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EDGELESS GRAPHS ARE THE ONLY UNIVERSAL FIXERS
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Abstract. Given two disjoint copies of a graph G, denoted G1 and G2, and a permutation
π of V (G), the graph πG is constructed by joining u ∈ V (G1) to π(u) ∈ V (G2) for all
u ∈ V (G1). G is said to be a universal fixer if the domination number of πG is equal to
the domination number of G for all π of V (G). In 1999 it was conjectured that the only
universal fixers are the edgeless graphs. Since then, a few partial results have been shown.
In this paper, we prove the conjecture completely.
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1. Definitions and notation

We consider only finite, simple, undirected graphs. The vertex set of a graph G is

denoted by V (G) and its edge set by E(G). The order of G, denoted by |G|, is the

cardinality of V (G). We will denote the graph consisting of n isolated vertices as

Kn. The open neighborhood of v ∈ V (G) is N(v) = {u; uv ∈ E(G)}, and the open

neighborhood of a subsetD of vertices is N(D) =
⋃

v∈D

N(v). The closed neighborhood

of v is N [v] = N(v) ∪ {v}, and the closed neighborhood of a subset D of vertices is

N [D] = N(D)∪D. A set S ⊆ V (G) is a 2-packing of G if N [x]∩N [y] = ∅ for every

pair of distinct vertices x and y in S.

Given two sets A and B of V (G), we say A dominates B if B ⊆ N [A], and a set

D ⊆ V (G) dominates G if V (G) = N [D]. The domination number, denoted γ(G),

is the minimum cardinality of a dominating set of G. A γ-set of G is a dominating

set of G of cardinality γ(G).

Given a graph G and any permutation π of V (G), the prism of G with respect to π

is the graph πG obtained by taking two disjoint copies of G, denoted G1 and G2, and
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joining every u ∈ V (G1) with π(u) ∈ V (G2). That is, the edges between G1 and G2

form a perfect matching in πG. For any subset A ⊆ V (G), we let π(A) =
⋃

v∈A

π(v).

If π is the identity 1G, then πG ∼= G � K2, the Cartesian product of G and

K2. The graph G � K2 is often referred to as the prism of G, and the domination

number of this graph has been studied by Hartnell and Rall in [6].

One can easily verify that γ(G) 6 γ(πG) 6 2γ(G) for all π of V (G). If γ(πG) =

γ(G) for some permutation π of V (G), then we say G is a π-fixer. If G is a 1G-fixer,

then G is said to be a prism fixer. Moreover, if γ(πG) = γ(G) for all π, then we say

G is a universal fixer.

In 1999, Gu [4] conjectured that a graphG of order n is a universal fixer if and only

if G = Kn. Clearly if G = Kn, then for any π of V (G) we have γ(πG) = n = γ(G).

It is the other direction, the question of whether the edgeless graphs are the only

universal fixers, that is far more interesting and is the focus of this paper. Over

the past decade, it has been shown that a few classes of graphs do not contain

any universal fixers. In particular, given a nontrivial connected graph G, Gibson [3]

showed that there exists some π such that γ(G) 6= γ(πG) if G is bipartite. Cockayne,

Gibson, and Mynhardt [2] later proved this to be true when G is claw-free. Mynhardt

and Xu [7] also showed if G satisfies γ(G) 6 3, then G is not a universal fixer. Other

partial results can be found in [1], [5]. The purpose of this paper is to prove Gu’s

conjecture, which we state as the following theorem.

Theorem 1.1. A graph G of order n is a universal fixer if and only if G = Kn.

Although the following observation is stated throughout the literature, we give

a short proof here for the sake of completeness.

Observation 1.2. Let G be a disconnected graph that contains at least one

edge. If G is a universal fixer, then every component of G is a universal fixer.

P r o o f. Let G be a disconnected graph containing at least one edge, and let

C1, . . . , Ck represent the components of G where k > 2. Suppose, for some j ∈

{1, . . . , k}, that Cj is not a universal fixer. There exists a permutation πj : V (Cj) →

V (Cj) such that γ(πjCj) > γ(Cj). Now define π : V (G) → V (G) by

π(x) =

{

x if x ∈ V (G) \ V (Cj),

πj(x) if x ∈ V (Cj).

Note that πG is a disconnected graph which can be written as the disjoint union

(

⋃

i6=j

Ci � K2

)

∪ πjCj .
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Thus,

γ(πG) = γ

(

⋃

i6=j

Ci � K2

)

+ γ(πjCj)

>
∑

i6=j

γ(Ci � K2) + γ(Cj)

> γ(G).

Therefore, if there exists a permutation π of a component Cj of G such that Cj is

not a π-fixer, then G is not a universal fixer. The result follows. �

Observation 1.2 allows us to consider only nontrivial connected graphs. Therefore,

we focus on proving the following theorem.

Theorem 1.3. If a connected graph G is a universal fixer, then G = K1.

The remainder of the paper is organized as follows. Section 2 is dedicated to previ-

ous results that will be useful in the proof of Theorem 1.3. The proof of Theorem 1.3

is given in Section 3.

2. Known results

In order to study π-fixers, we will make use of the following results.

Lemma 2.1 ([7]). Let G be a connected graph of order n > 2 and π a permutation

of V (G). Then γ(πG) = γ(G) if and only if G has a γ-set D such that

(a) D admits a partition D = D1 ∪D2 where D1 dominates V (G) \D2;

(b) π(D) is a γ-set of G and π(D2) dominates V (G) \ π(D1).

Note that if a graph G is a universal fixer, then G is also a prism fixer. So applying

Lemma 2.1 to the permutation 1G, we get the following type of γ-set.

Definition 2.2. A γ-set D of G is said to be symmetric if D admits a partition

D = D1 ∪D2 where

1. D1 dominates V (G) \D2, and

2. D2 dominates V (G) \D1.

We write D = [D1, D2] to emphasize properties 1 and 2 of this partition of D.

The following two results were shown by Hartnell and Rall [6], where some state-

ments are in a slightly different form.
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Lemma 2.3 ([6]). If D = [D1, D2] is a symmetric γ-set of G, then:

(a) D is independent.

(b) G has minimum degree at least 2.

(c) D1 and D2 are maximal 2-packings of G.

(d) For i ∈ {1, 2},
∑

x∈Di

deg x = |V (G)| − γ(G).

Theorem 2.4 ([6]). The conditions below are equivalent for any nontrivial, con-

nected graph G.

(a) G is a prism fixer.

(b) G has a symmetric γ-set.

(c) G has an independent γ-set D that admits a partition D = [D1, D2] such that

each vertex in V (G) \D is adjacent to exactly one vertex in Di for i ∈ {1, 2},

and each vertex in D is adjacent to at least two vertices in V (G) \D.

We shall add to this terminology that if a symmetric γ-set D = [D1, D2] exists

such that |D1| = |D2|, then D is an even symmetric γ-set.

3. Proof of Theorem 1.3

The proof of Theorem 1.3 is broken into three cases depending on the type of

symmetric γ-sets a graph possesses. The following property will be useful in each of

these cases.

Property 3.1. Let A = [A1, A2] and B = [B1, B2] be symmetric γ-sets of G

such that |A1| 6 |A2| and |B1| 6 |B2|.

(a) If |A1| < |B1|, then A2 ∩B1 6= ∅.

(b) If |B1| = |A1| < |A2|, then A2 ∩B2 6= ∅.

P r o o f. (a) By assumption, |B1 \ A1| > 0 and A1 dominates V (G) \ A2. If

A2 ∩ B1 = ∅, then by the pigeonhole principle there exists v ∈ A1 such that v

dominates at least two vertices in B1. This contradicts the fact that B1 is a 2-

packing. Therefore, A2 ∩B1 6= ∅.

(b) Since |B2| = |A2| > |A1|, replacing B1 with B2 in the above argument gives

the desired result. �

We call the reader’s attention to the fact that any universal fixer is inherently

a prism fixer. Therefore, in each of the following proofs, we show that for every non-

trivial connected prism fixer G there exists a permutation α such that γ(αG) > γ(G).

Furthermore, the results of Mynhardt and Xu [7] allow us to consider only connected

graphs with domination number at least 4.
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To prove the next three theorems, we introduce the following notation. Let G be

a graph and let π be a permutation of V (G). For each vertex v ∈ V (G), we let v1

represent the copy of v in G1 and v2 represent the copy of v in G2; conversely, for

i = 1, 2, if vi ∈ V (Gi), let v be the corresponding vertex of G. If A ⊆ V (G), we define

Ai = {vi : v ∈ A} for i = 1, 2. Conversely, if Ai ∈ V (Gi), then A = {v ∈ V (G) : vi ∈

Ai}, i = 1, 2. If B is a set of vertices in the graph πG, we write B = X1 ∪ Y 2, for

some symbols X and Y , where X1 = B ∩ V (G1) and Y 2 = B ∩ V (G2). Thus we

navigate between G and πG: the absence of superscripts indicates vertices or sets of

vertices in G, and the superscript i ∈ {1, 2} indicates the corresponding vertices or

sets of vertices in the subgraph Gi of πG.

Theorem 3.2. Let G be a nontrivial connected prism fixer with γ(G) > 4. If G

has a symmetric γ-set that intersects every even symmetric γ-set of G nontrivially,

then G is not a universal fixer.

P r o o f. Let D = [D1, D2] be a symmetric γ-set of G that intersects every even

symmetric γ-set of G nontrivially. By Lemma 2.3(c), D1 and D2 are 2-packings.

Assume without loss of generality that |D1| > |D2| and let D1 = {x1, . . . , xk}.

Since D1 is nonempty and a 2-packing, there exists a vertex u ∈ N(x1) such that

u /∈
k
⋃

i=2

N(xi). Define the permutation α of V (G) by α(xi) = xi+1, i = 1, . . . , k − 1,

α(xk) = u, α(u) = x1, and α(v) = v for v ∈ V (G) \ (D1 ∪ {u}). Figure 1 illustrates

αG with this particular permutation.

x1
k

x1
k−1

x1
1

...

...

G1 G2

u1

x2
k

V (G1)\(D1
1 ∪ {u1})

...

x2
2

x2
1

u2

...

D1
1 ∪ {u1}

Figure 1. αG where D is a symmetric γ-set that nontrivially intersects every even symmet-
ric γ-set of G.
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Suppose γ(αG) = γ(G) and let Q1 ∪ R2 be a γ-set of αG. Let S1 consist of the

vertices of G1 that are not dominated by Q1. Then S1 is dominated by R2, that

is, for each s1 ∈ S1, α(s) ∈ R and thus α(S) ⊆ R. Suppose r2 ∈ R2 is adjacent to

a1 ∈ V (G1)− S1. Then α−1(r) = a and Q1 dominates a1; hence each vertex of G1

is dominated by a vertex in Q1 or a vertex in R2 \ {r2}, implying (Q∪α−1(R)) \ {a}

is a dominating set of G of cardinality less than γ(αG) = γ(G), which is impossible.

Hence the neighbor in G1 of each vertex in R2, as determined by α, belongs to S1,

that is α−1(R) ⊆ S. It follows that α(S) = R. Similarly, if T 2 consists of the vertices

of G2 that are not dominated by R2, then α(Q) = T . Furthermore, S and T are

2-packings, otherwise G would also have a dominating set of cardinality less than

γ(G). We consider four cases.

Case 1. Assume that S ∩ (D1 ∪ {u}) = ∅ and Q ∩ (D1 ∪ {u}) = ∅. By definition

of α, α(v) = v for each v ∈ S ∪Q. Since α(S) = R, R = S. Similarly, Q = T . Since

Q1 dominates V (G1)\S1 and R2 dominates V (G2)\T 2, it follows that T dominates

V (G) \ S and S dominates V (G) \ T . Hence [S, T ] is a symmetric γ-set of G, where

we may assume without loss of generality that |S| 6 |T |.

If |S| = γ(G)/2, then [S, T ] is an even symmetric γ-set of G. By the choice of

D, D ∩ (S ∪ T ) 6= ∅. Since α(v) = v for each v ∈ S ∪ Q = S ∪ T , we know

that D ∩ (S ∪ T ) ⊆ D. Hence, by the assumptions of Case 1, D ∩ (S ∪ T ) ⊆ D2.

Without loss of generality, assume there exists y ∈ D2 ∩ T . By Lemma 2.3(a), y

does not dominate any vertex in D1. Now each vertex in D1 is either dominated by

a vertex in T or is contained in S. But S ∩ D1 = ∅ and y does not dominate any

vertex in D1. Hence T \ {y} dominates D1. But |T | = γ(G)/2, so by the choice

of D1, |T \ {y}| < γ(G)/2 6 |D1|. Therefore D1 is not a 2-packing, contradicting

Lemma 2.3(c).

Hence assume |S| < γ(G)/2. Letting S represent A1 and D1 represent B1 in

Property 3.1(a), and recalling that |D1| > γ(G)/2, we see that T ∩D1 6= ∅. But then

Q ∩D1 6= ∅, contrary to the assumption of Case 1. Hence Case 1 cannot occur.

Case 2. Assume that u ∈ Q ∪ S. First suppose that u ∈ Q. Then α(u) = x1 ∈ T .

Since ux1 ∈ E(G) and T is a 2-packing, u 6∈ T . Hence u ∈ N(R) by definition of T .

Let v be a vertex in R adjacent to u. Since x1 is the only vertex of D1 adjacent to u,

α(v) = v. Since α(S) = R, it follows that v ∈ S. But now uv joins u ∈ Q to v ∈ S,

contrary to the definition of S.

Hence we may assume that u ∈ S. Then α(u) = x1 ∈ R. Since ux1 ∈ E(G) and S

is a 2-packing, x1 6∈ S. Hence x1 ∈ N(Q) by definition of S. Let v be a vertex in Q

adjacent to x1. As above, α(v) = v, and since α(Q) = T , v ∈ T . Therefore there

exists an edge between R and T , contrary to the definition of T .
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Case 3. Assume for some j ∈ {2, . . . , k−1} that xj ∈ Q∪S. Suppose we can show

that x1, u ∈ Q ∩ R. Since α(Q) = T and u ∈ Q, it will follow that α(u) = x1 ∈ T ,

contrary to the fact that R ∩ T = ∅. Hence this is what we do next.

Since xj ∈ Q ∪ S, α(xj) = xj+1 ∈ R ∪ T . Suppose there exists a vertex v ∈ R

such that vxj ∈ E(G). By the choice of u, v 6= u. Since D1 is independent, v 6∈ D1.

Therefore v ∈ V (G) \ (D1 ∪ {x}) and so α(v) = v, which implies that v ∈ S. Since

S is a 2-packing, xj 6∈ S, and since no vertex in Q dominates a vertex in S, xj 6∈ Q,

contrary to the assumption of Case 3. Hence no such vertex v exists and thus, by

definition of R and T , xj ∈ R ∪ T . Therefore α−1(xj) = xj−1 ∈ Q ∪ S. A similar

argument shows that xj+1 is not adjacent to any vertex in Q and so xj+1 ∈ Q ∪ S.

We can now apply the same argument inductively to xj+1 ∈ Q∪S and xj−1 ∈ Q∪S

until we arrive at the conclusion that {x1, x2, . . . , xk} ⊆ (Q ∪ S) ∩ (R ∪ T ). Then

α−1(x1) = u ∈ (Q ∪ S) and α(xk) = u ∈ (R ∪ T ). Since x1 and u are adjacent, the

definitions of Q and S imply that x1 and u are both in Q or both in S; but since S

is a 2-packing, x1, u ∈ Q. Similarly, x1, u ∈ R and thus x1, u ∈ Q ∩R, as required.

Case 4. Assume that either x1 or xk is in Q ∪ S. Applying arguments similar

to those in Case 3 yields the same contradiction. Therefore, this case cannot occur

either.

Thus, no such dominating set Q1 ∪R2 exists for αG and the result follows. �

If a nontrivial connected prism fixer G with γ(G) > 4 has at most one even

symmetric γ-set, then the premise of Theorem 3.2 is true and we immediately obtain

the following corollary.

Corollary 3.3. Let G be a nontrivial connected prism fixer with γ(G) > 4. If G

contains at most one even symmetric γ-set, then G is not a universal fixer.

Theorem 3.2 also implies that if a nontrivial connected universal fixer G with

γ(G) > 4 exists, then for each even symmetric γ-set D of G there exists another

even symmetric γ-set E of G such that D ∩ E = ∅. We now consider graphs that

contain at least two pairwise disjoint even symmetric γ-sets. Note that in this case

γ(G) is an even integer.

Theorem 3.4. Let G be a nontrivial connected prism fixer with γ(G) = 2k

where k > 2. If G contains at least two disjoint even symmetric γ-sets, then G is not

a universal fixer.

P r o o f. Let D1, . . . , Dm be a maximal set of pairwise disjoint even symmetric

γ-sets. Since Di is symmetric, for each 1 6 i 6 m we can write Di = [Xi, Yi] such

that Xi dominates V (G) \ Yi and Yi dominates V (G) \Xi. We let X =
⋃

i

Xi.
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We know that each Xi is a 2-packing of size k. Thus, we can index the vertices

of Xi as xi,1, xi,2, . . . , xi,k such that xi+1,j is adjacent to xi,j for 1 6 i 6 m− 1 and

1 6 j 6 k.

In order to define our permutation of V (G), we first assign an additional index

to Xm, since we will map Xm to X1. Note that we have already indexed Xm so that

xm,j ∈ N(xm−1,j) for j = 1, . . . , k, and this index will be used to map Xm−1 to Xm.

Now for 1 6 j 6 k, define aj such that xm,aj
∈ N(x1,j), and this index will be used

to map Xm to X1. We may define the following permutation of V (G):

α(v) =























xi+1,j if v = xi,j for 1 6 j 6 k and 1 6 i 6 m− 1,

x1,j+1 if v = xm,aj
for 1 6 j 6 k − 1,

x1,1 if v = xm,ak
,

v otherwise.

Notice in Figure 2 that when we consider the indices of Xm as xm,aj
∈ N(x1,j),

we can write the vertices of X1 and Xm as a cyclic permutation

β = (xm,a1
, x1,2, xm,a2

, x1,3, . . . , xm,ak
, x1,1),

where for each 1 6 j 6 k:

(1) β(x1,j) = xm,aj
; i.e., xm,aj

is adjacent to the vertex immediately preceding it

in β, and

(2) β(xm,aj
) = α(xm,aj

) = x1,j+1; i.e., α maps xm,aj
to the vertex immediately

following it in β.

Furthermore, by the definitions of α and aj , 1 6 j 6 k, β cannot be written as

a product of subcycles that exhibit the same properties.

Suppose γ(αG) = 2k and let Q1 ∪ R2 be a γ-set of αG. Define S1 and T 2 as in

Theorem 3.2 with all the associated properties.

We first claim that Q ∩ X 6= ∅. To see this, suppose neither S nor Q contains

a vertex of X . By definition of α, T = α(Q) = Q and R = α(S) = S. Thus Q and

R are disjoint 2-packings and [Q,R] is a symmetric γ-set of G.

By the symmetry of αG we need only to consider two cases. If |Q| = k = |R|, then

[Q,R] is an even symmetric γ-set. By the choice of D1, . . . , Dm, Di ∩ (Q ∪ R) 6= ∅

for some 1 6 i 6 m. Because α(Q ∪ R) = Q ∪ R, the definition of α implies

that Di ∩ (Q ∪ R) ⊆ Yi. Assume without loss of generality that yi,j ∈ Q for some

1 6 j 6 k. Then each vertex of Xi is dominated by a vertex of Q \ {yi,j} or is

contained in S. But by the assumption, S ∩X = ∅, hence Q \ {yi,j} dominates Xi.

Since |Q \ {yi,j}| = k − 1 < |Xi|, this contradicts Xi being a 2-packing. Therefore
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x1

3,2

x1

1,1

x1

2,1

x1

3,1

x1

1,4

x1

2,4

x1

3,4

x1

1,2

x1

2,2

x1

3,3

x1

1,3

x1

2,3

G1 G2

x2

3,2

x2

1,1

x2

2,1

x2

3,1

x2

1,4

x2

2,4

x2

3,4

x2

1,2

x2

2,2

x2

3,3

x2

1,3

x2

2,3

. . . X1

. . . X2

. . . X3

Figure 2. Specific case when m = 3 and k = 4. Note that α(v) = v for all other vertices
of G not depicted.

either Q∩X 6= ∅, and we are done, or S ∩X 6= ∅. In the latter case, we interchange

the labels G1 and G2 and obtain Q ∩X 6= ∅.

On the other hand, if |Q| < k, then S ∩ Xi 6= ∅ for each 1 6 i 6 m, since each

Xi is a 2-packing and every vertex of G is either dominated by Q or is contained

in S. This implies for each 1 6 i 6 m that R ∩Xi 6= ∅ by definition of α. As before,

simply relabel G1 and G2 so that |Q| > k and obtain Q ∩X 6= ∅.

We next claim that T ∩ X1 6= ∅. From the above, we may assume |Q| > k. If

|Q| > k, then |R| < k. This implies that T ∩ X1 6= ∅, since X1 is a 2-packing and

every vertex of G is either dominated by R or is contained in T . So assume that

|Q| = k, and let xi,a ∈ Q for some 1 6 i 6 m and 1 6 a 6 k. If i = m, then by

definition of α we have T ∩X1 6= ∅. So assume i 6= m. Since Yi is a 2-packing and

no vertex of Yi is adjacent to a vertex of Xi, there exist at least |Q ∩Di| vertices in

S ∩Yi. Moreover, since each vertex of Yi is mapped to itself under α, we know there

exist at least |Q ∩ Di| vertices in R ∩ Yi as well. This, together with the fact that

|Q| = k = |R|, gives

|R \ Yi| 6 k − |Q ∩Di|

6 k − 1.
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Therefore, since Xi is a 2-packing and each vertex of G is either dominated by R or

is contained in T , T ∩ Xi 6= ∅. So assume xi,b ∈ T for some 1 6 b 6 k. If i = 1

or if m = 2, then we are done with the proof of this claim. So assume m > 2 and

i 6∈ {1,m}. By definition of α, xi−1,b ∈ Q. Applying the above argument inductively,

eventually we have T ∩X1 6= ∅. Let r = |T ∩X1| > 0.

We next claim that r < k. To see this, suppose that r = k. Then X1 ⊆ T .

Because X1 dominates V (G) \ Y1, R ⊆ Y1. If R ⊂ Y1, then T contains X1 and some

vertex y1,j ∈ Y1. Since Y1 dominates V (G) \X1, some x1,i and y1,j have a common

neighbor in V (G) \D1, contrary to T being a 2-packing. Therefore R = Y1 and so

T = X1. Then Q = α−1(T ) = α−1(X1) = Xm and S = α−1(R) = Y1. By the choice

of the Di, D1 ∩Dm = ∅. Hence Xm = Q dominates Y1 = S, contradicting the fact

that, by definition, S = V (G) \N [Q]. Thus, we may conclude that r < k.

Let x1,b1 , x1,b2 , . . . , x1,br be the vertices of T ∩X1. There exist exactly r vertices

in Q ∩ Xm; call them xm,c1 , xm,c2 , . . . , xm,cr . We claim for some x1,bj ∈ T ∩ X1

that x1,bj 6∈ N(Q ∩ Xm). So assume not; that is, assume {x1,b1 , x1,b2 , . . . , x1,br} ⊂

N(Q ∩ Xm). This implies there exists a relabeling of the bj’s and cj ’s such that

xm,cj ∈ N(x1,bj ) and α(xm,cj ) = x1,bj+1 for bj ∈ {1, . . . , k−1} and α(xm,cj ) = x11 if

cj = ak where ak is the index first given to xm to define α. Consequently, there exists

a subcycle of β consisting of the vertices x1,b1 , x1,b2 , . . . , x1,br , xm,c1 , xm,c2 , . . . , xm,cr

such that for each 1 6 j 6 r:

(1) xm,cj is adjacent to the vertex immediately preceding it within its subcycle; and

(2) xm,cj is mapped under α to the vertex immediately following it within its sub-

cycle.

However, this contradicts the construction of α unless r = k, which we know to

be false. Thus, for some x1,bj ∈ T ∩X1, x1,bj ∈ S or x1,bj ∈ N [Q \Xm].

If x1,bj ∈ S, then by definition of α, x2,bj ∈ R. Since x1,bj ∈ N(x2,bj ), this implies

there exists an edge between R and T . This contradiction shows x1,bj ∈ N [Q \Xm].

So assume v ∈ Q where x1,bj ∈ N [v]. If α(v) = v, then v and x1,bj are both in T ,

which contradicts T being a 2-packing. On the other hand, if α(v) 6= v, then v = xi,d

for some i 6= m and 1 6 d 6 k.

Case 1. Assume that i = 1. Since Xi is a 2-packing, it follows that v = x1,bj ∈ Q.

Thus, x2,bj ∈ T by definition of α. But x1,bj was assumed to be in T , so this violates

T being a 2-packing. Therefore, this case cannot occur.

Case 2. Assume that i 6∈ {1,m}. Immediately this implies that m > 2. Further-

more, α(xi,d) = xi+1,d, and we have xi,d ∈ N(x1,bj ) ∩ N(xi+1,d), which contradicts

T being a 2-packing, as shown in Figure 3. Thus, this case cannot occur either.

Having considered all cases, we have shown such a dominating set Q1 ∪R2 of αG

does not exist of order 2k. Hence, the result follows. �
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Figure 3. Specific case when |T ∩X1| = 3.

We now use the results of this section to prove Theorem 1.3.

P r o o f of Theorem 1.3. Assume that G is a connected universal fixer of order

n > 2. By Mynhardt and Xu [7], we may assume that γ(G) > 4. Since G is a uni-

versal fixer, G is a prism fixer. Theorem 3.2 implies that for every even symmetric

γ-set D of G, there exists an even symmetric γ-set D′ of G such that D ∩ D′ = ∅.

However, this contradicts Theorem 3.4, which states that G cannot contain a pair of

disjoint even symmetric γ-sets. Therefore, no such connected universal fixer of order

at least 2 exists. That is, if G is a connected universal fixer, then G = K1. �

In conclusion, we know that any component of a universal fixer must be an isolated

vertex. It follows that edgeless graphs are the only universal fixers.
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