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In the proof of Theorem 3.1 in [4], we state the following assertion:

If 0 6 r < 1, 0 < p 6 1, 1/q = 1/p− r and f ∈ Hp(Rn) we write f =
∑

j∈N

λjaj ,

where aj is a p-atom and
∑

j∈N

|λj |
p 6 c‖f‖pHp . So the theorem will be proved if we

obtain that there exists c > 0 such that ‖Ta‖Lq 6 c with c independent of the p-

atom a, since this estimate and the inequality
(

∑

j∈N

|λj |
q
)1/q

6

(

∑

j∈N

|λj |
p
)1/p

give

‖Tf‖q 6 c‖f‖Hp .

Although the final inequality holds, the assertion is not completely correct. Indeed,

in [1], M.Bownik gives an example of a linear functional defined on a dense subspace

of the Hardy space H1(Rn) and he shows that although this functional is uniformly

bounded on atoms, it does not extend to a bounded functional on the whole H1(Rn).

So in general it is not enough to verify that an operator or a functional is bounded

on atoms to conclude that it extends boundedly to the whole space. See also [2].

By Proposition 2 in [4] we have that T is a well defined bounded operator from

Ls(Rn) into Lq(Rn), 1/q = 1/s− r, 1 < s < 1/r. Also, from Remark 4.12 in [3], we

obtain that the equality f =
∑

j∈N

λjaj holds in L
s(Rn) for f ∈ Hp(Rn)∩Ls(Rn). So,

taking a subsequence if necessary, we get

(1) |Tf(x)| 6
∑

j∈N

|λj ||T (aj)(x)|

a.e. x ∈ R
n.

So the correct assertion should be:

If 0 6 r < 1, 0 < p 6 1, 1/q = 1/p − r, taking 1 < s < 1/r and f ∈

Hp(Rn) ∩ Ls(Rn) we write f =
∑

j∈N

λjaj , where aj is a p-atom, the convergence
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is in Hp(Rn) and in Ls(Rn), with
∑

j∈N

|λj |
p 6 c‖f‖pHp . So the theorem will be proved

if we obtain that there exists c > 0 such that ‖Ta‖Lq 6 c with c independent of the

p-atom a, since this estimate, (1) and the inequality
(

∑

j∈N

|λj |
q
)1/q

6

(

∑

j∈N

|λj |
p
)1/p

give ‖Tf‖q 6 c‖f‖Hp for f ∈ Hp(Rn) ∩ Ls(Rn), so the theorem follows from the

density of Hp(Rn) ∩ Ls(Rn) in Hp(Rn).

In [5], Theorem 1, we make a similar assertion. An analogous argument works.

References

[1] M.Bownik: Boundedness of operators on Hardy spaces via atomic decompositions. Proc.
Am. Math. Soc. (electronic) 133 (2005), 3535–3542.

[2] S.Meda, P. Sjögren, M.Vallarino: On the H1-L1 boundedness of operators. Proc. Am.
Math. Soc. 136 (2008), 2921–2931.

[3] E.Nakai, Y. Sawano: Hardy spaces with variable exponents and generalized Campanato
spaces. J. Funct. Anal. 262 (2012), 3665–3748.

[4] P.Rocha, M.Urciuolo: On theHp-Lq boundedness of some fractional integral operators.
Czech. Math. J. 62 (2012), 625–635.

[5] P.Rocha, M.Urciuolo: On the Hp-Lp-boundedness of some integral operators. Georgian
Math. J. 18 (2011), 801–808.

Authors’ address: P a b l o R o ch a, M a r t a U r c i u o l o, Famaf-UNC, Ciem-Conicet,
Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba, Argentina, e-mail: rp@famaf.
unc.edu.ar, urciuolo@famaf.unc.edu.ar.

868


		webmaster@dml.cz
	2020-07-03T21:16:50+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




