽ . Let us first

suppose that (5.8) is violated. Then there exists a sequence tn such that

(5.9) ṽ(2tn) > 2nṽ(tn).

We may, without loss of generality, suppose that tn is either increasing or decreas-

ing. And also without loss of generality suppose that t1 < µ(R)/2. In the case of

µ(R) = ∞ it is trivial, otherwise, if µ(R) < ∞ one can see that tn → 0, so for certain

n0 we have tn < µ(R)/2 for all n > n0. Now, taking tn+n0
instead of tn does the job.

Let us first suppose tn is increasing. Because we have t1 6 µ(R)/2, we may choose

f, g ∈ M(R) such that

supt(f) ∩ supt(g) = ∅

and

(5.10) f∗(s) = g∗(s) =

∞
∑

n=1

1

ṽ(tn)
χ(tn−1,tn](s).
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Then clearly ‖f‖X = ‖g‖X = 1. Choose n ∈ N. We have

‖f + g‖X = ess sup
s>0

∞
∑

k=1

1

ṽ(tk)
χ(2tk−1,2tk]ṽ(s)

> ess sup
s>0

1

ṽ(tn)
χ(2tn−1,2tn](s)ṽ(s) =

ṽ(2tn)

ṽ(tn)
> 2n.

Since n is an arbitrary natural number, we obtain f+g /∈ Λ∞
v . Now, let the sequence

tn be decreasing. Since we have t1 6 R/2, we can find f, g with disjoint supports

such that

f∗(s) = g∗(s) =

∞
∑

j=1

1

ṽ(tj)
χ(tj ,tj−1)(s).

If we use the similar calculation as in the first case, we obtain that f + g /∈ Λ∞
v .

Now, let us suppose (5.8) holds. Choose f, g ∈ X . We have

‖f + g‖X 6 ess sup
s>0

(

f∗
(s

2

)

+ g∗
(s

2

))

ṽ(s)

= ess sup
s>0

(f∗(s) + g∗(s))ṽ(2s) . ‖f‖X + ‖g‖X.

Therefore f + g ∈ Λ∞
v . The proof is complete. �
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