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Abstract. The distance Laplacian of a connected graph G is defined by L = Diag(Tr)−D,
where D is the distance matrix of G, and Diag(Tr) is the diagonal matrix whose main entries
are the vertex transmissions in G. The spectrum of L is called the distance Laplacian
spectrum of G. In the present paper, we investigate some particular distance Laplacian
eigenvalues. Among other results, we show that the complete graph is the unique graph
with only two distinct distance Laplacian eigenvalues. We establish some properties of the
distance Laplacian spectrum that enable us to derive the distance Laplacian characteristic
polynomials for several classes of graphs.
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1. Introduction

We begin by recalling some definitions. In this paper, we consider only connected

simple, undirected and finite graphs, i.e., undirected graphs on a finite number of

vertices without multiple edges or loops and in which any two vertices are connected

by a sequence of edges. A graph is (usually) denoted by G = G(V,E), where V is its

vertex set and E its edge set. The order of G is the number n = |V | of its vertices

and its size is the number m = |E| of its edges.

As usual, we denote by Pn the path, by Cn the cycle, by Sn the star, by Ka,n−a,

1 6 a 6 n− 1, the complete bipartite graph, and by Kn the complete graph, each on

n vertices. A kite Kin,ω is the graph obtained from a clique Kω and a path Pn−ω by

adding an edge between an endpoint of the path and a vertex from the clique. We

denote by S+
n the graph obtained from a star Sn by adding an edge.

The adjacency matrix of G is a 0-1 n × n-matrix indexed by the vertices of G

and defined by aij = 1 if and only if ij ∈ E. The adjacency spectrum of G is the
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spectrum of its adjacency matrix. For more details about the adjacency spectrum of

a graph see the books [5], [9], [10], [11].

The matrix L = Diag(Deg) − A, where Diag(Deg) is the diagonal matrix whose

main entries are the degrees in G, is called the (adjacency) Laplacian of G. The

adjacency Laplacian spectrum of G is the spectrum of L. More details about L and

its spectrum can be found in the books [5], [11] and in the survey papers [21], [22].

Given two vertices u and v in a graph G, d(u, v) = dG(u, v) denotes the dis-

tance (the length of a shortest path) between u and v. The Wiener index W (G) of

a graph G is defined to be the sum of all distances in G, i.e.,

W (G) =
1

2

∑

u,v∈V

d(u, v).

The transmission Tr(v) of a vertex v is defined to be the sum of the distances from

v to all other vertices in G, i.e.,

Tr(v) =
∑

u∈V

d(u, v).

A graph G = (V,E) is said to be k-transmission regular if Tr(v) = k for every vertex

v ∈ V .

The distance matrix D of a graph G is the matrix indexed by the vertices of G

with Di,j = d(vi, vj) and where d(vi, vj) denotes the distance between the vertices

vi and vj . Let (∂1, ∂2, . . . , ∂n) denote the spectrum of D. It is called the distance

spectrum of the graph G. We assume that the distance eigenvalues are labeled such

that ∂1 > ∂2 > . . . > ∂n.

Following the way that the adjacency Laplacian matrix L is defined, we introduced

in [3] the distance Laplacian L of a graph G as L = Diag(Tr) − D, where Diag(Tr)

denotes the diagonal matrix of the vertex transmissions in G. The similarity is

that in L the diagonal entries are the column (row) sums in the adjacency matrix

and in L the diagonal entries are the column (row) sums in the distance matrix.

Let (∂L
1 , ∂

L
2 , . . . , ∂

L
n ) denote the spectrum of L. We call it the distance Laplacian

spectrum of the graph G. We assume that the distance Laplacian eigenvalues are

labeled such that ∂L
1 > ∂L

2 > . . . > ∂L
n .

To illustrate the definition, we present in Figure 1 the Petersen graph [17] with its

different spectra.

For a graph G, let PG
D (t) and PG

L (t) denote the distance and the distance Laplacian

characteristic polynomials respectively. For instance, the distance and the distance

Laplacian spectra of the complete graphKn are respectively its adjacency and Lapla-
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cian spectra, i.e.,
PKn

D (t) = (t− n+ 1)(t+ 1)n−1;

PKn

L (t) = t(t− n)n−1.

Distance and distance Laplacian spectra of some common families of graphs can be

found in [3] and below.

A-spectrum 3(1) 1(5) −2(4)

L-spectrum 5(4) 2(5) 0(1)

D-spectrum 15(1) 0(4) −3(5)

L-spectrum 18(5) 15(4) 0(1)

Figure 1. The Petersen graph and its different spectra.

Graphs with the same spectrum with respect to an associated matrixM are called

cospectral graphs with respect toM , orM -cospectral graphs. TwoM -cospectral non-

isomorphic graphsG andH are calledM -cospectral mates orM -mates. The question

“which graph is defined by its A-spectrum” raised by Günthard and Primas [14] in

1956 in a paper relating spectral theory of graphs and Hückel’s theory from chemistry.

It was conjectured [14] that there are no A-cospectral mates. That conjecture was

refuted in [7] for the class of trees, in [8] for the class of general graphs, and in [4]

for the class of connected graphs (see Figure 2). The first infinite family of pairs

of A-cospectral mates trees was constructed by Schwenk [23], who also proved that

asymptotically every tree has a mate.

Figure 2. Two A-cospectral trees, graphs, and connected graphs.

The L-cospectrality is studied in [13], [15], [16], [20], [21], [24]. The smallest

L-cospectral graphs, with respect to the order, contain 6 vertices, and are given in

Figure 3.

Figure 3. The smallest L-cospectral graphs.
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Regarding the D-cospectrality, the smallest (see Figure 4) D-cospectral trees con-

tain 17 vertices, and belong to an infinite family of pairs of D-mates that can be

constructed using McKay’s method, described in [19]. In fact, these two trees are

the only D-cospectral trees on 17 vertices.

Figure 4. The smallest D-cospectral trees.

Concerning the cospectrality with respect to the distance Laplacian matrix, the

experiments done in [3], by enumerating all the 1346023 trees on at most 20 vertices,

found no mates. Then, it was conjectured that every tree can be determined by its

distance Laplacian spectrum. Over the class of graphs in general, there exist mates

with respect to the distance Laplacian matrix. For instance, the graphs given in

Figure 5 are not isomorphic (the graph on the left contains a triangle whose vertices

have degree three, while the graph on the right does not contain such a triangle), but

share the same distance Laplacian spectrum (16.803542, 16, 16, 16, 14.624336, 14, 12,

10.572121, 0). Note that these graphs are not cospectral with respect to the distance

matrix, but they are with respect to the adjacency Laplacian.

Figure 5. Two cospectral graphs on 9 vertices with respect to the distance Laplacian.

It is known [25] that the adjacency and (adjacency) Laplacian spectra are equiva-

lent over the class of degree regular graphs. A similar result for the distance and the

distance Laplacian spectra over the class of transmission regular graphs is proved

in [3]. Also, equivalence between the Laplacian and the distance Laplacian spectra

holds over the class of graphs with diameter 2 (see [3]).
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Several other properties and results about the distance Laplacian spectra are dis-

cussed and proved in [3]. Among these result we recall the following theorem that

will be used in the present paper.

Theorem 1.1 ([3]). Let G be a graph on n vertices. Then ∂L
n−1 = n if and only

if G is disconnected. Furthermore, the multiplicity of n as an eigenvalue of L is one

less than the number of the connected components of G.

The above theorem establishes a connection between the second smallest distance

Laplacian eigenvalue ∂L
n−1 of a graph G and the second smallest adjacency Laplacian

eigenvalue (known as algebraic connectivity [12]) of its complement G.

The rest of the paper is organized as follows. In Section 2, we study some particular

eigenvalues. Among other results, we show that 0 is the smallest distance Laplacian

eigenvalue, with multiplicity 1. We prove that the complete graph Kn, n > 2, is the

only graph with exactly two distinct distance Laplacian eigenvalues. We show also

how to compute some distance Laplacian eigenvalue and its multiplicity whenever

the graph contains a clique or an independent set whose vertices share the same

neighborhood. In Section 3, we list a series of open conjectures.

2. Some particular eigenvalues

In this section, we study some particular distance Laplacian eigenvalues. First, as

for the Laplacian, 0 is also an eigenvalue of the distance Laplacian. Before proving

this fact, recall the following well-known result from matrix theory.

Lemma 2.1 (Gershgorin Theorem, [18]). Let M = (mij) be a complex n × n-

matrix and denote by λ1, λ2, . . . , λp its distinct eigenvalues. Then

{λ1, λ2, . . . , λp} ⊂

n
⋃

i=1

{

z : |z −mii| 6
∑

j 6=i

|mij |

}

.

Theorem 2.2. For any graph G, we have ∂L
n = 0 with multiplicity 1.

P r o o f. If e = [1, 1, . . . , 1]t is the all ones n-vector, then Le = 0. Thus ∂ = 0 is

an eigenvalue of L. Since L is positive semi-definite, then ∂L
n = 0.

To prove that the multiplicity of ∂L
n = 0 is 1, it suffices to prove that the rank of L

is n−1. Consider the matrixM obtained from L by the deletion of, say, the last row

and the last column. ThenM is strictly diagonally dominant. Using Lemma 2.1, 0 is

not an eigenvalue of M . Thus det(M) 6= 0 and therefore the rank of L is n− 1. �
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Some regularities in graphs are useful in calculating certain eigenvalues of the ma-

trices related to these graphs. It is the case, for instance, for the largest eigenvalue

of the adjacency matrix or the signless Laplacian whenever the graph is degree reg-

ular. The same is true for the largest eigenvalue of the distance Laplacian whenever

the graph is transmission regular. Sometimes, a local regularity in a graph suffices

to know some eigenvalue. We prove below that it is possible to know a distance

Laplacian eigenvalue of a graph if it contains a clique or an independent set whose

vertices share the same neighborhood.

Theorem 2.3. Let G be a graph on n vertices. If S = {v1, v2, . . . , vp} is an

independent set of G such that N(vi) = N(vj) for all i, j ∈ {1, 2, . . . , p}, then

∂ = Tr(vi) = Tr(vj) for all i, j ∈ {1, 2, . . . , p} and ∂ + 2 is an eigenvalue of L with

multiplicity at least p− 1.

P r o o f. Since the vertices in S share the same neighborhood, any vertex in V −S

is at the same distance from all vertices in S. Any vertex of S is at distance 2 from

any other vertex in S. Thus all vertices in S have the same transmission, say ∂.

To show that ∂ + 2 is a distance Laplacian eigenvalue with multiplicity p − 1, it

suffices to observe that the matrix (∂+2)In−L contains p identical rows (columns).

�

Corollary 2.4.

(a) The distance Laplacian characteristic polynomial of the star Sn is

PSn

L (t) = t · (t− n) · (t− 2n+ 1)n−2.

(b) The distance Laplacian characteristic polynomial of the complete bipartite

graph Ka,b is

P
Ka,b

L (t) = t · (t− n) · (t− (2a+ b))a−1 · (t− (2b+ a))b−1.

(c) Let SKn,α denote the complete split graph, i.e., the complement of the disjoint

union of a clique Kα and n− α isolated vertices. Then

P
SKn,α

L (t) = t · (t− n)n−α · (t− n− α)α−1.

P r o o f. (a) The star Sn contains an independent set S of n − 1 vertices with

a common neighborhood. Each vertex of S has a transmission of 2n − 1. Thus by

Theorem 2.3, 2n−1 is a distance Laplacian eigenvalue with multiplicity at least n−2.
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The complement of Sn contains exactly two components. Then, by Theorem 1.1,

n is a simple eigenvalue of LSn . Finally, using Theorem 2.2, we get the characteristic

polynomial of LSn .

(b) The complete bipartite graph Ka,b contains two independent sets S1 and S2

with |S1| = a and |S2| = b. The vertices of S1 (resp. S2) share the same neighbor-

hood S2 (resp. S1). The transmission of each vertex of S1 (resp. S2) is 2a + b − 2

(resp. 2b+ a− 2). Thus, by Theorem 2.3, 2a+ b and 2b+ a are eigenvalues of LKa,b

with multiplicities at least a − 1 and b − 1 respectively. In addition, n and 0 are

eigenvalues of LKa,b , by Theorem 1.1 and Theorem 2.2, respectively.

(c) The independent set of SKn,α contains α vertices sharing the same neighbor-

hood and the same transmission n + α − 2. Then, n + α is an L-eigenvalue with

multiplicity at least α− 1. In addition, the complement of SKn,α contains n−α+1

components. Thus n is an L-eigenvalue with multiplicity n− α. �

Theorem 2.5. Let G be a graph on n vertices. If K = {v1, v2, . . . , vp} is a clique

of G such that N(vi)−K = N(vj)−K for all i, j ∈ {1, 2, . . . , p}, then ∂ = Tr(vi) =

Tr(vj) for all i, j ∈ {1, 2, . . . , p} and ∂ + 1 is an eigenvalue of L with multiplicity at

least p− 1.

The proof of this theorem is similar to that of the previous one and therefore

omitted here.

Corollary 2.6.

(a) The distance Laplacian characteristic polynomial of the graph S+
n , obtained

from the star Sn by adding an edge, is

P
S+
n

L (t) = t · (t− n) · (t− 2n+ 3) · (t− 2n+ 1)n−3.

(b) The distance Laplacian characteristic polynomial of the pineapple PAn,p, ob-

tained from a clique Kn−p by attaching p > 0 pending edges to a vertex from

the clique, is

P
PAn,p

L (t) = t · (t− n) · (t− n− p)n−p−2 · (t− 2n+ 1)p.

P r o o f. (a) is a particular case of (b), with p = n − 3. Thus, it suffices to

prove (b).

It is trivial that 0 is an eigenvalue of LPAn,p . Since the complement of PAn,p

contains two components, n is a simple eigenvalue of LPAn,p . PAn,p contains an

independent set of p (pending) vertices sharing the same neighborhood and the
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same transmission 2n − 3. Thus, by Theorem 2.3, 2n − 1 is an L-eigenvalue with

multiplicity at least p− 1. PAn,p contains a clique on n− p− 1 vertices sharing the

same neighborhood (composed of the dominating vertex) and the same transmission

n+p−1. By Theorem 2.5, n+p is an L-eigenvalue with multiplicity at least n−p−2.

Now, exactly n− 1 L-eigenvalues are known. The remaining eigenvalue is equal to

the difference between the sum of all transmissions and the sum of the n− 1 known

eigenvalues. It is easy to evaluate the remaining eigenvalue, which in fact equals

2n− 1. �

Theorem 2.7. If G is a graph on n > 2 vertices then m(∂L
1 ) 6 n−1 with equality

if and only if G is the complete graph Kn.

P r o o f. The inequality results immediately from Theorem 2.2. If the graph is

complete, it is easy to see that equality holds. Now, let G be a graph such that

m(∂L
1 ) = n− 1. Assume, without loss of generality that the vertices of G are labeled

such that Trmax = Tr(v1) > Tr(v2) > . . . > Tr(vn) = Trmin. Since L admits only two

distinct eigenvalues, 0 and ∂L
1 , and e = [1, 1, . . . , 1]t is an eigenvector that belongs

to 0, any vector X = [x1, x2, . . . , xn]
t, with x1 = 1, xi = −1 and xj = 0 for j 6= 1

and j 6= i, is an eigenvector that belongs to ∂L
1 . Using the characteristic relation

L·X = ∂1X , we get Trmax+d(v1, vi) = ∂1 for every vertex vi including the neighbors

of v1, i.e., all the vertices, but v1, are neighbors of v1. Therefore, Trmax = n − 1

which is true if and only if G is the complete graph. �

Theorem 2.8. If G is a tree on n > 3 vertices, then ∂L
1 > 2n− 1 with equality

if and only if G is the star Sn.

P r o o f. It is easy to see that if G is the star Sn with n > 3 equality holds. If

the tree G is not a star, then its diameter is at least 3. For n = 3, there is only one

tree S3. For n = 4, there are two trees, P4 and S4, and equality holds only for S4.

Assume that n > 5. Let the vertex set {v1, v2, . . . , vn} of G be labeled such that

v1v2v3v4 is a path. For i > 5, vi is adjacent to v1 or to v2 and d(vi, v4) > 3, or

vi is adjacent to v3 or to v4 and d(vi, v1) > 3, or vi is not adjacent to any of the

four vertices, d(vi, v1) > 3 and d(vi, v4) > 3. Thus there are at least n− 3 distances

greater than or equal to 3. Then we have

n−1
∑

i=1

∂L
i = 2W

> 2((n− 1) + 2(n(n− 1)/2− (n− 1)− (n− 3)) + 3(n− 3))

= 2n(n− 1)− 4.
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Using Theorem 2.7, we get m(∂L
1 ) < n− 1 and therefore

∂L
1 >

2W

n− 1
> 2n−

4

n− 1
> 2n− 1

for all n > 5. This completes the proof. �

3. Some conjectures

In this section, we list a series of conjectures about some particular distance Lapla-

cian eigenvalues of a graph. These conjectures, as well as some of the results proved

in this paper, were obtained using the AutoGraphiX system ([1], [2], [6]) devoted to

conjecture-making in graph theory.

First, we conjecture about bounding the largest distance Laplacian eigenvalue.

Conjecture 3.1. For any graph G on n > 4 vertices,

⊲ ∂L
1 (G) 6 ∂L

1 (Pn) with equality if and only if G is the path Pn;

⊲ if G is unicyclic, then ∂L
1 (G) 6 ∂L

1 (Kin,3) with equality if and only if G is the

kite Kin,3;

⊲ if G is unicyclic and n > 6, then ∂L
1 (G) > ∂L

1 (S
+
n ) with equality if and only if

G is the graph S+
n , obtained from the star Sn by adding an edge.

The next conjecture is about the multiplicity of the largest distance Laplacian

eigenvalue. In Theorem 2.7, we proved that the complete graph Kn is the only

graph with exactly two distinct distance Laplacian eigenvalues. Then, it becomes

natural to consider the problem of characterizing the graphs with exactly three dis-

tance Laplacian eigenvalues. It is easy to check that the star Sn, n > 3, and the

balanced complete bipartite graph Kp,p, p > 2, possess exactly three distance Lapla-

cian eigenvalues. But, the problem is not yet solved, however, our experiments with

AutoGraphiX led to the following conjecture.

Conjecture 3.2. If G is a graph on n > 2 vertices andG 6∼= Kn, thenm(∂L
1 (G)) 6

n − 2 with equality if and only if G is the star Sn and if n = 2p for the complete

bipartite graph Kp,p.

Finally, we give conjectures about the second largest distance Laplacian eigenvalue

of a graph: lower and upper bounds over all graphs; a lower bound over all trees;

and lower and upper bounds over unicyclic graphs.
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Conjecture 3.3. For any graph G on n > 4 vertices,

⊲ ∂L
2 (G) > n with equality if and only if G is the complete graph Kn or Kn minus

an edge;

⊲ if n 6= 7, then ∂L
2 (G) 6 ∂L

2 (Pn) with equality if and only if G is the path Pn;

⊲ if G is a tree and n > 5, then ∂L
2 (G) > 2n− 1 with equality if and only if G is

the star Sn;

⊲ if G is unicyclic and n > 10, then ∂L
2 (G) 6 ∂L

2 (Kin,3) with equality if and only

if G is the kite Kin,3;

⊲ if G is unicyclic and n > 6, then ∂L
2 (G) > ∂L

2 (S
+
n ) with equality if and only if

G is the graph S+
n obtained from the star Sn by adding an edge.
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